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Phase ordering, transformation, and grain growth of two-dimensional
binary colloidal crystals: A phase field crystal modeling
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The formation and dynamics of a wide variety of binary two-dimensional ordered structures and superlattices
are investigated through a phase field crystal model with sublattice ordering. Various types of binary ordered
phases, the phase diagrams, and the grain growth dynamics and structural transformation processes, including
the emergence of topological defects, are examined. The results are compared to the ordering and assembly of
two-component colloidal systems. Two factors governing the binary phase ordering are identified, namely the
coupling and competition between the length scales of two sublattices, and the selection of average particle
densities of two components. The control and variation of these two factors lead to the prediction of various
complex binary ordered patterns, with different types of sublattice ordering for integer versus noninteger ratios of
sublattice length scales. These findings will enable further systematic studies of complex ordering and assembly
processes of binary systems, particularly binary colloidal crystals.
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I. INTRODUCTION

The assembly of binary colloidal crystals (BiCCs) with
sublattice ordering has been of significant interest in various
aspects of fundamental research and applications [1-8]. These
artificial ordered systems can be synthesized from diverse
types of building components that vary in size and shape and
are selected or tailored to possess specific functionalities [4,5].
Variations of spatial arrangement, shape, and size of structural
components translate into different macroscopic properties of
the system and the fabrication of the corresponding functional
materials (e.g., photonics [9] and semiconductors [10,11]), in
addition to biological applications (e.g., cell culture substrates
[12,13] and MRI contrast agents [14]). Although a great
deal of effort has been placed on the synthesis of colloidal
systems from self-assembly or directed assembly of colloidal
particles or building blocks, it still remains a challenging task
to precisely control and predict the structural and dynamic
properties of the system. Many system parameters and growth
or processing conditions, such as entropy [15], temperature
[16], external magnetic or electric fields [2,17], isotropic
and anisotropic interparticle interactions, and system elas-
ticity and plasticity, determine the structural diversity of the
assembly.

One of the key challenges for understanding the complex
phenomena associated with colloid assembly is the devel-
opment of theoretical approaches that can efficiently model
nonequilibrium phenomena with multiple length scales and
diffusive time scales for large enough systems of exper-
imental relevance. Various theoretical methods have been
developed to study binary colloidal structures and the asso-
ciated phenomena. For example, Monte Carlo (MC) simula-
tions have been conducted to examine the structure factor of
charged binary colloidal mixtures [18] as well as the phase
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transformation in a two-dimensional (2D) BiCC monolayer
that is consistent with experiments [19]. Similarly, molecular
dynamics (MD) simulations have predicted that 2D BiCCs
can only be achieved for certain particle ratios [20]. However,
the system size and time range are usually limited in these
atomistic simulations, given the large computational demands
to access large-scale behaviors of the system.

Recently, progress has been made to overcome these lim-
itations by the development of multiple scale approaches.
Among them is the phase field crystal (PFC) method [21],
which introduces crystalline ordering into the traditional
phase-field-type continuum approach. PFC models, motivated
from the classical density functional theory (DFT) of freezing
[22,23], incorporate the small length scales of crystalline
materials (including the basic features of the crystalline state
such as elasticity, plasticity, defects, and multiple crystal
orientations) on diffusive time scales. The system evolution
is governed by dissipative and relaxational dynamics driven
by free-energy minimization. This method thus bridges the
gap between continuum modeling that describes the long-
wavelength behavior of the system but not crystalline details,
and atomistic modeling that captures the microscopic details
but is computationally challenging for large systems. It has
been successfully applied to the study of a broad range of
phenomena such as quantum dot growth during epitaxy [24],
grain boundaries of 2D materials [25,26], graphene Moiré
patterns [27], colloidal solidification and growth [28,29],
structural phase transformation [30,31], glass formation [32],
and quasicrystal growth [33], among many others. For the
application of the PFC method to colloidal systems, most
existing studies are limited to the single-component crystal-
lization process [28,29], while the study of binary colloidal
structures is still lacking.
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In this paper, we extend the PFC method to study various
types of binary 2D colloidal structures with sublattice order-
ing, based on a binary PFC model developed in our prior
work [26]. We start by deriving the model from classical DFT
for a two-component system, keeping only two- and three-
point interparticle direct correlations. The ordered structures
of BiCC are found to be determined by the coupling between
different sublattice length scales, as well as the average den-
sity variations of the particle species. For equal sublattice
length scales we identify seven binary phases, with results
consistent with recent experimental findings [1-3,8,19,34].
Using analytic and numerical methods, the stability of various
phases and the coexistence between them are determined
and used to construct phase diagrams. In addition, numerical
simulations are employed to examine the dynamical processes
of grain growth and phase transformation for different binary
ordered structures, including the formation of various types of
topological defects during the system evolution. Importantly,
varying the length scale ratio between the two sublattices al-
lows us to access and predict a much broader range of complex
ordered (or quasicrystalline) patterns and superlattices, with
results depending on the integer versus noninteger type of
ratio and the choice of densities of the two components.

II. MODEL DERIVATION

The PFC equations for the binary AB system can be derived
from classical dynamic density functional theory (DDFT),
following the procedure described in Ref. [23]. In classical
DFT, the free-energy functional for a two-component system
is expanded as (see, e.g., Ref. [35])
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where My () is the mobility of the A (B) component and
4 (p) is the noise field. In principle, the free energy in clas-
sical DFT contains all the effects including noise, since the
DFT derivation comes from the partition function summing
over all states at some finite temperature, and the resulting
equilibrium F is a functional of noise-averaged densities
(i.e., after ensemble average). Adding an extra noise term in
DDFT would then result in a double counting of fluctuations
[36]. From a more pragmatic point of view, however, DDFT
without fluctuations misses some key dynamic processes,
such as nucleation events. In practice, the free-energy func-
tional used and the corresponding density fields are usually

coarse-grained, for which the governing DDFT equations
should be stochastic as demonstrated in Ref. [38]. Therefore,
for completeness noise is incorporated in the above dynamic
equations, where F' should then be considered as an effective,
coarse-grained free-energy functional but not the true free
energy.

Defining the density variation fields ny = (pa — ,of)/ 1Ji
and ng = (pg — ,of)/,o, (with p; = pf + p,B), keeping only
two- and three-point direct correlations Ci(j2)(r1 ,rp) and

Cl.(;k) (ri,r2,r3) (i, j, k = A, B), and expanding them in Fourier

space (with wave number ¢) via
CP@) = —C + g = Clgt + -
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we can rewrite Eq. (1) as
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which is the same as Eq. (Al) in the Appendix of Ref. [23],
with Apf ® — pf (B)/,ol. Note that Egs. (3) and (4) are based
on the assumption of only one characteristic length scale for
either A or B sublattice (as determined by CA‘i(jz)), and the ap-
proximation of C‘i(;k) only by its zero-wave-vector component
as used in previous classical DFT work for hard-spheres [39]
and Lennard-Jones [40] binary systems.

Substituting Eq. (4) into the DDFT Egs. (2), choosing the
same reference state for A and B, i.e., ,o;‘ = ,olB , and keeping
only the leading-order terms (via scale analysis), we can
derive a new binary PFC model represented by

§F
dng/dt = DAV — +V -q,,
SnA

8F
dng/ot = DBVZE +V -y, (5)

where the diffusion coefficients D4 5y = Ma g)ksT, and the
resulting PFC free-energy functional is given by
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of two- and three-point direct correlation functions in Fourier
space, i.e.,
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To reduce the number of parameters, we can rescale the above
PFC equations in terms of A parameters, i.e., via a length
scale Ry, a time scale R3 /(DaBY), and na) — nag)/va/B%,
leading to
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where mp = My /M, represents a mobility contrast between
A and B species, and the rescaled noise fields satisfy the
conditions
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with i = A, B, u, v = x,y for a 2D system, and the rescaled

noise amplitudes ['p/T'4 = Mp/My = mp. The PFC free-
energy functional is rescaled as
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where the dimensionless parameters are given by g4 =1
(due to rescaling), gz = Ra/Rp, qap = Ra/Rup, €aB) =
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FIG. 1. Some ordered phases obtained from PFC simulations for
the case of equal sublattice length scales (g4 = g = 1), including
(a) binary honeycomb (BH), (b) triangular B and honeycomb A
(TBHA), (c) elongated triangular A and stripe B (ETASB), and
(d) binary stripe (BS). For the first-column simulation results, the
red locations correspond to the maximum density of component
A, while the blue ones correspond to the maximum density of B.
The corresponding diffraction patterns are shown as insets, and the
circularly averaged structure factors are given in the second column.
As a comparison, the third column shows the related results observed
in previous experiments, reprinted with permission from Ref. [8] in
(a), from Ref. [2] in (b) and (d), and from Ref. [34] in (¢).

III. ORDERED STRUCTURES AND PHASE DIAGRAMS:
EQUAL LENGTH SCALES

The binary PFC model constructed here [i.e., Egs. (8)—
(10)], although only including one mode for each of the
sublattices, can produce a rich variety of ordered structures
as well as their coexistence. Detailed results depend on the
selection and competition of length scales between the two
sublattices. For simplicity, in this section we consider the case
of an equal lattice spacing of A and B sublattices and zero
mobility contrast, such that g4 = gg = gap = 1 and mp = 1,
and we use the model parameters of aap = 0.5, Bap = 0.02,
g4 =g =05, w=u=0.73,and Bg = v = 1. For these pa-
rameters, a total of seven stable phases of 2D binary sublattice
ordering have been identified, with some structures and the
corresponding diffraction patterns and/or circularly averaged
structure factors for the density difference n4 — ng shown in
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FIG. 2. (a) Binary square (BSq; i.e., checkerboard) and (b) bi-
nary rhombic (BR) phases obtained from PFC simulations, with
g4 = qp = 1 and positive average densities of A and B components
[na0 = 0.53, ngg = 0.82 for (a) and nyg = 0.55, ngg = 0.80 for (b)].
The color scheme is the same as that of Fig. 1. Each inset shows the
corresponding diffraction pattern.

Figs. 1 and 2. These binary structures or superlattices are
basically combinations of triangular, stripe, inverse triangular
(noting that an inverse triangular lattice is of honeycomb
structure), square, rhombic, and homogeneous states of A
and B sublattices, and they are determined by the coupling
between n, and np density fields. They include (i) a binary
honeycomb (BH) phase with triangular A and B sublattices,
(ii) a binary stripe (BS) phase with A and B stripe sublattices,
(iii) a combination of elongated triangular A (or B) sublattice
and stripe B (or A) sublattice (ETASB or ETBSA), (iv) a
pattern with triangular A (B) sublattice but inverse triangular
(i.e., honeycomb) structure of B (A) sublattice (TAHB or
TBHA), and (v) a binary homogeneous (BHom) state. In
addition, two other ordered phases can be found only from
the regime of positive average density variations, including
(vi) a checkerboard structure shown as binary square (BSq)
sublattices of A and B, and (vii) a binary rhombic (BR) phase
consisting of A and B rhombic sublattices (see Fig. 2). These
seven phases are identified through our numerical simulations
of the dynamic Eq. (8), across different ranges of average
density values including n4g, npy varying from —0.5 to 0.5
to obtain phases (i)—(v) and from 0.5 to 1 to obtain phases
(vi) and (vii). It is possible that more ordered phases could be
found across a broader range of parameter space as a result
of the nonlinear coupling between A and B sublattice density
fields.

The TAHB (or TBHA) phase has been observed in exper-
iments of 2D binary colloid mixtures [1-3], while the BSq
structure has been achieved in both experiments and MC
simulations of binary colloidal monolayers [2,19]. The BH
phase not only has been obtained in previous experiments of
a binary colloidal system with honeycomb symmetry [8], but
it also corresponds to the structure of binary 2D hexagonal
materials such as hexagonal boron nitride (2-BN). The BS
structure has also been observed in binary colloids, although
the stripe phase obtained in our modeling would be more
relevant to that of diblock copolymers given the homogeneous
density distribution within each stripe. Although to the best
of our knowledge the ETASB (or ETBSA) superlattice has
not been found in colloidal systems, a similar phase has been
produced in thin-film experiments of binary blends of block

copolymers (controlled by substrate surface prepatterning)
[34]. Some of the corresponding experimental images are
shown in Fig. 1 for comparison.

A. Phase diagrams: Analytics from one-mode approximation

The corresponding phase diagram of this PFC model
can be determined via standard thermodynamics. The phase
boundaries for the coexistence between any two phases 1 and
2 are calculated by the conditions

Al = A2,  MB1 = UB2, O] = w2, (11

where sy = 0f/0n4 )y is the chemical potential for A (B),
with f the free-energy density and n4 (g) the average density
variation of A (B) component, and w = f — panao — Upipo
is the grand potential density. Given that w = Q/V = —P
with the grand potential €2, system volume V, and pressure
P, Eq. (11) gives the phase coexisting conditions of equal
chemical potentials and equal pressure, i.e.,

af af

F l(nAOIynBOI) = z(nAoz, npo,) = 14
af _ o _ B
F— l(nAOIynBOI) = 2(imoz,ms;oz) = 10>

fi = Honao, — 1enpo, = o — Monao, — Honeo, = —P, (12)

where fi(na0,, ngo,) and fa(nao,, npo,) are the free-energy
densities of phases 1 and 2, respectively.

To obtain the free-energy density f(nao,npo) and the
corresponding chemical potentials of A and B components,
we use the one-mode approximation for each ordered phase.
The corresponding one-mode expressions assumed in our
analytic calculations are given in the Appendix. For each
binary phase, the parameters in these expressions, including
the wave number and amplitudes of the density field, are
determined from free-energy minimization [after substituting
the one-mode expressions of n4 and ng into the free-energy
functional Eq. (10) and integrating over a unit cell]; from this
we then derive the free-energy density f(n40, npo) for each
phase. Results for the example of BH phase are presented in
the Appendix.

The resulting phase diagram is multidimensional, e.g.,
in the e4-ep-ngo-npy parameter space (with all the other
model parameters fixed). For simplicity, here we consider
the A/B symmetric case of €4 = € = €, leading to a 3D
€-nap-npo phase diagram. It would be convenient to calculate
the diagrams in two steps: First identify the stability diagram
showing the phase of lowest free energy in each regime
of the parameter space, with phase boundaries determined
by the solution of fi(na0, npo) = f2(na0, ngo) for any two
phases 1 and 2, and then construct the corresponding phase
diagrams (showing coexistence between two or three phases)
based on Eq. (12). Two sample diagrams at € = 0.1 and 0.3
obtained from our analytic calculations are shown in Figs. 3(a)
and 3(b).

B. Phase diagrams: Direct numerical calculations

We also calculate the phase diagrams through direct nu-
merical simulations of this binary PFC model. The dynamic
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FIG. 3. Phase diagrams of the binary PFC model in the cross-section plane of n40 vs ngy (for nag, ngy < 0) for the case of equal sublattice

length scales g4 = gp = 1 at €4 = €5 = 0.1 [(a) and (c)] and 0.3 [(b) and (d)]. Results of the analytic calculations are shown in (a) and (b),
while those determined by direct numerical simulations are given in (c) and (d).

model equation (8) is solved numerically in the absence of
noise terms, starting from random initial conditions across
the parameter space of (nag, npy) at each specific value of
€ = €4 = €p. The corresponding phase at each point of the pa-
rameter space is determined by its steady-state structure. Two
of these numerically determined phase diagrams for € = 0.1
and 0.3 are given in Figs. 3(c) and 3(d), respectively, showing
some quantitatively different results of phase boundaries as
compared to those in Figs. 3(a) and 3(b) obtained from the
above analytic calculations. One of the obvious differences is
the much larger regime of BH phase identified from numerical
solutions. In addition, in Fig. 3(a) with € = 0.1 only two-
phase coexistence is obtained from the analytic results under
the one-mode approximation, whereas both two- and three-
phase coexistence regions are seen in Fig. 3(b) when € = 0.3.
This differs from the simulation results in Figs. 3(c) and 3(d),
which show two- and three-phase coexistence regions for both
values of €.
These differences can be attributed to the oversimplified
assumptions in the one-mode expressions of density
fields wused in the analytic calculations. Generally

the A and B density variation fields are expanded as
ng = nag + Zj Ajexpli(gy, -r+¢a)l+cc. and np=
npo + Y. ; Bjexpli(qg, -7+ ¢p)l +cc. In the standard
procedure of phase diagram calculation that is followed above
in Sec. IITA, the amplitudes A; and B; are assumed to be
real once the wave vectors 4, 93, and phase shifts ¢, , @3,
are identified from the structural symmetry (as given in the
Appendix). This procedure has worked well for the previous
single-component and alloy PFC models [21,22,30,31].
However, the discrepancies shown in Fig. 3 between analytic
results and numerical solutions indicate a more complicated
scenario for the case of binary sublattice ordering examined
here, particularly regarding the selection of complex phases
of A and B amplitudes. More details for the example of BH
structure, including the corresponding amplitude equations
and phase selection, will be presented elsewhere.

IV. PHASE TRANSFORMATION, GRAIN
NUCLEATION, AND GROWTH

Below the melting point, crystallites can nucleate ho-
mogeneously or heterogeneously from the supersaturated
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FIG. 4. Grain growth and coalescence process obtained from PFC simulation. The nuclei of BH structure grow and impinge to form grain
boundaries and a polycrystalline system, with a portion of the simulation results shown at (a) r = 100, (b) ¢ = 300, and (c) ¢ = 4000.

homogeneous state. In either case, those nuclei will grow
individually until they merge, which usually leads to the
formation of topological defects such as dislocations and
grain boundaries in the system. Many factors (e.g., temper-
ature and average densities) determine the ordered structures
and dynamics arising from those nucleation processes. The
emergence of multiple coexisting phases and the structural
transformation between them can also occur during the system
evolution due to the phase coexistence determined in the
phase diagram. We have conducted a series of simulations
to examine this nucleation or phase transformation process,
with some sample results given below. Here the nonconserved
dynamics is used, for a better control of the grain growth rate
and the condition of constant flux, i.e.,

BnA . 8F i

o  emy MM

al’lB 8 F

s _ (T L), 13
o mB(BnB MB) (13)

where 114 () is the chemical potential of A (B) component. The
process of grain growth is controlled through tuning the values
of us and pp, which emulate the constant flux condition. No
noise terms are added in the above PFC dynamic equations
used in our simulations, given the nature of heterogeneous
nucleation studied here for which noise does not play a crucial
role.

A. Nucleation and growth of BH grains

We first study an example of the emergence of binary
honeycomb (BH) phase from a homogeneous (BHom) state,
simulating the dynamic process of grain nucleation, individual
grain growth, grain coalescence, and eventually the formation
of a polycrystalline state. Initially 20 circular nuclei of BH
structure are placed at random locations in a simulation box,
with randomly assigned different orientations. The nuclei
evolve and grow individually until the grains merge and form
a binary honeycomb film. The average densities for BH and
BHom states are set as nyg = ngg = —0.27 and —0.47, re-
spectively. The chemical potential ;s = pp is set to be —0.58,
slightly larger than the corresponding two-phase coexistence
value. A portion of the simulation box is shown in Fig. 4,

giving three snapshots during the system evolution. Fig-
ure 4(a) shows the early growth stage of individual grains
before they impinge on each other, where the process of
faceting occurs on the surface of each BH grain which evolves
to a hexagon shape. At a later time stage [Fig. 4(b)] the
impingement of grains has occurred and coalescence is taking
place, which leads to the formation of dislocations and grain
boundaries. For both stages, the solidification process is not
yet complete and there is still part of the system that is in the
homogeneous state. At large enough time the whole system
evolves to the ordered state of BH symmetry, as shown in
Fig. 4(c). The system is polycrystalline, with grain boundaries
separating grains of different orientations.

B. BH-to-BS phase transformation

An example of phase transformation is presented in Fig. 5,
showing the dynamic process of transformation from a binary
honeycomb (BH) structure to the binary stripe (BS) phase.
We use a setup similar to the previous section by initializing
20 BS nuclei at random locations and orientations in coex-
istence with the BH matrix. The average densities for BH
and BS states are set as nyg = ngyp = —0.21 and —0.0739,
respectively, and the system chemical potential is chosen
as ua = up = —0.35 (above the corresponding coexistence
value). Three snapshots representing different stages of sys-
tem evolution are given in Fig. 5, exhibiting BH-BS structural
transformation as a result of the grain growth of BS nuclei
and the subsequent grain coalescence. The individual grain
growth rate appears to depend on the initial orientation. Each
single stripe of type A or B grows and connects with the
neighboring particles of the same type. The growth direction
of the binary stripes is not restricted to that of the initial
grain, and the fronts could change direction (i.e., curve)
during growth. When the differently oriented grains coalesce,
some topological defects are formed, including disclinations,
dislocations, and grain boundaries, as indicated in the white
dashed boxes of Fig. 5(c).

C. BH-to-ETASB phase transformation

Figure 6 presents another example of phase transformation,
from the BH to elongated triangular A and stripe B (ETASB)
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FIG. 5. Binary honeycomb (BH) to binary stripe (BS) phase transformation obtained from PFC simulation. The system transforms from
BH to BS phase as a result of growth and merging of individual BS grains, with a portion of the simulation results shown at (a) t = 1,
(b) = 100, and (c) t = 270. Sample defects of disclination, dislocation, and grain boundary are indicated in the white dashed boxes with

labels 1, 2, and 3, respectively.

phase. The initial setup here is the same as before, other than
the nuclei being of ETASB type as seen in Fig. 6(a). The
parameters used in the simulation are n49 = —0.33 and ngy =
—0.1427 for the BH matrix, nyg = —0.3417 and ngy = 0.002
for the ETASB nuclei, uy = —0.6302, and up = —0.3225.
During the system evolution, the BH structure transforms
into ETASB starting at the edges of the growing grain. As
seen in Figs. 6(b) and 6(c), in this case type B particles
transform from a spatial arrangement of triangular symmetry
to stripe. To accommodate this transformation, type A particle
densities transform from a structure of triangular symmetry
to elongated triangular symmetry. If the initial ETASB grain
orientation is around or less than 5° with respect to the direc-
tion of the surrounding matrix, then the grain rotates to match
the orientation of the matrix. For larger grain orientations,
step defects or kinks are formed. This kink defect acts as a
transition between two different orientations of the merging
grains. An example is enclosed by the dashed box in Fig. 6(c)
where the whole system has been transformed to a defected
ETASSB state.

V. ORDERED BINARY STRUCTURES WITH
COMPETING LENGTH SCALES

Two of the key factors controlling the ordering of BiCCs
are (i) the coupling and competition among different length
scales, and (ii) the average density variations of A and B
components. The effect of different length scales can be
modeled via changing the ratio between g4 and gp in the
PFC free-energy functional [Eq. (10)], i.e., the characteristic
wave numbers of the two sublattices. We then simulate the
emergence of the corresponding BiCC structures from the
initial supersaturated homogeneous state for various values of
average density variations nao and npy. The system dynamics
is governed by Eq. (8). Some of the predicted binary ordered
structures for two different gg/q, ratios are shown in Figs. 7
and 8, as identified from our numerical simulations. In all
cases, the model parameters are chosen as €4 = e = 0.1,
ga=1, mp=1, asp=0.5, Bap =0, ga =g =05, w=
u=03,and Bg=v=1.

Results for the length scale ratio gp/gs = 2 are given
in Fig. 7, where the first two columns show the spatial

FIG. 6. Binary honeycomb (BH) to elongated triangular A and stripe B (ETASB) phase transformation obtained from PFC simulation.
Snapshots of the time evolution of a portion of the simulated system are shown at (a) ¢t = 10, (b) + = 240, and (c) t = 700. A region of kink

defects is indicated in (c).
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Ny Np

ng —MNp

nA+nB

FIG. 7. Some binary ordered structures predicted by PFC simulation, for g4 = 1 and gg = 2, and (a) n49 = 0.05 and ngy = —0.1, (b) n49 =
0.35 and ngy = 0.25, (c) ny = 0.25 and ngy = 0.4, (d) nyo = —0.15 and ngy = —0.1, and (e) ny = 0.3 and ngy = —0.1. The first three
columns show the spatial distributions of densities n4, ng, and ns + np, respectively, where red represents the density maximum and blue
represents the density minimum. The fourth column is for the density difference n4 — ng, with red representing the density maximum of A
component and blue representing the density maximum of B component. The diffraction patterns of the corresponding density field are shown

in the insets.

distributions of density fields for each type of particle, i.e.,
ny in the first column and ng in the second column, and the
third column shows the total density field ns + ng. In these
three columns, the red regions correspond to the maxima of
the corresponding density field, and the blue regions represent
the minima. Column four presents the density difference

n4g — ng, giving the locations of the density maximum for
both A component (red) and B component (blue). It is a better
representation of the overall pattern and the A/B coupling as
compared to ny + np. Five examples given in this figure [pan-
els (a)—(e) in Fig. 7] are obtained from different combinations
of average densities n49 and npo. The individual sublattice
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np

ny +ng nyg —npg

FIG. 8. Some binary ordered structures predicted by PFC simulation, for g4 = 1 and gz = 1.62, and (a) ns9 = 0.40 and ngy = 0.40,
(b) ngo = —0.05 and ngy = —0.15, (c) nap = 0.25 and ngy = 0.25, and (d) nyp = 0.05 and ngy = 0.2. The color scheme and the arrangement

of columns are the same as that of Fig. 7.

structures for n4 and np are of triangular, honeycomb, or stripe
type, although additional peaks appear in their diffraction
patterns as compared to the corresponding standard lattice
structures, which can be attributed to the coupling between
the two density fields and the two sublattices.

In Fig. 7(a), ns is shown as a modified stripe phase and
np as a modified triangular phase with a smaller length scale
(given that gg/g4 = 2). The positions of ny maxima overlay
with those of np minimum, and for one structural unit every
two rows of np maxima correspond to one row of n4 maxima
without any overlaps, as indicated by the white dashed boxes
in the first two columns of Fig. 7(a). The corresponding super-
imposed structure is highlighted by a dashed box in the fourth
column representing the density difference ny — ng. Similar
correspondence between the locations of A and B components
can be found in other types of ordered structures or super-
lattices. In Fig. 7(b), the ns and np distributions are shown

as a modified honeycomb and a modified strip structure,
respectively, and every two arrays of ng maxima correspond
to one array of ny minima (see the enclosed regions of white
dashed boxes inside). Figure 7(c) gives an example in which
both n4 and np are of a honeycomb pattern. In this case, each
B honeycomb is enclosed by a larger honeycomb ring of A
component, as can be seen more clearly from the structural
unit highlighted by the white boxes. In Fig. 7(d), both ny
and np are of modified triangular phase, with a smaller lattice
spacing for the B sublattice. In the overall pattern of ny — np,
A particles appear as red forming a large-spacing triangular
structure, while B particles (blue) occupy in between, shown
as a small-spacing triangular pattern. The case of honeycomb
A and triangular B sublattice structures is given in Fig. 7(e).
Each unit of the overall binary pattern is featured by a large
honeycomb ring of A component enclosing a smaller triangle
composed of three B particles.
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More complicated binary ordered (or quasiordered) struc-
tures can be obtained when the length scale ratio gg/g4 is
not an integer. Some sample results are shown in Fig. 8 for
gp/qa = 1.62. We use similar ways of representing individual
and total density fields and density difference in four columns
of the figure, with the same color scheme for spatial density
distribution as above. Since the B sublattice is of a smaller
length scale, each of its clusterlike structural units can be
enclosed inside a larger-scale A unit, as seen in Fig. 8(a). On
the other hand, the B particles can also distribute in an orderly
fashion within the large spacing of elongated A particles,
such as the example of Fig. 8(b). Another possibility is the
alternating ordered arrangement of A and B particle clusters,
which forms a superlattice as shown in Figs. 8(c) and 8(d).

Interestingly, when the sublattice length ratio gp/g4 is
irrational and equal to the characteristic length scale ratio for
quasicrystals, e.g., gz/qa = 2cos(r/12) = (v/2 + +/6)/2 for
12-fold symmetry, the corresponding quasicrystalline struc-
tures are expected to emerge, similar to the case of single-
component quasicrystals found in the two-mode PFC mod-
eling [33]. We have obtained some stable quasicrystalline
patterns with binary sublattices through spot checks of simula-
tion outcomes (both structures and diffraction patterns), with
some sample results given in Fig. 9. It should be cautioned
that the quasicrystalline structures presented here are actually
strained due to the periodic boundary conditions applied, and
more systematic study is needed to further investigate them.

VI. CONCLUSIONS

We have derived a binary PFC model with sublattice order-
ing based on the classical dynamic DFT for two-component
systems. The model is applied to the study of binary colloidal
crystals, including phase ordering and structural transfor-
mations. Through the control of length scale contrast and
coupling between two sublattices and the tuning of average
densities of A and B components, a wide variety of ordered (or
quasicrystalline) structures and superlattices have been gener-
ated from the model. For the simplest case of equal sublattice
length scales, we identify seven binary phases, and calculate
the corresponding phase diagrams (in the range of negative
average density variations) both analytically and numerically.
Much richer phenomena of binary phase ordering are obtained
and predicted for different length scales of A and B sublattices,
which could be the combination of two regular sublattice
ordered structures when the length scale ratio is an integer,

‘

FIG. 9. Sample quasicrystalline patterns obtained from PFC simulation, for g4 = 1 and gg = (ﬁ + \/6) /2, and (a) nyo = 0.25 and npy =
0.33, (b) nao = 0.28 and npy = 0.3, (c) ns = 0.27 and ngy = 0.37, and (d) nyo = 0.3 and ngy = 0.3. The structure for density difference
ny — np and the corresponding diffraction pattern are shown in each panel.

or could appear as more complex patterns or motifs when the
ratio is a noninteger.

The dynamic processes of system evolution and transfor-
mation have also been produced in our simulations. These
include grain nucleation, growth, coalescence, and the for-
mation of topological defects such as grain boundaries, dislo-
cations, disclinations, and kinks or steps, as demonstrated in
the examples of BH grain growth from a homogeneous state
and structural transformation between two ordered phases
(e.g., from BH to BS phase and from BH to ETASB struc-
ture) examined here. Our PFC modeling approach and the
underlying mechanisms of scale coupling and competition
are of a generic nature, and thus can be straightforwardly
extended to the systematic study of different kinds of binary
colloidal crystals including more varieties of binary phases in
both two and three dimensions as well as their ordering and
transformation dynamics.
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APPENDIX: ONE-MODE APPROXIMATION OF
BINARY ORDERED PHASES

In the one-mode approximation, the density variation fields
ny4 and ng for various binary 2D ordered phases can be repre-
sented by the following: (i) For the binary honeycomb (BH)
phase, due to the triangular ordering of A and B sublattices
that are shifted by § = ay = (47 /3q)y with respect to each
other, we have

3
nag = nag + E Aje’q/" +c.c.
j=1

nao + 2A0[2 cos(+v/3gx/2) cos(qy/2) + cos(gy)],
3
ng = ngy + ZBjeiqf'(rH) +c.c.
j=1
= npo 4 2Bo[2 cos(v/3gx/2) cos(qy/2 + 27 /3)

+ cos(gy + 4m /3)]. (Al)
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(ii) For the phase of binary stripe (BS), the antiphase of A
versus B field leads to

ng = nao + Ag(€'? + c.c.) = nao + 24 cos(qy),
ng = npo + Bo[ei(qy+ﬂ) + c.c.] = npy — 2By cos(qgy). (A2)

(iii) For the elongated triangular A and stripe B (ETASB)
phase, we assume

na = nao + 4Aolcos(v/3qx/2) cos(gy/2) + cos(gy)],
ng = npgo + 2By cos(qy + 4 /3). (A3)

(iv) The one-mode expression for the phase of triangular A
and honeycomb B (TAHB) is given by

na = nao + 2A0[2 cos(v/3gx/2) cos(qy/2) + cos(gy)],
ng = ngo — 2Bo[2 cos(v/3gx/2) cos(qy/2) + cos(gy)].
(A4)

The one-mode results for two other variants—ETBSA and
TBHA—can be expressed in a similar way.

For the binary honeycomb (BH) phase, substituting the
one-mode expression Eq. (A1) into the free-energy functional
Eq. (10) and integrating over a cell of (0 < x < \/ga, 0<y<
3a) with a = 47 /3q, we obtain the free-energy density as

2 2 3 3 45 4
fBH = fO + 3a1AQ + 3b]BQ + 4(12140 +4’sz0 + ?AO

45 4 2 2
+5 B — 3cAoBy — 3wAiBy — 3udoBi.  (AS)

where
fo= %( —et q;‘i)”io + %( —€p+ /3351?3)”1230
—%gAnf;o - %gsn?go + %nAo4 + ivn304
+(aas + 5A361§3)nA0n30

1,2 1 2
+ywnyongo + 5Unaongg, (A6)

and
ay = —ex — 28ana0 + 350 + wnpo + (47 — 6131)2,
ay = —ga + 3nao,
by = —ep — 2gpnpo + 3vng, + unag + /33(612 - 6112;)2,
by = —gp + 3vng,
¢ = aap + wnpo + ungo + Bas (6]2 - %213)2~ (A7)

The equilibrium state of this binary honeycomb phase is de-
termined by the minimization of free-energy density in terms
of wave number ¢ and amplitudes Ay and By. Minimizing
Eq. (AS5) with respect to g gives

2 = q3AG + BeazBS — BasdizAoBo
cd A} + BB} — BapAoBo

(A8)

In the A/B symmetric case we have Ag = By and thus ng =
(g3 + Beqs — Basqig)/(1 + Bs — Bag). Here we consider the
simplest scenario of g4 = gp = qap = qo = 1; thus geq =
qo = 1 for any values of Ay and By, and Eq. (A7) becomes
ay = —€4 — 2ganao + 3n3, + wnpo, az = —ga + 3na0, by =
—ep — 2gpnpo + 3vn1290 + unyg, by = —gp + 3vngy, and ¢ =
aap + whao + ungo.

Minimizing fgyg with respect to amplitudes Ay and By
leads to

30A(3) + 4[12A% + 2a1A0 — 2wAoBy — MB% —cBy =0,
30vB} + 4b,B} + 2b1 By — 2uA¢By — wA} — cAg = 0.
(A9)
The equilibrium amplitudes A;! and By are determined by the
solution of Eq. (A9) giving the minimum fgy, which will then
be used in the calculation of chemical potentials and phase
diagrams [see Eq. (12)]. A similar analysis can be conducted

for all other phases based on the assumed expressions of the
one-mode approximation given above.
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