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Kinetically driven ordering in phase separating alloys
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It is shown that in substitutional alloys, peculiar ordered patterns can result from neighborhood-dependent
diffusion activation barriers even when there are no metastable ordered phases. Lattice gases with pure phase
separation character are shown to exhibit transient ordered structures that can be retained almost indefinitely,
although these structures are not at thermodynamic equilibrium. It is shown that such structures can come about
relatively easily by quenching from the high-temperature configurationally random solid solution.
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I. INTRODUCTION

The thermodynamic properties of the Ising model have
been studied intensely for almost a century. The role of
dimensionality, the occurrence of order-disorder transitions,
and many other features of this model and its generalizations
are now well understood [1,2]. Among the most interesting
applications of the Ising model and its generalizations is
the study of substitutional alloys [3–5]. With the advent of
ab initio methods to compute the effective interatomic inter-
actions, the practical utility of the model has greatly expanded
[6–12]. When the generalized Ising model is applied to alloys,
the kinetics of these alloys is at least as interesting as the study
of thermodynamic equilibrium. After all, real alloys are usu-
ally at a kinetically determined intermediary stage evolving
toward thermodynamic equilibrium, rather than at equilibrium
[13,14]. Kinetics in substitutional alloys generally is driven by
vacancy-mediated diffusion. While vacancies, because of their
typically low equilibrium concentration, rarely play a role
in equilibrium thermodynamics, they are crucial for kinetics.
Experimentally too, the intricate details of vacancy behavior
in substitutional alloys has attracted attention again lately
[15–19]. A number of studies exist on Ising model kinetics,
some of which neglect vacancies [20] and therefore unrealistic
kinetics, others which include vacancies but which employ
simplifying assumptions concerning diffusion activation ener-
gies [21–23], and recently some studies where multiple issues
surrounding vacancies and diffusion barriers are considered
[24–28]. These latter studies generally appear able to provide
realistic timescales and evolution histories. Here, we take
a special interest in the evolution history, particularly the
occurrence of transient phases [29–32].

We define transient phases as nonequilibrium phases that
can occur during the evolution toward equilibrium for an
extended, but finite, period of time. It is well understood
that transient-ordered phases can form from a disordered, or
randomlike, solid solution with unmixing tendencies if there
are metastable ordered phases that are much more stable
than the disordered solid solution, such as occur in various
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semiconductor alloys [33]. These observations have been
explained in terms of strain energy minimization by atomic
size mismatch [33–35]. Even in the absence of strain effects,
metastable ordered phases can be transient, as has been found
in Monte Carlo simulations of phase separating alloys [32,36–
38] or in concentration wave simulations [39]. In all these
cases, transient ordered phases appear under the constraint
of limited atomic mobility; free energy can be reduced more
quickly by metastable ordering than by macroscale phase
separation. This explanation for the occurrence of transient
phases has proven so alluring that, quite generally, tran-
sient phases in bulk alloys are ascribed to thermodynamic
metastability, often in conjunction with limited atomic mo-
bility [40–46]. The importance of purely kinetic effects in
phase selection has been seen in colloidal system simulations
[47] where metastable NaCl-type ordering occurs prior to, or
instead of, stable CsCl type ordering. A less clear scenario
occurs when preferred nucleation is in play, particularly when
heterogeneous nucleation for a metastable phase happens
more readily than nucleation of the stable phase [48]. How-
ever, here too, thermodynamic competition remains an impor-
tant factor. Purely kinetic factors have not been reported for
metallic alloys. With the increasing awareness that vacancy
formation and substitutional diffusion in concentrated alloys
is strongly dependent on the local environment [24,25,49–54],
it is of interest to examine the impact of this local environment
dependence of the kinetics.

In this paper, we report transient order in a configura-
tionally random alloy upon quenching into the two-phase
region pertaining to phase separation. Here, we show that
without any thermodynamic causative factor, there also may
be a purely kinetic origin of transient phases. Following a
detailed description of our model (Sec. II), we analyze first
a 2D case, and subsequently show that in 3D analogous
phenomena occur as in 2D.

II. THEORY AND MODEL DESCRIPTION

A. Vacancy-mediated substitutional diffusion

The phase evolution described in the present paper results
from vacancies trading places with neighboring atoms on a
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FIG. 1. Schematic description of the vacancy-mediated substi-
tutional diffusion. The energy landscape is shown by the thick red
curve where two valleys represent the energies of the two end points
(E1 and E2) and the peak in between is the energy at the saddle point
(Es). The corresponding atomic configurations for a binary A-B alloy
are also displayed. The kinetically resolved activation (KRA) barrier
is illustrated by the black double-headed arrow. The configurations
shown in the box illustrate the mapping of the jumping atom at the
transition state on to the lattice site.

substitutional lattice, as is schematically shown in Fig. 1.
Atomic movements, e.g., from state E1 to E2, must overcome
a certain activation energy barrier. The kinetics of vacancy-
atom swapping is generally modeled by the transition state
theory, where the rate of the transition between state i and j is
expressed by an Arrhenius relation,

ri→ j = ω exp(−βQ(i → j)), (1)

where ω is the jump attempt frequency. For simplicity, we
assume in the present paper that ω is configuration and
temperature independent and takes a value of 1 THz. β =
1/(kBT ), and Q is the activation energy barrier which simply
refers to the energy difference between the saddle point and
the starting point (i.e., in Fig. 1 from left to right, Q = Es −
E1). A problem then arises that the activation energy barrier is
not a state function because it depends on the jump direction,
i.e., Q(1 → 2) �= Q(2 → 1), as is illustrated in Fig. 1. This
problem can be solved by using the so-called kinetically
resolved activation (KRA) barrier [24,50] defined as

EKRA = Es − 1
2 (Ei + Ej ), (2)

as shown in Fig. 1. Once the EKRA and the configurational
energies of the two end points (Ei and Ej) are known, the
transition rates are obtained by combining Eqs. (1) and (2):

ri→ j = ω exp
[ − β

(
EKRA + 1

2 E conf
j − 1

2 E conf
i

)]
. (3)

Here the superscript conf indicates the configurational en-
ergy. It is apparent that both the energetic ingredients for
computing the transition rates—the KRA barriers EKRA and
the configurational energies E conf

i( j) —depend on chemical order
in alloys. While the configurational energies represent the
average energetics of alloys, the KRA barriers depend only on
the local chemical order. Therefore, it is efficient to model and

calculate them via two different types of cluster expansions
(CEs).

B. Conventional cluster expansions for
the configurational energy

Intentionally, the simplest thermodynamic model is used
with two atomic species A and B on a rigid lattice (a binary
A-B alloy) with effective interatomic interactions limited to
the nearest neighbors. The interactions favor phase separation
into the pure constituents, but configurational entropy leads
to intermixing as temperature is raised. Vacancies are treated
as an additional species C and are assumed to have the same
effective interactions with both atomic species, so their con-
centration is not dependent on (local) composition or order. If
we assign the most abundant species to A, it follows that only
effective cluster interactions (ECIs) associated with species
B and C are necessary to fully describe the configurational
energy because of the sum rules [53,54]. Then we elaborate
the A-B-C CE to describe the configurational energy E conf as

E conf =
2∑

α=1

nABC
α JABC

α , (4)

where α indicates a particular cluster, α = 1(2) refers to the
B point cluster (B-B nearest-neighbor pair), nα is a counter
for the number of α-type clusters per lattice site, and Jα

is the corresponding ECI. To keep the model as simple as
possible, the vacancy interactions between C and A, and C
and B are all the same and equal to zero. The vacancy prefers
neither A nor B neighbors. The vacancy formation energy is
not of concern because we impose that there is but a single,
conserved, vacancy in our system.

We first consider a square lattice (2D) with nearest-
neighbor interactions only. To see if transient order occurs
without there being a metastable ordered structure lurking
just above the convex hull of ground states, We arbitrarily
select JABC

1 = +0.8 eV/point and JABC
2 = −0.4 eV/pair, so

that E conf is a parabola as function of the composition with
a maximum of +0.2 eV/atom in the random equiatomic A-B
alloy, and E conf = 0 eV for pure A and pure B. These interac-
tions give rise to a miscibility gap with a critical temperature
of about 2633 K at equiatomic composition [55]. Then, for an
fcc lattice, we selected interactions in a similar fashion as for
the square lattice. The corresponding ECIs are JABC

1 = +1.2
eV/point and JABC

2 = −0.2 eV/pair.

C. Local cluster expansions for kinetically
resolved activation barriers

For expanding the KRA barriers EKRA in Eq. (3) by local
cluster expansions (LCEs), special treatment is necessary
because in the transition state the jumping atom is no longer
uniquely associated with a single lattice site (see the con-
figuration associated with Es in Fig. 1). To retain the fixed
lattice gas approximation, with there being one and only one
atomic species per site, we employ the formalism of Ref. [54].
Two new atomic species D and E are introduced that map
the jumping atom at the transition state onto the lattice sites,
as shown in the boxed area of Fig. 1. More specifically, at
the transition state, the pair of the jumping atom A (B) and
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its neighbor vacancy C [A-C (B-C) pair] is replaced with a
new “pseudoatomic pair” D-D (E-E). A great simplification
can be made if we assume that within our material vacancies
are so rare they never exist within each others vicinity. Then,
the C, D, and E species can never occur simultaneously and
their interactions are not needed. As a result, only two new
ternary LCEs A-B-D and A-B-E are necessary for describing
the A and B atom in the transition state, respectively. The
corresponding KRA barriers are expressed as

Eβ∪γ

KRA = JABX
β +

∑

γ

nABX
β∪γ JABX

β∪γ , X = D, E, (5)

where JABX
β is the KRA barrier for the jumping atom purely

surrounded by the most abundant species (A atom in the
present cases), β represents the pseudoatomic pair, γ rep-
resents a cluster configuration corresponding to the empty
cluster, or a point cluster, etc. but not part of the pseudo-
atomic pair, nABX

β∪γ is a counter for the number of cluster dec-
orations of type β ∪ γ , and JABX

β∪γ is the corresponding ECI.
To geometrically distinguish different correlation functions,
the whole ”pseudoatomic pair“ β is included when select-
ing the correlation functions, as discussed in Ref. [54]. We
apply the above-described formalism for KRA barriers again
first to a 2D square lattice and then to the fcc lattice.

For the 2D square lattice, we again try to make the case as
simple as possible: For all configurations around a D-D pair,
EKRA = 0.7 eV. It follows that EKRA for a majority A atom
trading places with a vacancy is always 0.7 eV. For the B-atom
diffusion, on the other hand, we opt here for configuration
dependence via an A-B-E LCE. We set JABE

β = 0.6 eV for
the KRA barrier of a B atom surrounded purely by A atoms
and use four cluster decorations of β ∪ γ labeled 1 through 4
shown in Fig. 2.

The environment-dependent KRA barriers for configura-
tions of γ = 1 to 4 shown in Fig. 2 can be computed using the
corresponding ECIs as

Eβ∪1
KRA = Jβ + J1 = 0.6 − 0.1 = 0.5,

Eβ∪2
KRA = Jβ + J1 + J2 = 0.6 − 0.1 + 0.7 = 1.2,

Eβ∪3
KRA = Jβ + J3 = 0.6 − 0.05 = 0.55,

Eβ∪4
KRA = Jβ + J1 + 2J2 + J4

= 0.6 − 0.1 + 2 × 0.7 − 0.7 = 1.2, (6)

where the number in the subscript of J indicates the value
of γ .

The included clusters and their associated ECIs have been
chosen carefully. To simplify the model, we show the for-
mation of a simplest ordered structure—linear arrays—of the
minority atom (B atom). The origin of the kinetically driven
ordering is essentially the selective movement of the diffusing
atoms driven by the nonuniform KRA barriers. The clusters
of the types that promote the formation of a linear array of
B atoms, e.g., γ = 1 and 3, which enhance the attachment of
two separate B atoms or a branch B atom to an existing B-B
pair, are selected with lower barriers (Eβ∪1

KRA = 0.5 and Eβ∪3
KRA =

0.55) than the majority of the KRA barriers [i.e., environment
independent barriers for diffusing atoms A (0.6 eV) and B
(0.7 eV)]. However, these favorable KRA barriers should not

FIG. 2. Clusters and effective cluster interactions used for ex-
panding the configuration dependence of the KRA barriers on the
2D square lattice. Cluster types β and γ and their associated ECIs
(in eV/cluster) are indicated next to each configuration. Red circles
indicate B species, purple circles E species, and A species are present
at all grid points, but are not drawn for clarity.

be set too low because then many back-and-forth oscillations
occur without the actual configuration evolving, e.g., between
states p2 and p3 in Fig. 3. Fortunately, to a large degree such
“unproductive oscillations” can be integrated out by using
the absorbing Markov chain algorithm [56]. Figure 3 also
illustrates the principle of kinetic ordering: While the lowest
energy occurs for the vacancy jumping toward position p1,
the transient state represented by position p4 is more likely

FIG. 3. Schematic diagram of an energy landscape with low
barriers between states 2 and 3. Black square represents a vacancy,
species C, while orange and green solid circles refer to atomic species
A and B.
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FIG. 4. Illustration of the clusters (γ ) and the corresponding
decorations used in the local cluster expansions A-B-D and A-B-E
for (c) A atom and (a), (b) B atom as the jumping atom. The
number displayed next to each colored atom is used for describing
the corresponding clusters in Table I. Fcc cubes (black solid lines)
have been added for clarity.

to be reached within short time spans. The other clusters, i.e.,
γ = 2 and 4, are selected yielding a much higher KRA barrier
of 1.2 eV to limit the growth of side branches on such linear
B arrays.

For the fcc lattice, the selected clusters and their ECIs
are shown in Fig. 4 and Table I, respectively. Unlike the 2D
case, where we make the KRA barriers for B-atom diffusion
environment-dependent only, here the KRA barriers for both
A and B atom diffusion depend on the local chemical order.
In Fig. 4, clusters β ∪ γ are shown formed by atoms that
are numbered and that are not colored grey. The clusters are
formed by four or five atomic species which can be read
from the number sequence in the first column of Table I.
The “pseudoatomic pair” β = D-D or E-E for each cluster
is instead shown by the actual atomic species in alloys, i.e.,
the jumping atom and the vacancy. The KRA barriers for an
A atom (JABD

β ) and a B atom (JABE
β ) trading places with the

vacancy when they are surrounded purely by A atoms are set
to +0.8 eV and +1.0 eV, respectively. We try to exemplify the
kinetically driven ordering on the fcc lattice via the formation
of linear arrays of B atoms on the fcc {111} planes along
〈110〉 close-packed directions. Once there are two or more
B atoms neighboring one another along a 〈110〉 direction,
the KRA barriers for further growth at the ends of such a
B-string become lower, so further growth is promoted. At
the same time, KRA barriers for side branching from such
a B string become higher. It follows that the γ part of each
selected cluster consists of two or three B atoms aligned along

TABLE I. Effective cluster interactions (ECIs) in A-B-D and
A-B-E local cluster expansions for kinetically resolved activation
(KRA) barriers. Numbers connected by – indicate a cluster β ∪ γ .
The positions of the atoms within each cluster can be found in the
corresponding Figure column.

Cluster for B atom diffusion Figure ECI (eV/cluster)

1-2-3-4 4(a) −0.3

1-2-3-5 −0.2
1-2-3-6 −0.25

7-8-9-10-14

7-8-9-10-25

7-8-9-11-15

7-8-9-11-16

7-8-9-11-17

7-8-9-11-25

7-8-9-12-21

7-8-9-12-22

7-8-9-12-23 4(b) 0.4

7-8-9-12-24

7-8-9-12-25

7-8-9-13-16

7-8-9-13-17

7-8-9-13-18

7-8-9-13-19

7-8-9-13-20

7-8-9-13-21
7-8-9-13-22

Cluster for A atom diffusion Figure ECI (eV/cluster)

26-27-28-29-30 −0.1

26-27-28-29-31 4(c) −0.1

26-27-28-29-32 −0.15

26-27-28-29-33 −0.2

the 〈110〉 direction as shown by the blue atoms, e.g., 1–2 or
7–8–9. The cluster decorations shown in Fig. 4(a) have nega-
tive ECIs because they all enhance the third B atom connect-
ing to the B-B pair in 〈110〉 while in Fig. 4(b) the ECIs are
all positive to decrease the tendency toward branch growth.
Clusters used in Fig. 4(c) with all negative ECIs accelerate
the growth of the linear arrays by increasing the chance of
forwarding the nearby vacancy to the front of the line once
there is an A atom attached to the line.

III. RESULTS AND DISCUSSION

A. 2D square lattice

To clearly identify the effect of the local environment
dependence of the KRA (EDKRA) barrier of the B-vacancy
swap as expressed in the ABE LCE, we compare results with
the case where all EKRA for a B-vacancy swap is set to 0.6 eV
(CTKRA). Of course, as described above, the EKRA for an
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FIG. 5. Kinetic Monte Carlo simulation of short-range-order
evolution in an A-B-vac alloy on a square lattice. Order parameters
N (2∗)

B and N (4)
B are shown as function of time for environmentally

dependent kinetically resolved activation barriers (EDKRA) and
configuration independent kinetically resolved activation barriers
(CTKRA). The black circle on the vertical axis indicates the initial
value of N (2∗)

B . The inset shows a characteristic configuration that is
obtained with EDKRA after 2 Ms.

A-vacancy swap is always 0.7 eV. To describe the evolution of
the state of order, we define an order parameter N (m)

B , which
is the number of B atoms that has m B neighbors. As we have
designed our ABE LCE such that linear arrays of B atoms
are preferred, we will define a special order parameter N (2∗)

B ,
which counts the number of B atoms that have precisely two
B atoms in a straight line as neighbors.

Precipitation kinetics of an A1279B320C alloy (T = 300 K)
on a 2D 40 × 40 square lattice with periodic boundary con-
ditions are shown in Fig. 5. Starting from a random con-
figuration, the short-range order in the alloy is monitored
through the N (m)

B order parameters as function of time. The
kinetics in the EDKRA and the CTKRA cases are remarkably
different. The CTKRA case exhibits the expected kinetics
of B clusters forming from the random mixture: Isolated B
atoms rather quickly connect with other B atoms to form
clusters which coarsen over time. The number of twofold
coordinated B atoms [N (2∗)

B ] initially very rapidly increases,
but then decreases as more B atoms join. The number of
fourfold coordinated B atoms [N (4)

B ] follows a similar trend,
but at a much slower pace. The EDKRA case, on the other
hand, follows a completely different path. The inset shows a
characteristic configuration after 2 Ms (Mega second), which
features the linear B arrays with rather few side branches.
As the value of N (2∗)

B ≈ 160 shows, about half of all the B
atoms (320) are in a linear configuration. After 2 Ms, N (2∗)

B is
about 30 times larger in the EDKRA than in the CTKRA case.
The number of B atoms with four B neighbors in the inset is
in the single digits and about one order of magnitude lower
than in the CTKRA case. While there is no thermodynamic
driving force that stabilizes the linear B arrays, these arrays
nevertheless are robust for extremely long time periods, con-

FIG. 6. Kinetic Monte Carlo simulation of short-range-order
evolution in a phase separating A0.95B0.05 alloy with a single vacancy
at 300 K. The simulation box consists of 20 × 20 × 20 conventional
fcc cubes. The inset shows B atoms that are part of linear arrays of B
atoms along the 〈110〉 direction after a simulation of 0.12 Ms in the
EDKRA case.

sidering that 2 Ms corresponds to 2 × 1018 jump attempts.
We will show in the next section that the EDKRA kinetically
drives the alloy toward transient states also persists in more
realistic cases, such as on an fcc lattice in 3D.

B. 3D FCC lattice

On the fcc lattice, we found here too a completely different
behavior for EDKRA and CTKRA kinetics. Figure 6 shows
the short-range-order evolution starting from the random con-
figuration in a phase separating A0.95B0.05 alloy with a single
vacancy at 300 K. The simulation is performed on a fixed fcc
lattice containing 4 × 203 lattice sites with periodic boundary
conditions. As shown in the inset of Fig. 6, there are many
linear arrays of B atoms in 〈110〉 directions. This feature
can also be seen from the peak of N (2∗)

B after a time of
about 0.12 Ms. In the random configuration N (2∗)

B ≈ 1600 ×
6 × (0.052) × (0.9510) ≈ 14, a number that is seen for the
CTKRA case is rather independent of time. As the barriers
for B migration are not identical in the EDKRA and CTKRA
case, it is worthwhile to consider if the two cases differ mostly
in terms of timescale. Therefore, the time required for the
CTKRA case to reach the same order parameter N (m)

B as the
EDKRA at a particular time was examined. Two times were
considered: EDKRA at t = 42 Ms and at t = 150 Ms as
shown in Fig. 7. Data points below (above) the horizontal
axis occur for B-atom coordinations that occur faster (slower)
with EDKRA kinetics than with CTKRA kinetics. It is readily
apparent that most configurations occur more quickly with
EDKRA than with CTKRA kinetics, while the isolated B
atoms, as indicated by m = 0, decay more rapidly. These
findings occur both after 42 Ms and after 150 Ms have passed.
However, B atoms with three B neighbors occur much quicker
with CTKRA than with EDKRA kinetics. Therefore, EDKRA
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FIG. 7. The ratio of time required for EDKRA and CTKRA
reaching the same values of N (m)

B as a function of m after 42 Ms and
after 150 Ms have passed with EDKRA kinetics.

does not result in a general acceleration of kinetics, but in
a different type of short-range-order evolution. The overall
kinetics of the system described via EDKRA does not coin-
cide with CTKRA, although initial states and thermodynamic
equilibrium states are identical. This is similar to what was
already observed for the 2D case.

Equation (3) shows that lowering the height of KRA barrier
about 0.1 eV can speed up the vacancy-atom swapping by 50
times at room temperature. In several substitutional alloys,
such as Al-Li [50,57] and Al-Cu [54] ab initio calculations
have shown that KRA barriers are very sensitive to local
configuration. In Al-Cu alloys, KRA barriers might vary by as
much as a factor of 3 [54]. Especially at lower temperatures,
this would result in kinetic pathways that strongly deviate
from predictions obtained using configuration-independent
KRA barriers. In multicomponent alloys such as the recently
developed high entropy alloys (HEAs), the variety of the local
atomic environment surrounding the multiple types of dif-
fusing atoms becomes much more significant. The measured
tracer diffusivities in HEAs indicate the diffusion activation
barriers for various chemical orders can be quite different
[58]. These results highlight the possibility of ordering phe-
nomena purely driven by kinetics in actual alloys.

Another remarkable difference between EDKRA and
CTKRA kinetics concerns vacancy mobility. In Fig. 8, the
distance that a vacancy has moved during successive 32 000
atom swap intervals is shown for both EDKRA and CTKRA
kinetics. It is apparent that the vacancy travels larger distances
during CTKRA kinetics than during EDKRA kinetics. The
reason for this behavior is that below average activation barri-
ers in EDKRA, kinetics have the tendency to trap vacancies
while no such trapping occurs in CTKRA. An example of
such trapping can be seen in Fig. 3 where the vacancy, at
least initially, will spend more time in positions p2, p3, and
p4 than in position p1. The below-average barriers in EDKRA
occur in the neighborhood of B atoms, and not in areas

FIG. 8. Distance traveled, in units of the fcc lattice parameter,
by a vacancy during successive intervals of 32 000 jumps for both
EDKRA and CTKRA kinetics.

consisting purely of A atoms. As a consequence, the unpro-
ductive vacancy presence in pure A areas is much less in
EDKRA than in CTKRA kinetics and the attachment of B
atoms to B clusters proceeds at a greater rate with EDKRA
kinetics. In previous work on Al-Li alloys [50], similarly,
it was remarked that environmental dependence of diffu-
sion activation barriers “induces strongly correlated migration
mechanisms that deviate from random walk behavior.”

IV. CONCLUSIONS

Summarizing, we proposed an ordering mechanism in
alloy systems where phase stability is thermodynamically
characterized by phase separation. The essential requirement
is that diffusion activation barriers in an alloy depend on the
local environment. Ab initio density-functional calculations
support this claim [50,54,57]. Furthermore, specific features
in the local environment dependence of the diffusion acti-
vation barriers can give rise to peculiar short-range-ordered
patterns that are not in any way related to a (meta)stable
thermodynamic state. The kinetic activation barriers that lead
to transient ordered states are fundamentally different from
thermodynamic barriers because the latter scale with the size
of the system while the former exist on the atomic scale only.
The observed kinetically induced short-range-ordered config-
urations appear stable for extended time periods and thus can
be considered transient phases. Our results also show that
configurationally dependent activation barriers give rise to
short-range-order evolution that cannot be reproduced by con-
figuration independent activation barriers by, e.g., rescaling
of time. The simulations have revealed a purely kinetic phe-
nomenon of vacancy trapping that can accelerate the evolution
of the short-range order in the alloy. It appears that to obtain
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realistic descriptions of the kinetics of short-range ordering
and precipitation in substitutional alloys, the environmental
dependence of the diffusion activation barriers cannot be
ignored.
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