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Growth interactions between icosahedral quasicrystals
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We investigate the solidification pathways of a population of icosahedral quasicrystals in a liquid through
in situ synchrotron x-ray tomography. The wealth of three-dimensional space- and time-resolved data enables
us to test the predictions of various models and theories of crystallization on a quasi-crystal-forming alloy.
Remarkably, we find the general evolution equation—that accounts for the competing effects of growth,
coalescence, and coarsening—fits well our experimental data on surface area concentration. Furthermore, we
quantify the orientation selection, screening length, and coarsening rate of the dodecahedra, and compare these
results to that of periodic crystals. The latter is a full order of magnitude smaller than that of elemental metal
dendrites in the limit of zero volume fraction, a reflection of the low solid-liquid interfacial energy of the
icosahedral phase. Our paper provides the critical input data for microstructural models used for integrated
computational materials engineering of complex intermetallics, including quasicrystals.
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I. INTRODUCTION

Quasicrystals (QCs) possess long-range positional order
but noncrystallographic orientational order, e.g., 5-, 8-, 10-,
and 12-fold symmetries. Despite their frequent observation in
both metallic alloys [1–3] and soft matter structures [4–6] in
the 35 years since their discovery [7,8], little is known about
the way they emerge from the melt. For this reason, Steurer
has recently identified the problem of QC growth as one of
the open questions in the field [9]. For instance, is the growth
process of QCs limited by the localized attachment of such
atoms or clusters [10–12] to the growth front, or rather the
long-range transport of these entities within the melt?

The vast majority of experiments suggest that QCs grow by
the forward advancement of facets. Evidence comes from post
mortem observations of microvoids within QCs (so-called
“negative” QCs), which show a fully faceted morphology
[13,14]. Yet such voids are bounded by a liquid-gas interface,
and thus, the kinetic processes leading to their formation
might not be representative of what happens during the liquid-
to-solid transition. Other studies make detailed assessments
based on the external surfaces of quenched specimens (e.g.,
Refs. [15–17]), yet this approach is somewhat unreliable due
to the continued crystal growth that occurs during the quench-
ing process. In other words, it is impossible to reconstruct
the dynamical events that led to the formation of QC grains
that can extend up to the centimeter size, see Ref. [3] for
a review. To this end, a few investigators have studied QC
solidification through real-time x-ray imaging [18–22]. In
particular, Senabulya et al. have employed synchrotron-based
x-ray microtomography (XRT) to capture the growth and
relaxation of a single icosahedral QC (denoted as i-QC) in
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three-dimensional (3D) space and in time [21]. Their four-
dimensional measurements point to the dominance of bulk
transport over interfacial processes; they also show that the
growth shape of the i-QC is a pentagonal dodecahedron,
consistent with theoretical predictions. We pick up where this
study had left off, by considering a collection of i-QCs under-
going solidification and evaluating the degree of interaction
between them. As in that work, our investigation is made
possible due to developments in computational tools to extract
meaningful information from the high-dimensional data.

Put more rigorously, the present paper is aimed at answer-
ing two main questions: The first is, how well do volume-
averaged models of crystallization describe the evolution of
polyhedral particles, in this case QCs? Such models have
been traditionally employed to understand the evolution of
dendritic alloys during growth and coarsening. Yet dendrites
and polyhedra are obviously morphologically dissimilar. The
second is, how do the nucleation, growth, and coarsening
behaviors of quasicrystals compare to periodic crystals, such
as metallic dendrites? The answer to this question hinges
on the answer to the first, i.e., the suitability of the models
(described below) in capturing the microstructural dynam-
ics. By achieving these two goals, we can place icosahedral
quasicrystals on the same plane of analysis as their periodic
counterparts, at least, in terms of kinetic properties.

II. METHODS

The experimental methods employed in this paper largely
follow that of Ref. [21]. Master alloy samples of composi-
tion Al74Pd20Mn6 were prepared via vacuum arc-remelting
using high-purity elemental Al (99.999% purity), Pd (99.9%
purity) and Mn (99.9% purity) at the Materials Preparation
Center at Ames National Laboratory in Ames, Iowa. The
cast alloy buttons were cut into cylinders of 1-mm diameter
by 5-mm height for the XRT experiment. The sample rod
was further thinned mechanically to ∼400 μm to increase
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x-ray transmission. The synchrotron XRT experiment was
conducted at beam-line 2-BM of the Advanced Photon Source
at Argonne National Laboratory in Lemont, Illinois. The
cylindrical samples were inserted into an x-ray transparent
boron nitride sample holder, which was, subsequently, placed
inside a resistive furnace at the beam line. The assembly was
first heated for 5 min at 915 ◦C, which is well above the
liquidus temperature of the i-QC phase; this was performed so
as to homogenize the melt. Then, the sample was cooled from
915 ◦C to 875 ◦C at a rate of 1◦/min thereby promoting the
formation of i-QCs from the parent liquid. During the cooling
segment, x-ray projection images were collected continuously
at a rate of 50 Hz and sample rotation speed of 6◦/s, resulting
in 1500 projections evenly spaced between 0◦ and 180◦ and a
temporal resolution of 30 s between subsequent tomograms.
We use a polychromatic “pink” beam centered at 27 keV
and a PCO Edge 5.5 complementary metal-oxide semicon-
ductor camera optically coupled to a 20-mm-thick LuAg:Ce
scintillator for data collection. The field of view (FOV) on
the detector plane measured 2560 × 1200 pixels with a pixel
size of 0.6522 μm2. Based on our prior experience, these
parameters enable us to monitor the solidification dynamics
at sufficiently high spatial and temporal resolutions [21].

Following the experiment, the XRT data was passed
through TOMOPY, a Python-based open-source framework
for tomographic data processing [23]. Within TOMOPY, we
normalize projection images, remove “ring” artifacts, and
reconstruct the data; see Ref. [21] and the references therein
for further details. Further data processing was performed
using the Image Processing toolbox in MATLAB R2016B [24].
In MATLAB, the reconstruction images were filtered and seg-
mented into solid QC and liquid phases, allowing for precise
determination of QC volume fraction and surface area as
solidification proceeds. The solid-liquid interfaces were also
meshed, or represented as a series of triangles and vertices. We
smoothed the meshed structure through mean curvature flow
[25] in order to remove any “staircasing” artifacts that result
from the marching-cubes meshing procedure. The resulting
mesh face and vertex positions are used to quantify the local
interfacial structure and its dynamics. More specifically, the
orientation (interface normal) n̂ of a given mesh triangle is
given by the curl of its edge vectors, and the velocity v

is calculated using a nearest-neighbor approach [21,26,27].
Following thermodynamic convention, n̂ points from QC to
liquid and positive v correspond to growth, and negative v

corresponds to dissolution.

III. RESULTS AND DISCUSSION

A. Three-dimensional views of QC solidification

The growth process is shown in Fig. 1. We capture three
QCs within the FOV. The first QC (top) nucleates hetero-
geneously on the oxide skin (translucent gray) at 904.5 ◦C,
followed by the second QC (bottom left) at 904 ◦C, and a
third (bottom right) at 903.5 ◦C. We denote the time at which
the first appears as the origin of our time axis such that all
reported times (below) are relative to this reference state. We
also specify the specimen frame of reference such that the ẑ
axis is along the rotation axis of our sample. The solid-liquid

FIG. 1. Three-dimensional reconstructions of quasicrystal
growth at (a)–(d) 60 s (903.5 ◦C), 120 s (902.5 ◦C), 480s (896.5 ◦C),
and 540 s (895.5 ◦C), respectively, following nucleation at
0 s (904.5 ◦C). QC-liquid interfaces are colored according to the
facet normal velocity. The oxide skin (Al2O3) is rendered translucent
gray. The inset in (d) shows a zoom in of colliding facets between
neighboring QCs. The smaller of the two QCs has a facet with
negative velocity, indicating dissolution.

interfaces are colored according to interface velocity: Positive
velocities are mapped onto a blue-cyan-yellow-red color map
whereas negative velocities are rendered purple. The plotted
velocities tend to decay over time due to the depletion of
solute in the liquid phase as the QCs grow [21], varying
from as high as 1 μm/s following nucleation to near zero
at the later stages of solidification. In fact, one facet shows
negative velocities when it approaches a neighboring QC at
long times, see the inset in Fig. 1(d). Diffusional interactions
between the two QCs trigger dissolution of this particular
facet. Below, we analyze in greater detail the different stages
of QC solidification from nucleation and growth to coarsening
and coalescence.

B. Orientation selection of quasicrystalline nuclei

Figure 2(a) shows stereographic projections of solid-liquid
interfacial normals of the three QCs that nucleate heteroge-
neously from the oxide skin of the sample into the liquid.
Peaks in the distributions specify the locations of the QC
facets. Interestingly, all three dodecahedral particles have
different orientations. From left to right, one nucleates with its
fivefold axis parallel to the specimen ẑ direction [cf. Fig. 1(a)],
the second with its twofold axis parallel to ẑ, and the last with
its threefold axis parallel to ẑ. See also the inset in Fig. 2(b)
for a schematic. Note that the third peak in the rightmost
stereographic projection appears to be “missing,” yet this is
due to the fact that the oxide occludes some of the crystal
surfaces.

To understand better the diversity in QC orientation, we
turn to the QC-oxide interfacial free energy, denoted as γwc.
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FIG. 2. Orientations of nucleated quasicrystals. (a) Stereo-
graphic projections of solid-liquid interfacial orientations of three
QCs that nucleate within the tomographic region of interest. The
zone axis in all cases corresponds to the specimen ẑ (upper) direction
of the experiment (see Fig. 1). One QC is oriented with its twofold
axis ‖ ẑ, the second is oriented with its fivefold axis ‖ ẑ, and the third
is oriented with its threefold axis ‖ ẑ. (b) Calculations of Gibbs free
energy upon heterogeneous nucleation as a function of interfacial
energy. The colors indicate the upper direction of the nucleated
crystals, see the inset.

Uwaha [28] and Taylor and Cahn [29] have pointed out that,
for an anisotropic particle, certain orientation relationships
between the particle and the substrate can be energetically
preferred. For instance, Fujiwara et al. have demonstrated
that, in the case of an octahedral Si particle on an inert
substrate, the 〈100〉 or 〈111〉 upper directions (i.e., parallel
to the substrate) are stable [30]. Since the total free energy
scales with the crystal volume for a given crystallization
driving force, the particle will change its orientation in order
to reduce the volume as the interfacial tension changes. That
is, the heterogeneous nucleation barrier �G∗

het is directly
proportional to nucleus volume V ∗

c with a specific orientation
[28,29]. According to the Winterbottom construction [31]
or the Wulff-Kaischew theorem [32], the volume V ∗

c itself
is related to the “wetting strength” γwc − γwm where γwm

is the oxide-melt interfacial free energy. Since interfacial
energies are difficult to measure experimentally, we plot in
Fig. 2(b) the nucleation barrier against the wetting strength
as a function of QC orientation [corresponding to the three
cases in Fig. 2(a), see the Appendix for computational details].
In the limit the wetting strength is large and negative, the

crystal volume and nucleation barrier are both zero; hetero-
geneous nucleation cannot occur. In the opposite extreme,
the entire dodecahedron lies above the oxide surface, and the
QC nucleates homogenously in the melt with an associated
barrier �G∗

hom. Thus, 0 � �G∗
het/�G∗

hom � 1. It is clear from
Fig. 2(b) that there is very little difference among the three
orientations, unlike the Si particles mentioned earlier which
show a significant difference in �G∗

het/�G∗
hom (on the order

of ±0.1 [30]) with respect to crystal orientation. This would
explain why all three QC orientations are equally probable
upon heterogeneous nucleation. The plot also suggests that it
is impossible to select a substrate with appropriate interfacial
energy γwm so as to control the orientation of QC nuclei,
a serious implication for the manufacture of QC materials.
Geometrically, a dodecahedron (with 20 vertices) is closer
to a sphere (infinite vertices) compared to an octohedron
(six vertices). Therefore, changes in nucleus volume and the
corresponding nucleation barrier are less sensitive to changes
in orientation for a fixed volume. Since QCs are known to
possess highly faceted Wulff shapes (which contain many
such vertices) [13,14,21], these results are generalizable.

C. Macroscopic statistics on quasicrystal growth

Once nucleated, the crystals grow by mass diffusion and
consume the supersaturation. The volume fraction g = Vc/V
rises wherein Vc is the QC volume following nucleation (i.e.,
Vc � V ∗

c ) and V is the sample volume. Concomitant with an
increase in g is an increase in the interfacial area concentration
S, especially at the early stages of the growth process. We
define S as Acm/V where Acm is the crystal-melt interfacial
area. The reciprocal of this quantity has units of length and
represents an important integral measure of the overall length
scale of the microstructure during alloy solidification [33].
Importantly, S does not continue to rise indefinitely as g
approaches unity. At high volume fractions, particles interact
with each other via soft collisions (i.e., overlapping diffusion
fields) [34,35] and “hard” collisions (i.e., impingements) [36].
Consequently, as the particles touch, there is a loss of free sur-
face between them, and hence, the interfacial area concentra-
tion S drops. We quantify the evolution of g and S versus time
and versus each other in Fig. 3. Errors arise from segmentation
and further processing of the x-ray tomographic data. Both
quantities increase monotonically but at a decreasing rate.

Neumann-Hyme et al. propose a general evolution equa-
tion for interfacial area concentration [37],

S = g(1 − g)r
(
S−3

0 + K0t
)−1/3

, (1)

where r, S0, and K0 are fitting parameters. The first term on
the right-hand side accounts for uninterrupted growth, the sec-
ond to interfacial coalescence, and the third to Ostwald ripen-
ing. The latter two terms contribute to a reduction in S and
become increasingly important at high volume fractions g and
long times t . Note that Eq. (1) combines the Cahn-Rath model
of pure growth processes [38,39] S ∝ gp(1 − g)r (where
p, r ∈ [0, 1]) with the Lifshitz-Slyozov-Wagner (LSW) model
of pure coarsening processes [40,41] S = g(S−3

0 + Kt )−1/3 to
obtain a comprehensive description of morphological evolu-
tion. Interestingly, the temporal exponent of 1/3 has been
found to be valid not only for isothermal coarsening, but
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FIG. 3. Macroscopic statistics of quasicrystal solidification. (a) Time evolution of interfacial area density S and volume fraction g of a solid
QC following nucleation at time t0 and (b) S versus g. Volume V that is used to compute S is that of crystal plus liquid that is illuminated by
the incident X radiation. Errors in the calculation of volume fractions and surface areas arise from segmentation and further processing of the
x-ray tomographic data. The general evolution equation [Eq. (1), black lines] that accounts for growth, coalescence, and coarsening, fits well
the experimental data.

also for concurrent growth and coarsening [42]. Equation (1)
makes no assumption about the underlying morphology, so
nothing precludes its application here. We fit our experimental
data to the general evolution equation and obtain excellent
agreement, see Fig. 3. The values of the fitting parame-
ters are as follows: r = 0.38, S−1

0 = 36.45 μm, and K0 =
3.97 μm3/s. Although it is difficult at present to ascribe any
specific meaning to the first two parameters, the last carries
physical significance. Equating Eq. (1) with the LSW model
shows that K = K0(1 − g)−3r , and thus, K0 is simply the
coarsening rate constant in the limit of vanishing solid frac-
tion. At finite volume fractions, K > K0 since the interparticle
distances become smaller and concentration gradients steeper.
Comparing our data on QCs to that of simple metals dendrites
(e.g., Al [43] and Mg [44]) reveals that the coarsening rate
constant K0 is about an order of magnitude smaller in our
case. This result is somewhat surprising, especially in light of
the higher temperatures involved in our experiment (∼900 ◦C
versus ∼600 ◦C). As shown in Refs. [27,37,40,45], the coars-
ening rate constant varies proportionally with interdiffusiv-
ity as well as solid-liquid interfacial energy, among other
thermodynamic properties. Holding all else constant, the ex-
traordinarily low solid-liquid interfacial energy documented
for QCs (∼0.01 J/m2 for the icosahedral phase [46] versus
∼0.1 J/m2 for Al [47] and Mg [48]) may contribute to a lower
capillary driving force and, hence, the lower coarsening rate.
The low interfacial energy of QCs arises from the icosahedral
structural similarity between solid and undercooled melt [46].
Due to a lack of data, it is not possible at this stage to quantify
the influence of interdiffusivity on the coarsening rate.

D. Local statistics on quasicrystal growth

For a closer glimpse on the QC interactions, we analyze
the trajectories of all facets as a function of time. Figures 4(a)
and 4(b) show the evolution of facet normal velocity, and

Figs. 4(c) and 4(d) show the corresponding facet area for
two QCs in the FOV. Consistent with Fig. 1, the velocity
of all facets decays in time whereas, in general, the area
increases. Discontinuities in the facet area are due to hard
impingements between the two particles at ∼700 s following
nucleation (see the arrows). Even before coalescence, the QCs
interfere with each other through soft collisions as mentioned
above. According to Fig. 4(a), the onset of such diffusional
interactions is ∼300 s after nucleation. The facet velocities
are nearly the same at this stage, but 60 s later, the velocity
profiles diverge from one another. At the ∼300-s mark, the
nearest-neighbor distance between the two QCs is ∼100 μm,
indicating a diffusion Debye screening length of ∼50 μm
for each QC. This length scale determines the maximum
range over which QC interactions occur, and beyond which
such interactions cease [35]. In particular, the purple facet
that is nearest to the other QC has a much lower velocity
than all the others. As the two solid QCs grow toward each
other, the concentration of the solute in the liquid decreases,
and competitive growth or coarsening sets in. Eventually at
∼600 s this same purple facet recedes [see negative velocity
in Fig. 4(a)] at the expense of a growing orange facet on the
opposing QC [see Fig. 4(b)].

To explain why one facet should fall back while the other
propagates forward, we invoke the geometric evolution laws
developed by Carter et al. [49] and Roosen and Carter [50].
They modeled the solid-liquid interface as a polygon having
a limited number of allowed normal directions, all of which
appear in the fully faceted Wulff shape. In this crystalline
formulation, each interfacial facet f moves with some velocity
v f according to a linear kinetic law,

v f = M(n̂ f )[〈μ〉 f − μeq( f )], (2)

where M(n̂ f ) is a mobility which depends on the facet orien-
tation n̂ f , 〈μ〉 f is the chemical potential in the liquid adjacent
to the facet, and μeq( f ) = �K is the equilibrium chemical
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FIG. 4. Local statistics on quasicrystal interactions. (a) and (b) Facet velocities averaged over the QC surfaces and corresponding facet
areas (c) and (d) as a function of time. (a) and (c) represent one QC, and (b) and (d) represent the other. The visible facets for each QC are color
coded according to the dodecahedron shown inset. Errors in facet velocity measurements are ±0.01 μm/s whereas errors associated with the
facet area measurements are ±0.05 μm2 (not shown). As before, t0 is the time at nucleation. The two QCs merge ∼700 s after nucleation (see
the arrow), resulting in an abrupt change in the areas of the purple and orange facets in (c) and (d).

potential for the facet, which we take to be proportional to
its weighted mean curvature K . It can be shown that the
weighted mean curvature of a facet is inversely proportional
to its length in two dimensions or area in 3D [51]. For a sys-
tem with isotropic interfacial energy, K reduces to the mean
interfacial curvature 2/R where R is the radius of a spherical
particle. Since, in our case, the kinetic shape of an i-QC is a
regular dodecahedron, all facets are pentagonal and, hence,
crystallographically indistinct. This means that they should
possess the same interfacial mobility M and Gibbs-Thomson
coefficient �. Then, for a given chemical potential in the
liquid 〈μ〉 f , a facet’s propensity to grow or recede is set by
its weighted mean curvature in Eq. (2). Take, for instance, the
purple (denoted p) facet that is analyzed above. By comparing
Figs. 4(c) and 4(d), its area (and, hence, radius of curvature
K−1) is, at least, two times lower than that of the orange (o)
facet on the neighboring QC. Thus, μeq(p) > 〈μ〉 f > μeq(o)

for the former to fall back (vp < 0) and the latter to grow out
(vo > 0), assuming that the two facets see the same liquid in
the narrow channel that separates them. These results indicate
that the anisotropic interfacial dynamics can be well described
as motion by weighted mean curvature.

IV. CONCLUSIONS

Through synchrotron-based XRT, we have tracked in real
time and in three dimensions the solidification dynamics of
three i-QCs. The dodecahedral particles nucleate heteroge-
neously at the oxide skin of the sample and grow into the
undercooled liquid. We find the orientation selection of the nu-
clei is a weak function of the QC-oxide interphase energy, in
stark contrast to cubic crystals. At the later stages of solidifi-
cation, the i-QCs interfere with each other via coarsening and
coalescence. This behavior is well described by the general
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evolution equation for interfacial area concentration. Despite
the relatively high temperatures involved in this paper, the
rates of surface-energy-driven interfacial motion are quite low
as compared to metal dendrites. This result may stem from the
structural similarity between solid and liquid, which, in turn,
would lower the diffusion potential. Our work provides the
necessary benchmark data needed to model the crystallization
of complex intermetallics. Future work aims to relate our
kinetic observations to the chemical order of the undercooled
liquid.
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APPENDIX: BARRIER FOR HETEROGENEOUS
NUCLEATION

The shape of the critical nucleus sitting on a flat substrate
is determined by both the crystal-melt interfacial tension as
well as the crystal-wall interfacial tension. As we will see, the
latter determines the volume of critical nucleus. A discussion
of the orientation selection of heterogeneous nuclei assuming
cubic and octahedral Wulff shapes is given by Refs. [28,30].
Here, we apply their theoretical framework by changing the
nucleus shape to a pentagonal dodecahedron. The total Gibbs
free energy of nucleation can then written as

�G = −Vc

νc
�μ +

12∑

i=1

γi�Ai, (A1)

where Vc is the volume, νc is the specific volume of the QC,
�μ is the nucleation driving force, γi is the energy of broad

fivefold facet i, and �Ai is the area of that same facet. Since
all bounding facets have the same orientation, they should
have the same surface free energy, and thus, the second term
can be expressed more compactly as γ S where S = ∑12

i=1 �Ai

is the total surface area of a dodecahedron. The barrier for
heterogeneous nucleation �G∗

het is then,

�G∗
het = V ∗

c,het�μ

2νc
, (A2)

where we have used the fact that, in general, S ∝ V 2/3
c and

∂G
∂Vc

|
V ∗

c

= 0. The homogeneous nucleation barrier �G∗
hom fol-

lows a similar form as in Eq. (A2). The ratio of the two barriers
can then be computed as

�G∗
het

�G∗
hom

= V ∗
c,het

V ∗
c,hom

, (A3)

where V ∗
c,hom is the volume of the “isolated” nucleus (i.e.,

without a foreign substrate), and V ∗
c,het is that of the nucleus

partially “buried” by the substrate. The latter is set by the
Winterbottom construction [31], which relates the degree of
burial (h) to an interfacial tension,

γwc − γwm

h
= const., (A4)

where, as before, γwc is the interfacial tension between oxide
wall (w) and crystal (c), γwm is that between wall and melt
(m), and h is the distance between the crystal center (Wulff’s
point) to the oxide-QC interfaces. Negative h indicates the
center is below the substrate surface; positive h indicates the
converse. Note the energy terms γwc, γwm, and γwc − γwm

are notoriously difficult to measure experimentally. However,
through Eqs. (A3) and (A4), we can determine how changes
in γwc − γwm influence h, V ∗

c,het , and ultimately �G∗
het

�G∗
hom

. We
perform such a calculation on a critical i-QC nucleus with
specific orientation, twofold, threefold, or fivefold symmetries
in the upper direction (i.e., away from the oxide substrate). By
fixing its volume and orientation, we sweep through different
values of h and recalculate the nucleation barrier with the aid
of Eq. (A3), see Fig. 2 of the main text.
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