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Characterization of two- and one-dimensional water networks
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Determination of the adsorption structure of water molecules on metal surfaces is an imperative challenge
to understanding the mechanisms of the wetting process and water-related heterogeneous catalysis. We identify
water monolayers formed on Ni(111) via low-temperature atomic force microscopy, which enables the visu-
alization of individual water molecules in monolayers with higher spatial resolution than scanning tunneling
microscopy. On the terraces of Ni(111) at 150 K, water forms monolayers comprising fused pentagonal,
hexagonal, and heptagonal rings. Water adsorbates on step sites assemble in a different manner, forming a
hydrogen-bonding network with fused pentagonal and octagonal rings aligned in the step direction. Because
similar water networks with pentagonal rings have been proposed in monolayers or their defect sites on
other metal surfaces, our structural characterization of H2O/Ni(111) provides an insight into water adsorption
structures on metals.
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I. INTRODUCTION

Nickel (Ni) is a versatile metallic component of alloys and
cell electrodes. Adsorption of H2O molecules on Ni-based
materials is closely associated with various surface chemical
and physical phenomena, such as wetting, corrosion, and elec-
trochemical reactions. In addition, Ni surfaces can provoke
heterogeneous catalyses such as the water–gas shift reaction
[1] and steam reforming [2]. Therefore, adsorption and dis-
sociation of water molecules on Ni(111), in particular, have
been studied both experimentally [3–11] and theoretically
[10–18] to understand their catalytic mechanisms. Theoretical
comparisons among several metal surfaces have predicted that
water tends to (partially) dissociate on Ni(111), in contrast to
Pd(111) and Pt(111) [19–21]. However, heating H2O/Ni(111)
induces water to desorb from the surface instead of disso-
ciating [8,9,18]. This reaffirms that accurate determination
of adsorption structures is indispensable for investigating the
reactivity and dynamics of water at Ni(111).

On metal surfaces, water molecules assemble via hydrogen
(H) bonding to yield various types of clusters and monolayers
[22–25], complicating the characterization of the adsorp-
tion structures. For H2O/Ni(111) at submonolayer regimes,
Gallagher et al. [7] revealed a (

√
28 × √

28)R19◦ pattern
with low-energy electron diffraction. Subsequently, the den-
sity functional theory (DFT) calculations by Thürmer et al.
[11] helped establish a model of a structure wherein water
molecules are H bonded to form pentagonal, hexagonal, and
heptagonal rings, in a manner analogous to the proposed
structure for (

√
37 × √

37)R25◦-H2O/Pt(111) [26]. However,
this ordered monolayer has not been corroborated via direct
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observation methods such as scanning tunneling microscopy
(STM) [11]. In addition to adsorbates on terraces, the ad-
sorption structures on step sites deserve attention because
step edges strongly contribute to the diffusivity, layer growth,
and catalytic reactions of water adsorbates [27–32]. Although
water molecules on stepped Ni surfaces have been predom-
inantly investigated via theoretical calculations [33–37], few
experimental studies have explored local adsorption structures
[38].

Herein, we observe H2O/Ni(111) using low-temperature
STM and atomic force microscopy (AFM). AFM with a tip
terminated by a single atom/molecule can not only visualize
the intramolecular structures of organic molecules [39–41] but
also the individual H2O molecules in H-bonding assemblies
[42–45]. Through AFM imaging with higher spatial resolution
than STM, we establish structural models of two- and one-
dimensional (2D and 1D) water networks that are formed on
the terraces and at step edges, respectively.

II. METHODS

The experiments were conducted in an ultrahigh-vacuum
chamber (Omicron low-temperature STM/AFM system) at
4.8 or 78 K. A tuning fork with an etched tungsten tip was
used as a force sensor in the frequency-modulation mode
[41] (resonance frequency of 21.3 kHz, spring constant of
∼1800 N/m, quality factor of 4–5 × 104, and oscillation am-
plitude of 100 pm). Single-crystalline Ni(111) was cleaned by
repeated cycles of Ar+ sputtering and annealing. Ultra-pure
water (Wako Pure Chemical Industries, Ltd.) was purified via
freeze-and-pump cycles. The surface at ∼6 K was exposed
to CO gas (as required) to fabricate a CO tip [46]. AFM
images were acquired in constant-height mode at a sample
bias of V = 0 mV with a CO tip whereas STM images were
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FIG. 1. (a) STM image of H2O/Ni(111) at 78 K. (b),(c) STM image of the same sample as in (a) but after annealing at 145 and 150 K for
5 min, respectively. The red and green lines indicate the orientations of ±19◦ relative to the Ni atomic lattice (white allows). (d) Magnified
STM image of (c). Images in (a)–(d) were obtained with a metal tip [(a),(b) V = −500 mV, I = 20 pA, 78 K and (c),(d) V = −200 mV,
I = 20 pA, 4.8 K]. The inset shows an atomically resolved STM image of the bare Ni surface obtained with a CO tip (V = 10 mV, I = 2 nA,
4.8 K). The red and green rhombuses represent the unit cells for domains i and ii of the (

√
28 × √

28)R19◦ superstructure, respectively.
(e),(f) STM (V = 30 mV, I = 20 pA) and AFM (z = −135 pm) images of an island of domain ii, respectively, obtained with a CO tip at 4.8 K.
(g) Laplacian-filtered image in (f). The blue, red, and green flames indicate the pentagonal, hexagonal, and heptagonal rings, respectively.

obtained in the constant-current mode. The origin of the tip
height z is the set-point height determined via STM over the
bare Ni surface at V = 30 mV and tunneling current I = 20
pA. Here, z < 0 implies that the tip is closer to the sample than
the origin. Force curves F (z) were calculated using the Sader
formula [47] from the frequency shift curves � f (z) recorded
at V = 0 mV.

III. RESULTS AND DISCUSSION

Figure 1(a) shows an STM image of Ni(111) exposed to
H2O gas at 78 K. Water forms islands covering about 70%
of the surface [∼0.7 monolayers (ML)]. No ordered patterns
were observed on the islands, implying that water molecules
are arranged amorphously. By annealing the sample at 145 K,
the coverage was decreased to ∼0.4 ML through molecular
desorption. Then, small clusters of diameters ∼1 nm were pre-
dominantly observed together with large islands [Fig. 1(b)], in
good agreement with the results of a previous STM study of
∼0.5 ML H2O/Ni(111) [11]. Additionally, we confirmed that
similar structures were observed on Ni(111) exposed to H2O
at 140 K. As indicated by red and green lines in Fig. 1(b), the
outlines of the islands are mainly constructed by triangles with
most edges oriented by ±19◦ relative to the unit vectors of
the Ni(111) atomic lattice [white arrows; see also the inset of
Fig. 1(d) showing an atom-resolved STM image of the bare Ni
surface]. Therefore, we ascribe the large islands to a transitive
structure leading to the well-ordered (

√
28 × √

28)R19◦ su-
perstructure. Furthermore, through high-resolution AFM, we
revealed that the small cluster includes a central hexagonal

ring of (H2O)6 (see the Supplemental Material [48]), which
probably nucleates the initial growth of H-bonding water
networks on the surface [6].

Upon further annealing the sample at 150 K, the small
clusters disappeared, and homogeneous huge islands became
dominant on the surface [Fig. 1(c)]. As shown in Fig. 1(d),
the island has an ordered pattern with a periodicity of 13 nm,
and the unit cell is oriented by +19◦ or −19◦ relative to the
Ni atomic lattice. Two domains with different orientations
[labeled i and ii in Fig. 1(d)] coexisted on the surface and
were separated by boundaries on the island (white dotted
line). Thus, the water layer is assigned to a (

√
28 × √

28)R19◦
superstructure [7]. A magnified STM image reveals that the
island is composed of hexagonally arranged hexapetal pro-
trusions [Fig. 1(e)]. Figures 1(f) and 1(g) show AFM and
Laplacian-filtered AFM images of the island, respectively,
where bright spots reflect the lateral positions of the O atoms
of water molecules [42]. This indicates that the hexapetal unit
contains a central hexagonal ring [red flames in Fig. 1(g)] sur-
rounded by alternately fused three pentagonal (blue flames)
and heptagonal (green flames) rings each. This appearance
suggests that water molecules in the island are seamlessly H
bonded to each other.

For the (
√

28 × √
28)R19◦-H2O/Ni(111), the H-bonding

network with pentagonal and heptagonal rings was presumed
by Thürmer et al. [11]. They termed it the “

√
28 di-vacancy

structure” [Fig. 2(f)], and it is similar to the AFM pattern
shown in Fig. 1(f). To obtain further information about this
island, we investigated the z dependence of AFM images
[Figs. 2(b)–2(e)] for the same area as that observed in an STM
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FIG. 2. (a) STM image of an island of domain ii (V = 30 mV, I = 20 pA, 4.8 K, CO tip). (b)–(e) AFM images of the same area as in
(a) with z = −50, −100, −150, and −200 pm, respectively. (f) Schematic of the DFT-optimized “

√
28 di-vacancy structure” reported in

Ref. [11]. The gray, cyan, red, yellow, and green spheres represent Ni, H, bottommost O, middle O, and topmost O atoms, respectively. The
gray rhombus represents the unit cell of (

√
28 × √

28)R19◦. (g) Schematic structure of the water monolayer proposed according to the AFM
appearances. The bottom panels of (f) and (g) show side-view illustrations of the structures (H atoms are not shown for clarity). The vertical
distance between the bottommost H2O and the substrate in (g) is tentatively assumed to be the same as that in (f). (h) � f (z) curves recorded
over the markers in the inset (4.8 K, CO tip). The inset shows an AFM image of domain i (z = −110 pm). (i) Short-range force curves
calculated from (h) after subtraction of the contribution of the bare Ni surface [black curve in (h)]. The inset schematically shows the water
network for the inset image in (h).

image of the island [Fig. 2(a)]. At large z, the molecule located
at each petal lobe in the STM image is visible through AFM
[Fig. 2(b)], suggesting that this molecule highly protrudes
toward vacuum [namely, topmost H2O; green spheres in
Fig. 2(g)]. For small z [Fig. 2(c)], other water molecules were
visualized [yellow spheres in Fig. 2(g); middle H2O]. The
six water molecules located near the center of the hexapetal
pattern [red spheres in Fig. 2(g); bottommost H2O] eventually
became visible when the tip moved closer to the sample
[Figs. 2(d) and 2(e)]. Thus, the O atoms of water molecules
in the island are of three types depending on their verti-
cal heights, corresponding to the six topmost, four middle,
and six bottommost H2O molecules in each unit cell. The
water molecules are consistently H bonded; for example,
the neighbors of a bottommost H2O molecule are two other
bottommost molecules and a topmost H2O, whereas a middle
H2O molecule is always surrounded by three topmost H2O
molecules [Fig. 2(g)]. Although the lateral positions of the
O atoms in the AFM images are quite similar to that of
the DFT-calculated “

√
28 di-vacancy structure” [11], their

vertical positions are different [two topmost, eight middle,
and six bottommost H2O molecules in each unit cell for
the “

√
28 di-vacancy structure;” see side-view illustrations in

Figs. 2(f) and 2(g)]. Note that the arrangement of H atoms
shown in Fig. 2(g) is tentative; H atoms of water on metal
surfaces are not directly observed in the AFM images [42],

and H-atom locations should be clarified through theoretical
calculations.

The existence of three types of O atoms was confirmed by
measuring force curves. The green, yellow, and red curves in
Fig. 2(h) show � f (z) recorded over the topmost, middle, and
bottommost H2O molecules, respectively, in an island shown
by the inset AFM image in Fig. 2(h). The short-range force
curves were derived [Fig. 2(i)] by subtracting the background
contribution of the bare Ni surface [Fig. 2(h), black]. At
large z, attractive forces are almost equally applied over any
location on the island probably because of the dense molecular
network. At a close tip distance, the repulsive force applied on
the water adsorbates was stronger than that applied over the
hollows of the hexagonal [Fig. 2(i), purple] and heptagonal
[Fig. 2(i), blue] rings, generating the molecule-resolved AFM
image [Figs. 2(c)–2(e)]. The minimum force was detected at
z ≈ +50, −50, and −100 pm for the topmost, middle, and
bottommost H2O, respectively; this variation of the minimum
force mainly originates from the vertical height difference
among the O atoms [schematically shown in the bottom
panel of Fig. 2(g)]. However, the molecular height would be
modified by the AFM measurement. The slope in the repulsive
region (z < 50 pm) for the topmost H2O is very moderate
(∼0.4 Nm−1), which differs from the slopes of the other H2O
on the surface and H2O/Cu(110) [42] (∼0.8–1 Nm−1). This
implies that the topmost H2O is readily displaced against the
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FIG. 3. (a) STM image of a monoatomic step of H2O/Ni(111)
(V = 30 mV, I = 20 pA, 4.8 K, CO tip). The green arrow indi-
cates a characteristic defect in the water networks at the step edge.
(b) Schematic structure of the step and the tip. The gray, cyan, red,
and black spheres represent Ni, H, O, and C atoms, respectively. The
scanning trajectory for AFM imaging are also shown schematically.
(c),(d) Constant-height AFM images of the step edge in (a), obtained
with z = −60 and −135 pm, respectively. (e) AFM image of the
same area as in (c) and (d) but with the tip trajectory aligned to the
STM topography as shown by the blue solid curve in (b) (V = 30
mV and I = 20 pA for STM; V = 0 mV and �z = −210 pm for
AFM). The red dots represent the O-atom positions based on (e).
(f) Schematic structure of the water network at the step edge pro-
posed according to the AFM appearances.

tip because this molecule is located far from surface Ni atoms.
The relaxation of the repulsive force provides the contrast
inversion between the topmost and middle molecules in the
AFM images [Figs. 2(c)–2(e)].

While the islands of (
√

28 × √
28)R19◦ dominate on ter-

races, water molecules form a different ordered structure on
the step sites of the surface. Figure 3(a) shows an STM image
of a monoatomic step. At the edge of the upper terrace,
H-shaped protrusions are aligned in the step direction (i.e.,
the [11̄0] direction) with a periodicity of 1.0 nm, which
equals four times the Ni atomic distance a0 (0.249 nm).
The periodic structure has some defects, one of which is
imaged as a single protrusion indicated by the green arrow

in Fig. 3(a). We obtained constant-height AFM images of the
edge structure, including the defect [Figs. 3(c) and 3(d)]. At
large z [Fig. 3(c)], only one type of adsorbate [labeled as α in
Figs. 3(b) and 3(d)] appears as a protrusion, which is assigned
to the topmost H2O on the upper terrace. When the tip is closer
[Fig. 3(d)], other molecules on the upper terrace become
visible. We tentatively assign the higher (lower) molecules
to H2O to a vertical (horizontal) molecular plane. According
to the image [Fig. 3(d)], among the molecules on the upper
terrace, the β-labeled H2O is the closest to the edge.

Adsorbates on the lower terrace are too far from the tip
to be visualized by constant-height imaging [red arrow in
Fig. 3(b)]. Hence, we imaged the step-edge structure through
multipass methods [49–51] as follows. First, we obtained a
constant-current STM image and recorded the tip trajectory
z1st (x, y) during the scan [first pass; Fig. 3(b), dotted blue
arrow]. Next, the identical area was scanned again with a tip
height determined by z2nd(x, y) = z1st (x, y) + �z to obtain a
� f (x, y) map (second pass). During the second-pass scanning
with negative �z, the tip over the lower terrace was closer
than that in the constant-height mode [Fig. 3(b), solid blue
arrow]. Figure 3(e) shows the second-pass map, reflecting the
positions of all H2O molecules on the lower [labeled as γ

and δ in Figs. 3(b) and 3(d)] and upper terraces. Although
the first-pass STM image shows blurry H-shaped protrusions
similar to those shown in Fig. 3(a), the second-pass map
shows sharp features with a pattern different from the STM
image, and the bright spots in the map originate from the
repulsive atomic force between H2O and the tip apex. As
shown in Fig. 3(f), the unit cell of the ordered structure
contains two pentagonal rings and an octagonal ring fused
together with 4a0 periodicity, whereas the defect has no rings.
The formation of such a 1D network has not been predicted
in previous studies on water at stepped Ni surfaces [33–38],
highlighting the importance of directly observing water as-
semblies on surfaces. This periodic structure is very similar
to domain boundaries of H2O/Ru(0001) [52], water islands
on a stepped Cu(551) surface [32], and defect rows in the
second water layer on SnPt(111) [53], suggesting that such a
pentagonal-octagonal network is a typical defect in thin water
layers on metal surfaces.

IV. CONCLUSIONS

In summary, we observed H2O clusters and monolayers on
Ni(111) via STM and AFM. Water molecules exist as disor-
dered assemblies on the metal surface at 78 K, whereas they
are rearranged at 140–145 K to yield small clusters with a cen-
tral cyclic (H2O)6 core. Observation of the sample annealed at
150 K showed islands of the (

√
28 × √

28)R19◦ superstruc-
ture dominant on the terraces. High-resolution AFM imaging
revealed that in the island, water molecules formed H-bonding
networks, including pentagonal, hexagonal, and heptagonal
rings. The molecular arrangement is consistent with the “

√
28

di-vacancy” model [11], despite the serious disagreement on
the vertical height of each molecule. At a monoatomic step
edge, H2O forms another H-bonding network that contains
pentagonal and octagonal rings with a periodicity of 4a0.
Our determination of the ordered water networks on Ni(111)
will be helpful in understanding the effect of intermolecular
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interactions on wettability in comparison to their behavior on
other metal surfaces and in revealing the catalytic reactivity
on both terraces and at step edges.

Notably, the H-bonding network of the (
√

28 ×√
28)R19◦-H2O/Ni(111) is quite similar to the proposed

structure of the (
√

37 × √
37)R25◦-H2O/Pt(111) [26].

However, the STM appearance of the water monolayer on
Pt(111) (honeycomblike mesh with triangular depressions
[26]) is distinctly different from that on Ni(111)
[hexapetal-shaped protrusions; see Fig. 1(e)]. This strongly
suggests that the structure of H2O/Pt(111) can be researched
further. Direct observation using high-resolution AFM must

be a powerful approach toward the complete identification of
the

√
37 structure and other water networks on various metal

surfaces.
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