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Measurement of the stiffness of hard-sphere colloidal crystal-liquid interfaces
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We investigated the stiffness of the interfaces between hard-sphere colloidal face-centered cubic crystals
sedimented onto (100), (110), and (111) oriented templates and their equilibrium liquid with special attention
to the in-plane anisotropy. The stiffness was determined from thermal fluctuations in the interface position
imaged by confocal microscopy. The colloidal particles of diameter σ are nearly density-matched with the
suspending fluid so that the amount of liquid above the interface was much greater than in an earlier similar
hard-sphere colloid experiment. We find stiffness values of 0.47 kBT/σ 2 for the (100) interface 0.53 kBT/σ 2 for
the (110) interface and 0.41 kBT/σ 2 for the (111) interface. These values are generally closer to those found
in computer simulations than to the earlier colloid results. No evidence was found however for the expected
in-plane anisotropy of the (110) interface. This surprising finding confirms that of the earlier colloid work.
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I. INTRODUCTION

The interface between a crystal and its melt is of great
interest in materials science. It presents fundamental physical
questions, such as the spatial variation of long- and short-
range order and of the thermodynamic potentials [1–3]. The
interfacial free energy γ plays a key role in the kinetics of
crystallization, both in the formation of the crystal nucleus [4]
and the stability of the moving interface [5]. The value of the
interfacial free energy depends on the orientation of the crystal
face normal n̂. This anisotropy is important, for example for
the equilibrium shape of small crystals in a melt, or for the
formation of dendrites during solidification [6].

One way to study the interfacial free energy and its
anisotropy, γ (n̂), is by the capillary fluctuation method (CPM)
[7,8]. Thermal excitation causes an equilibrium interface to
roughen: it fluctuates in time about its average position by
h(x, y, t ), where x and y are the coordinates in the average
interface plane. Fourier analysis of these deviations yields a
power spectrum, which, upon time-averaging gives

〈|h(q)|2〉 = kBT

γ̃ (q̂)q2
, (1)

where q is a vector parallel to the interface and γ̃ = γ + ∂2γ

∂θ2

is the interface stiffness; θ is the angular variation of the
interface normal in the direction of q. The variation of γ̃

with direction in the plane, q̂, is described by a second rank
tensor [9]. A polar plot of [γ̃ (q̂)]−

1
2 is therefore an ellipse,

which must have the symmetry of the crystal face. In cubic
systems, this means that for the (100) and (111) interfaces γ̃

must be isotropic in the plane. The (110) interface, however,
is expected to be anisotropic, with the principal directions of
γ̃ along [001] and [1̄10].1

1Through this paper, we utilize crystallographic notation for the
face-centered cubic system. The conventional coordinate axes are

The stiffness of the crystal-liquid interface has been stud-
ied in computer simulations [8,10–12] and experimentally
in colloidal systems [13–15]. The use of colloidal particles
as a versatile model system for atomic solids has a long-
standing history of providing invaluable insight into other-
wise challenging phenomena to observe within atomic solids,
e.g., crystallization [16], glassy dynamics [17], and grain
boundaries [18]. The latter consist of dense suspensions of
small particles (diameter σ ≈ 1 μm) that can be tracked by
confocal microscopy, which allows direct measurement of
the fluctuating positions of the interface. For comparison of
experiment and simulation, the hard-sphere system has the
advantage that nearly the same potential can be used in the
two approaches. Table I shows the results of hard-sphere
simulations and experiments for face-centered cubic (FCC)
crystal-liquid interfaces of highest symmetry.

Most striking about them is that all simulations [10–12]
show a strong anisotropy of the (110) interface.2 The col-
loid experiments of Ramsteiner et al. [14], on the other
hand, showed surprising isotropy for the (110) interface.

parallel on the fourfold rotation axes, with length unit, at close pack-
ing, a = σ

√
2; [hkl] represents a vector rhkl = a(h, k, l ); h̄ means

−h; and (hkl ) represents an infinite set of parallel planes perpendic-
ular to rhkl , evenly spaced by a2/rhkl . For a general treatment, see for
example, Ref. [27]. The (100) and (111) planes have, respectively,
four- and threefold rotational symmetry, and therefore have isotropic
second-rank tensor properties [27,28]. The (110) planes have twofold
rotational symmetry, which allows anisotropy.

2Reference [11] states that the stiffness for (110)[01̄0] is
0.41 kBT σ−2, which is why that value is listed in the (110)[001]
column in Ref. [14]. The [11̄0] direction, does not lie in the (110)
plane, and the statement in Ref. [11] is therefore most likely a
misprint for (110)[11̄0], the direction discussed in the rest of their
paper.
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TABLE I. Calculated and measured values of the crystal-liquid interface stiffness γ̃ (in kBT/σ 2) for the highest-symmetry orientations and
directions of a hard-sphere FCC crystal. The last row is the areal density of the planes in closest-packed FCC, in atoms/σ 2.

(100) (110)[1̄10] (110)[001] (111) Method Ref.

0.55 0.49 0.71 0.80 MC Mu et al. [12]
0.44(3) 0.42(3) 0.70(3) 0.67(4) MD Davidchack et al. [10]
0.43(1) 0.41(2) 0.74(3) MD Amini and Laird [11]
1.3(3) 1.0(2) 1.0(2) (0.66) silica colloids Ramsteiner et al. [14]
0.47(3) 0.53(5) 0.53(5) 0.41(4) FEMA-BMA colloids This work
1.00 0.71 0.71 1.15 areal density

Furthermore, their absolute values were significantly higher
than those of the simulations.

The experiments of Ramsteiner et al. [14] were performed
with silica spheres (σ = 1.55 μm) in a water/DMSO sus-
pending fluid. Because the density difference between parti-
cles and fluid is large (ρ = 2 g/cm3 versus ρ = 1.06 g/cm3,
respectively), the gravitational length is small: kBT

g�ρ Vp
=

0.14 σ (Vp: particle volume). As a result, the height of the
liquid phase above the crystal after sedimentation is only a
few particle diameters, which could have affected the structure
and properties of the interface. We have therefore repeated
these experiments in a colloidal system with a much greater
gravitational length (1.7σ ) to assess both the absolute values
of the stiffnesses and the surprising finding of isotropy of the
(110) interface.

II. EXPERIMENTS

We synthesized colloidal particles composed of a copoly-
mer, formed from 2,2,2-trifluoroethyl methacrylate (FEMA,
SynQuest Laboratories) and t-butyl methacrylate (tBMA, TCI
America); their density ρ and refractive index n can be tuned
by adjusting the monomer ratio such that a FEMA:tBMA ratio
of 36:64 by volume resulted in ρ = 1.202 g/cm3 and n =
1.452 [19]. By using formamide (FM) as the suspending fluid,
the particles were refractive-index matched with the fluid
and their density difference �ρ = 0.0727 g/cm3 was much
smaller than that in the silica experiments (�ρ = 0.94 g/cm3)
[14]. The particles have a diameter σ = 1.55 μm and are
suspended in a fluorescently dyed solution of 30 mM NaCl,
formamide and rhodamine-B at a particle volume fraction of φ

= 2%. The added salt screens the slightly negatively charged
polymer brushes to obtain nearly hard-sphere behavior; the
short ranged electro-steric repulsion results from an approxi-
mate 5–7-nm steric layer on the surface of each particle and
a sufficiently screened electrostatic repulsion from the added
salt, resulting in an estimated Debye screening length, κ−1 =
1.5 nm.

The copolymer particles were sedimented onto a 0.5 mm
×0.5 mm template that consists of holes etched in a glass
cover slide in (100), (110), and (111) arrangements at nearest-
neighbor distances of 1.64 μm. The holes accommodate the
first layer of particles. Sedimentation produces horizontal
(100), (110), and (111) FCC crystal-liquid interfaces [20–22].
To obtain nearly perfect (110) oriented crystals, it was nec-
essary to deposit a few layers of particles onto the template
by centrifugation of the sample chamber at 10g for 4 hours,
after which additional particles were sedimented under regular

gravity for at least another day. In all cases, planar, horizontal
crystal-liquid interfaces between roughly 100-μm crystal and
at least 40 μm of liquid were produced.

The samples were imaged from below with a Leica TCS
SP5 through a 63× glycerol immersion objective. The micro-
scope stage was leveled and the samples left on the micro-
scope for at least a day before each measurement to minimize
particle flow due to sample tilt. Individual particles were then
imaged in volumes 102 μm × 102 μm in-plane and 60 μm
in height centered around the interface. The resulting crystals
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FIG. 1. (a) Vertical slice taken from the confocal image of a (110)
crystal-liquid interface. The direction of gravity is marked. [(b)–(d)]
Horizontal slices from the confocal images of (100) (b), (110) (c),
and (111) (d) interfaces, The horizontal slices are taken ≈5 μm under
the interface position. All images represent 1/4 of the total 2D image
size.
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FIG. 2. (a) Schematic illustration of the bond angle θi jk of a
particle in an FCC lattice. The order parameter, φi, is the number
of angles with θi jk ≈ 60◦ or cos θi jk = 0.5 ± 0.2. (b) Reconstruction
of a vertical slice of a (100) crystal-liquid interface, where the color
code indicates the value of the order parameter, φi, for each particle.
(c) The average value of the order parameter 〈φi〉 as function of
height z for the (100), (110), and (111) interfaces. A bin size of
�z = 3 μm was used to calculate the averages.

are of dimension over the total area of the template, thus
the confocal microscope images capture only ∼4% of the
total. The particle centers were located in three dimensions
using standard particle tracking software [23,24]. For each
orientation, the interface region was imaged every 6 minutes
for at least 14 hours, resulting in 140–200 recordings.

III. RESULTS

Vertical and horizontal cross-sections through the colloidal
crystal and liquid are shown in Fig. 1. Typically, the sedi-
mented crystals reach a height greater than 100 μm as shown
in Fig. 1(a), where the crystal-liquid interface is clearly visi-
ble. The crystals contain a few stacking faults, mostly in the
lower part. Given that the stacking fault energy in hard-sphere

FIG. 3. Representation of the interpolated fluctuation heights of
a (100) interface.

systems is negligibly small, the small concentration of stack-
ing faults is surprising, especially in the (111) orientation.
Hydrodynamic effects probably play a role in favoring the
FCC stacking. All data are therefore taken at interfaces well
away from crystal defects.

To locate the interface, we identify crystalline and liquid
particles with a bond order parameter. We use the definition
of Ramsteiner et al. [14], in which the order parameter, φi, of
particle i is the number of bond angles θi jk between two near-
est neighbours j, k of particle i that are close to 60◦ [Fig. 2(a)]
(cos θi jk = 0.5 ± 0.2). The nearest neighbors are defined as
those closer than r0, the first minimum of the pair correlation
function of the crystal. This value varies slightly with crystal
height and orientation; we therefore calculate it for each
crystal orientation using a 20 μm × 20 μm × 20 μm section
of the sample, 5 μm below the crystal-liquid interface. For the
(110) oriented crystal, for example, r0 = 2.25 μm. Each order
parameter is then averaged over nearest neighbors to minimize
artifacts due to thermal motion or crystal defects.

A representation of the smoothed order parameter dis-
tribution in a vertical section across the interface is shown
in Fig. 2(b). The crystalline and fluid regions are clearly
distinguishable. The average order parameter as a function of
height is shown in Fig. 2(c). All samples show three regions:
the crystal region with large order parameter values at low z
(the order parameter for perfect FCC is 24), the liquid region
with low order parameter values at high z, and the transition
region near the interface. All samples show similar height-
dependent order parameters in the liquid, but different values
in the crystal region that depend on the crystal orientation.
This indicates a variation in the quality of the crystals grown
in the three orientations.

We determine the particles belonging to the interface by
a method described by Mu et al. [12]. First, we consider all
particles with bond order parameter smaller than a threshold
φs to be part of the liquid. Then, for every remaining particle,
we count the number Zn of crystalline neighbors, and consider
particles with Zn smaller than a threshold Zs to be part of
the interface. Following Ramsteiner et al. [14], we restricted
our choice to Zs = 9 and Zs = 10, and found that Zs = 9
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FIG. 4. [Left (L)] Logaritmic grayscale plot of the inverse averaged squared Fourier components of the (100) (a), (110) (b), and (111)
(c) interfacial height profile. [Right (R)] Linear contour plots near the center of the gray-scale image for the (100), (110) and (111) interfaces.
The center is marked by the white square in (a)-L. (c)-R shows a schematic representation of the angle α. The red circle serves as a guide to
the eye.
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FIG. 5. Log-log plots of 〈|h(q)|2〉 vs q for two high-symmetry directions in the (a) (100), (c) (110), and (e) (111) interface. The black line
has a slope of −2. (b), (d) and (f) are the respective logarithmic-linear plots of 〈|h(q)|2〉−1 vs q2. The solid and dotted lines are linear fits in the
range 0.1σ−2 � q2 � 0.8σ−2.

gave a the most consistent number of interface particles. As
a final refinement, we required that every interface particle
must have at least one other interface neighbor. In general, we
found that a change in φs shifts the height of the interface,
while retaining its overall shape. We chose φs = 14, which
locates the interface safely between crystal and liquid as
shown in Fig. 2(c). A lower value of Zs decreases the number
of interface particles. We therefore use φs = 14 and Zs = 9 for
all crystal orientations for consistency; deviations from these
threshold values were extensively tested and did not alter the
numerical conclusion of this work within experimental error.

We determined the height profile of the two-dimensional
interface, h( j, k), on a 0.5-μm spaced L × L square grid by in-
terpolation of the heights of the identified interfacial particles.

A reconstruction of the resulting interpolated interface is
shown in Fig. 3, where the color indicates the vertical interface
position. The reconstruction shows height fluctuations of sev-
eral micrometers around an average flat horizontal interface.
The Fourier coefficients of the height profile are [12,14]

h(q) = h(m, n) = �2
xy√
A

⎡
⎣∑

jk

h( j, k)e−i( 2π
L )m je−i( 2π

L )nk

⎤
⎦, (2)

where A is the total area in real space and L the number of
grid points and �xy = 0.5 μm = 0.32σ is the interpolated
spacing distance. Edge effects are minimized by imposing a
tapered circular windowing mask with a diameter equal to
the edge length of the interface; note, the taper employed is a
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FIG. 6. Interfacial stiffness as a function of angle α in the plane
for the (100), (110), and (111) interfaces. The horizontal lines
indicate the average values, listed in Table I.

quarter-sine function of length 1 μm or approximately 5% of
the total mask.

The squared Fourier coefficients were averaged over 140
recorded height profiles, and then along equivalent crystallo-
graphic orientations where appropriate. According to Eq. (1),
the interface stiffness can be determined from the slope of
the inverse squared Fourier coefficients, 〈|h(q)|2〉−1 with the
square of the wave vector, q2. Figure 4 shows two-dimensional
plots of 〈|h(q)|2〉−1 for (100), (110), and (111) interfaces.
Figures 5(a), 5(c), and 5(e) show log-log plots of 〈|h(q)|2〉 as a
function of q for three orientations and two high-symmetry di-
rections in each plane. The dependence expected from Eq. (1)
is indicated by the black line of slope −2. All data sets show
good agreement with the expected dependence for q between
0.3 and 1σ−1; this range being bound in high-q by the particle
size and low-q by the dimension of the confocal image.

To determine the stiffness, 〈|h(q)|2〉−1 was plotted as a
function of q2 in Figs. 5(b), 5(d), and 5(f). As in the log-
arithmic plots, we observe a linear relation for q < 1.0σ−1,
corresponding to wavelengths larger than the particle diame-
ter. Significantly, the data go through the origin. In the silica
experiments [14], there was an intercept at q = 0 equal to
g�ρ�φ

kBT = 0.57σ−4, where �φ is the difference in packing
fraction between the crystalline and liquid phases in equilib-
rium. The origin of this offset is the gravitational damping of
the fluctuations due to the mass density difference between the
two phases [25,26]. As expected, in the present experiments,
where �ρ is much smaller, gravitational damping becomes
negligible.

The interfacial stiffness was determined from the slope of a
linear fit of 〈|h(q)|2〉−1 versus q2 for q < 1.0σ−1 along several
directions at angles α [see Fig. 4(c)] in each of the planes.
The results are shown in Fig. 6. The angular variation of the
data for the (100) and (111) interfaces, which are isotropic,
provides a measure of the experimental uncertainty, estimated
at 10%. The angular variation for the (110) interface is slightly
larger. The small dips observed at α = 0◦, 90◦, 180◦, and
270◦ are transformation artifacts that align with the image

axes whereas, significantly, the principal directions are along
α = 75◦ for [001] and α = 147◦ for [1̄10] [see Fig. 1(c)]. The
interfacial stiffness of the (110) interface, therefore does not
show any measurable anisotropy. The average values of the
interface stiffnesses are listed in Table I.

IV. DISCUSSION

Our stiffness values are significantly lower than those from
the silica experiments [14] for all three orientations. The frac-
tional decreases in stiffness are between 63% and 37%, which
corresponds, according to Eq. (1), to fractional increases by
half those values in the amplitudes of all the fluctuation
modes, or approximately 20% to 30%. It is conceivable that
the thinness of the liquid layer in the silica experiments
suppressed the fluctuations compared to those into the fully
formed liquid in the present experiments.

For the (100) interface and the [1̄10] direction on the
(110) interface, the stiffness values we find are close to
those of the three simulations. For the [001] direction on the
(110) interface, however, there is a significant difference: we
confirm the finding of the silica experiments that the (110)
interfacial stiffness is isotropic, whereas the simulations show
a clear anisotropy. The reason for this discrepancy is unclear.
It is unlikely that a possible difference in the potentials plays
a role, since that would lead to different overall stiffness
values. Furthermore, the interaction distance of the colloids
has been carefully minimized to resemble the hard-sphere
potential as closely as possible. The sample size in the two
approaches may play a role. In the colloid experiments, the
interface is fully two-dimensional and extends over many
hundreds of microns in all directions, even though only a
smaller portion is imaged. For computational reasons, the sim-
ulations employ a quasi-one-dimensional method, in which
the sample size perpendicular to the direction being studied
is kept small. It is possible that this approach introduces or
amplifies anisotropies. One indication, from an embedded-
atom molecular dynamics simulation [8], is the anisotropy in
the stiffness reported for the (100) interface (234 mJ/m2 along
[010]; 192 mJ/m2 along [012]), which should be isotropic by
symmetry.

Our value for the stiffness of the (111) interface is lower
than that found in the silica experiments, but less so than
for the other orientations. It was recognized the silica crystal
contained many defects, right up to the interface. The resulting
additional roughness may have lowered the measured stiffness
for that orientation. The upper part of the corresponding
crystal in the present experiments was defect-free, as was
the interface. We therefore consider our value of the (111)
stiffness to be reliable. It is surprising, then, that it is well
below the values found in the simulations. The reason for this
is not understood. It is interesting that our stiffness values
correlate inversely with the areal density of the planes in the
closest-packed crystal: 1.15 atoms/σ 2 for (111), 1 atom/σ 2

for (100), and 0.71 atoms/σ 2 for (110).

V. CONCLUSION

It has been worthwhile to repeat the measurements of
the stiffness of high-symmetry crystal-liquid interfaces, made
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originally on hard-sphere silica colloids, with polymeric
colloids that were more closely density-matched with the
suspending fluid. The primary benefit was the creation of
a tall, fully formed liquid phase above the interface, in-
stead of a few micron thick liquid layer with the heav-
ier particles. This yielded new, more reliable stiffness val-
ues that were systematically lower than the earlier ones.
Nevertheless, a key observation of the silica experiments
was confirmed: the stiffness of (110) interface was found
to be isotropic in the plane, in contrast to the expectation

of its crystallographic symmetry and to the computer
simulations.
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