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Dielectric metasurfaces allow us to realize many unique effects in optics, and they can serve as the building
blocks of the modern photonic technologies. Here, we suggest theoretically and demonstrate experimentally the
effect of high transparency of all-dielectric metasurfaces with meta-atoms supporting the so-called transverse
Kerker effect. In contrast to the well-known Huygens’ metasurfaces, in our case both phase and amplitude of
the incoming wave remain unperturbed at the resonant frequency and, consequently, our novel metasurfaces
totally operate in the high-transparency regime. We prove experimentally, in the microwave frequency range,
that both phase and amplitude of the waves transmitted through these metasurfaces remain almost unaffected.
Also, we demonstrate numerically and experimentally and explain theoretically a novel mechanism for achieving
a perfect absorption of the incident light enabled by the resonant response of the dielectric metasurfaces placed
on a conducting substrate. In the subdiffractive limit, we show that these effects are mainly determined by the
optical response of the constituting meta-atoms rather than collective lattice contributions. With the spectrum
scalability, our finding can be extended to the optical frequencies to be employed for energy harvesting, nonlinear
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phenomena, and filtering of light.
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I. INTRODUCTION

The scattering of light by particles is one of the classical
problems in the theory of electromagnetism and optics (see
classical textbooks [1-3] and the recent review [4]). Initially,
the scattering theory (known as Mie scattering theory) was
developed for homogeneous spherical particles, for which
exact analytical solutions can be derived in the form of
multipole expansions. The solutions are obtained as an infinite
series of partial spherical waves, called multipoles, where the
contribution of each multipole to scattering is given by a
numerical weight factor, called the multipole moment. Each
multipole moment is associated with a specific charge-current
distribution. Furthermore, this exact solution has been exten-
sively studied and successfully applied to describe scattering
by particles of various shapes and compositions (see the
comprehensive overviews of available theories in Refs. [5-7]
and references therein). Besides, considerable effort has been
devoted to solving scattering problems with simpler and more
compact mathematical formulations targeted for various prac-
tical applications [8—12].

From the standpoint of practical applications, it is often
desirable to suppress scattering from particles in a given
direction. In particular, the suppression of forward and back-
ward scattering are of special interest. Typically, scattering
suppression is achieved by realizing multilayered designs of
particles [13,14] or covering them with special resistive (thin
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film) coatings. Such coatings can be made of lossy dielectrics
[15] or metals [16,17] depending on the wavelength of the
scattered radiation. Recently, graphene has also been proposed
as a coating material [18-21]. While this approach is very
effective, its implementation at the nanoscale remains a com-
plex task with the current technological resources.

Fortunately, for uncoated particles, the scattering suppres-
sion can be also obtained. It appears naturally in magnetic
particles, when particular conditions between the permittivity
¢ and permeability u of the particles are satisfied [22,23].
For a small (subwavelength) magnetic sphere, when the con-
dition u = ¢ holds, the backward scattering caused by the
sphere appears eliminated, whereas the forward scattering is
suppressed when the condition y = —¢ holds. This scattering
suppression is known as the Kerker effect, and from the
viewpoint of Mie scattering theory it arises from the resonant
overlapping electric-dipole (ED) and magnetic-dipole (MD)
moments with the same magnitude (in particular, there is a
near-zero backward scattering when the ED and MD moments
are in phase, and a strong backward scattering when they are
out of phase).

Although these conditions were obtained for a small mag-
netic sphere, similar scattering characteristics can be achieved
for nonmagnetic particles with large enough values of per-
mittivity. For such particles the MD moment also makes
a contribution to the scattering in the small-particle limit
[1,22], and thus it can overlap the ED moment with the same
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magnitude, when the sphere radius is consciously adjusted.
Moreover, there is a possibility of similar overlapping for
other higher-order moments [e.g., electric quadrupole (EQ)
and magnetic quadrupole (MQ) moments and so on]. The
manifestation of interplay between the multipolar moments in
the scattering by particles of an arbitrary shape under different
radiation conditions is now referred to as the generalized
Kerker effect [24,25] (see also extensions specific for the
generalized Kerker effect listed in Ref. [26]).

While the mechanism of suppression of forward and back-
ward scattering on a single dielectric particle mediated by
the Kerker effect is well described, there is a special interest
in the arrangement of such particles into a lattice in order
to design functional metasurfaces with desired reflection and
transmission characteristics [10]. In particular, one can utilize
the generalized Kerker effect for the metasurface composed of
dielectric particles to suppress reflection from the high-index
substrate, and in this case, the metasurface serves as an antire-
flective coating [27,28]. One important class of such structures
are reflectionless all-dielectric Huygens’ metasurfaces operat-
ing on spectrally overlapped MD and ED moments oriented
perpendicular to each other with equal magnitude [29,30].

One significant advantage of all-dielectric metasurfaces is
the possibility to fabricate them on a traditional silicon-on-
insulator (SOI) platform. Unfortunately, considering permit-
tivity of the bare silicon in the visible part of the spectrum
desired for operation (with the typical diameter of particles in
the range of 50-200 nm), the Kerker effect conditions cannot
be satisfied for spherical particles. Nevertheless, by adjusting
the diameter and thickness of cylindrical particles (disks) or
the width and height of rectangular particles (cubes), it is
possible to bring the corresponding moments into overlap.
Moreover, metasurfaces based on silicon particles made in the
form of disks or cubes are easier to fabricate at the nanoscale
by utilizing modern lithography technologies.

Although the technologies of manufacturing of silicon
nanoparticles are well established today, production of all-
dielectric metasurfaces at the nanoscale still requires expen-
sive equipment and materials [31]. It can be also time con-
suming. In this regard, correct modeling and prototyping of
nanostructures become very important. Accordingly, in order
to confirm developed concepts of all-dielectric nanostructures,
quasi-optic (microwave) experiments can be used. For the mi-
crowave range, it is often much easier and cheaper to fabricate
the required samples with micron resolution by using modern
milling machines, laser cutting, and three-dimensional (3D)
printing technologies. Moreover, the sources of the microwave
radiation are also relatively inexpensive.

In the present paper, we study and implement metasurfaces
which allow the suppression of the reflected fields. In contrast
to Huygens’ metasurfaces, the transmitted light traverses the
metasurface without perturbation of its amplitude and phase,
therefore displaying lattice perfect transmission accompanied
with strong nontrivial near fields. The constitutive building
blocks (i.e., meta-atoms) of the transparent metasurfaces are
“transverse scatterers” and have been extensively investigated
in our previous work [32]. We show here that the dual-
ity of the Kerker and anti-Kerker conditions governing the
transverse scattering of single scatterers still holds for high-
transparency lattices in the subdiffractive regime regardless of
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FIG. 1. Dielectric (ceramic) particles under study. The geomet-
rical parameter & represents the cubic particle edge and the disk’s
height while d gives the disk’s diameter.

variations in the lattice parameter. We prove experimentally
in the microwave range that both the amplitude and phase
of the transmitted wave remain unaffected. The multipole
decomposition semi-analytic approach of a single particle
scattering has been extended to decompose the reflection and
transmission coefficients of a subdiffractive lattice system in
a homogeneous medium with or without the presence of a
substrate.

By exposing the coupling extent between multipole reso-
nances, we find that the zero-reflection point is not affected
by variations in the lattice spacing within the subdiffractive
region. Finally, we present a different mechanism of reflec-
tion suppression from a dielectric metasurface placed near a
conducting sheet. In this case, we show that the light is fully
absorbed at the magnetic quadrupole resonance by exploring
the link between the resonant properties of the stand-alone
dielectric cavity and the optical response of the metasurface.

II. FAR-FIELD PROPERTIES OF ALL-DIELECTRIC
METASURFACES

Our metasurface configuration consists of periodically ar-
ranged dielectric particles in an infinite lattice in the x-y plane
(Fig. 1). We assume that the scattered field of each particle is
fully characterized by the induced multipole moments up to
quadrupoles. Thus, the total electric field outside the lattice is
the summation of the scattering from all multipoles over the
lattice geometry,

E(r) = Enc()+) [2°7 - p+2"" - m+2"0 : 0+ M1,
T (1)

characterized by the Green tensors [33]
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where go(r) is the scalar Green’s function, r denotes a point
in space relative to the coordinate origin, Ej, is the incident
field, €;s; is the Levi-Civita symbol, and 0;; = 9;0; — k28,-j.
The vector r| = na, + ma, represents the positions of the
particles, where a,, a, are lattice vectors and 7, m are integers.
The term g7 - p gives the sum of the field scattered by the
EDs. Similarly, g7 -m, 9 : O, and "M : M represent the
contribution of the MD, EQ, and the MQ to the total field,
respectively. The summation in Eq. (1) includes evanescent
and propagating waves. The latter correspond to open diffrac-
tion channels contributing to the far field. In the subdiffrac-
tive region, the reflection and transmission of the lattice are
characterized by the first-order diffraction, providing nonzero
contributions to the far-field [34,35]. Knowledge of the field
outside the lattice allows the formulation of the non-Fresnel
reflection z > 0 and transmission z < 0 coefficients of the
lattice as

— (E — Eixe) - E;knc fo= E- E;knc (3)
" Einc -Ef ’ " Einc -Ef '

mc mc

These coefficients are complex numbers even for lossless
dielectric particles and contain the characteristics of the lattice
periodicity. Throughout this work, we consider that the meta-
surfaces under study are illuminated by a normally incident,
linearly polarized plane wave Ej,. = Epe*?x, where X is a unit
vector directed along the x axis. Equation (3) can then be
reduced to [10]

ik ! ik ik,
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where c is the speed of light in vacuum and A = |a, x a,| is
the area of the unit cell. The last equations link the scattering
pattern of a single particle and the far-field wavefront of
the lattice, thus allowing us to study the characteristics of
the field emitted by the lattice by means of the multipole
decomposition of the field scattered by a single meta-atom
of the lattice. We previously found the conditions at which
the forward and backward scattering of an isolated scatterer
are nearly suppressed simultaneously [32]. Similar conditions
can be obtained for a fully transparent lattice in a homoge-
neous medium directly by setting the lattice reflection and its
contribution to transmission to zero, r,, =0 and 1 —¢,, =0,
resulting in
ny kM,
Px="c 37 ¢ T T

&)

Previously, we assumed that the scattering is fully character-
ized by the multipole contributions up to the MQ; however,
these conditions can be further extended to include higher-
order multipoles. The first term of Eq. (5) is the well-known
Kerker condition for dipoles and the second term is the
Kerker-like condition for quadrupoles. The last term is of par-
ticular interest since it suggests that the coherent dipoles are
in a w phase relation with respect to the coherent quadrupoles
or the anti-Kerker condition of the dipole-quadrupolar scatter-
ers. Simultaneous fulfillment of the Kerker and anti-Kerker
conditions leads to the redirection of the scattered power

to the lateral directions and enhanced suppression of the
contributions to reflection and transmission [32], leaving the
incident wave almost unperturbed.

We have further validated our analytical predictions against
numerical simulations and experiments. In accordance with
our available experimental means, we have chosen the mi-
crowave range of the spectrum (8-15 GHz) to demonstrate
the manifestation of the transparency effect. We consider par-
ticle arrangements constituted of a low-loss, high-permittivity
microwave ceramic, manufactured in the form of disks and
cubes (Fig. 1).

For metasurfaces constituted of such particles, we per-
formed numerical simulations in COMSOL Multiphysics®. The
electromagnetic response of the metasurfaces was obtained by
imposing Floquet-periodic boundary conditions on four sides
of the unit cell to simulate an infinite two-dimensional (2D)
array of particles. Figure 2 shows the amplitudes and phases
of the simulated reflection and transmission coefficients for
two particular metasurfaces constituted of disks [Fig. 2(a)]
and cubes [Fig. 2(b)] organized in a square lattice with
spacing a = |a,| = |a,|. The simulations confirm that in the
chosen frequency band areas of complete transparency indeed
exist. We mark corresponding resonant frequencies by vertical
dashed lines (they are f, = 10.5 GHz and f;, = 9.67 GHz for
the array of disks and the array of cubes, respectively).

We decompose the reflection spectra in Fig. 2. As a first
remark, we note that the near-zero-reflection point is located
in the vicinity of the Fano-like profile of the ED resonance.
Second, the MQ resonance appears on the red side of the
near-zero-reflection point for the array of disks and on the
blue side for the cubic array, while the other multipoles are
nonresonant. Consequently, conditions (5) are nearly satisfied;
the four leading multipoles have comparable amplitudes at the
zero-reflection point. The dipoles are in-phase (Kerker) and
the same situation takes place for quadrupoles (generalized
Kerker). The last term of conditions (5), as depicted by the
black dashed line, shows the coherent dipoles are in antiphase
with the coherent quadrupoles. In contrast to the well-known
Huygens’ metasurfaces where strong forward scattering re-
sults in a phase difference between the incident and trans-
mitted fields; here we notice both waves are in phase (blue
lines), meaning this kind of metasurfaces are extraordinarily
transparent with almost no change of amplitude or phase of
the transmitted wave.

We should note that a similar scenario of tuning dipole-
quadruple resonances is also reported in Ref. [36] for an
onion-like three-layer folded metal metasurface with dielec-
tric separations. However, the rod structure enhances scatter-
ing in the forward direction with several orders of magnitudes
which resembles the generalized Kerker effect of an electro-
magnetic dipole-quadrupolar scatterer.

III. EFFECT OF LATTICE SPACING, MATERIAL LOSSES,
AND INCIDENCE

Variations in the lattice spacing influence the optical re-
sponse of a metasurface in an equivalent way to changes in
the shape and composition of the meta-atom. The spectral
position of the electric and magnetic modes in a lattice can be
tailored by adjusting spacing in one of the lattice axes while
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FIG. 2. Simulated reflection (r,,) and transmission (t,) coeffi-
cients, and multipole decomposition of an all-dielectric lossless
metasurface composed of (a) disk and (b) cubic particles. The
decomposition is done by using Eq. (4) and the vertical lines indicate
the spectral position of the transverse Kerker effect (transparency
effect). The geometrical and material parameters of the metasur-
faces under study and their constituting building blocks are (a) d =
8.0 mm, 7 = 5.0 mm, a =20 mm, ¢ = 23; (b) A = 8.0 mm, a =
22 mm, ¢ = 21.

keeping the other constant, in such a fashion that one can bring
both resonances to overlap and suppress reflection [30,37].
We show here that, although the Fano profile of the ED and
MQ resonances are spectrally shifted in different directions,
the frequency of the suppressed reflection corresponding to
their shared dip point is fixed on the spectrum. We restrict
ourselves to the consideration of the array of cubes; however,
the discussion could be applied to all similar scenarios that
satisfy the conditions (5).

We impose the constraints that the lattice is axially sym-
metric for normally incident light. The effective field acting on
each particle center is the summation of the incident field and

all of the multipole radiations in the lattice. Furthermore, from
the definition of the Green tensors that describe multipole
scattering [Eq. (2)], the coupling between the ED and both
MD and EQ are canceled out due to the lattice symmetry. The
MQ, on the other hand, is very small in the region where the
ED Fano resonance appears, so we count only for the ED-ED
coupling, which can be formulated over the lattice geometry
as

d= ZgE”(nax, 0,0)+ Z ZQE”(nax, may, 0), 6)

n#0 n m#0

where d is a second-order tensor representing the dipole-
dipole coupling. Here the summation is split over the lattice
geometry to a summation over one of the coordinate axis (the
first part) and a summation over all the remaining lines in the
lattice. The excitation wave setup restricts the excited electric
multipole components to the plane of incidence [9]. In the
case of an x-polarized incident field, only the p, component
of the ED is induced. Also, due to the lattice symmetry, all
components of the periodic tensor d except the diagonals are
zero. We write [33,38-40]

~  %pEo
X = —’ 7
P I —apd ™
with
2k?
dy = — —{ln [2 —2cos (ka)] + im — ka}
2inka — pinka
T DELILIENE o pi: SAE

n#0 n m;ﬁO

3

where «,, is the ED polarizability of the individual particle,
Ky is the Bessel function of the second kind, and w, =
k% — (Znn/a)z]l/z. The lattice effect (coupling) is deter-
mined by the spacing and rises rapidly closer to and around
the first diffraction order [39,40]. This spectral position where
the wavelength equals the lattice spacing A = a is referred to
as the first diffraction order or Rayleigh anomaly. The energy
confinement in the first diffraction order causes the coupling
to diverge instantaneously. Upon inspection of Eq. (7), one
can see that the effective multipole moments change when
the product («,dy,) in the denominator becomes significant.
Hence both the ED polarizability and the coupling are equally
relevant and need to be considered in order to determine the
limitations of the fixed-position reflection.

Figure 3 shows the reflection and transmission spectra for
different lattice spacing, where we have considered the array
of cubes with and without accounting for material losses.
In the subdiffractive region, the low reflection point at the
transverse scattering (fs, = 9.67 GHz, A, = 31 mm) is fixed
while other low reflection points are shifted. Also there are
opposite spectral displacements of the ED and MQ modes
leading to consequent broadening or narrowing of the low-
reflection region. It was previously reported [39] that the
evolution of ED-ED coupling along one-dimensional (1D)
arrays results in an increase of the interaction between dipoles
with a wider spacing, while the diffraction orders work as a
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FIG. 3. Calculated reflection and transmission coefficient spectra
for different lattice spacing of a square lattice constituted of our
ceramic cubes. Dashed green curves show the reflection from the
metasurface where the real material losses have been taken into ac-
count (tan § = 8 x 1073). The vertical gray dashed line indicates the
fixed spectral position of the reflection suppression point between the
electric-dipole (ED) and the magnetic-quadrupole (MQ) resonances
(protected-like transparency point). The geometrical parameters of
the particles are the same as in Fig. 2.

divergence and reset the points. The same goes for 2D lattices
[see the last term in Eq. (8)], since it can be considered as
an infinite summation of 1D lattices [41]. We notice here
that the Fano profile of ED is deformed and weakened as
the ED-ED coupling increases. The spectral regions with
a resonant particle polarizability enable a dramatic change
in the reflection behavior since the term (o,d,.) becomes
significant and influences the effective dipole moment. There-
fore, as can be seen in Fig. 3, the speed of shifting is not
homogeneous. Nevertheless, since the zero-reflection point
has a very low polarizability and, therefore, is fixed within the
subdiffractive range of spacing. Note that, if spacing is very
small compared with the wavelength a < A, the higher-order
multipoles are excited and the aforementioned discussion is
no longer applicable.

Now let us examine the lattice response beyond the first
diffraction order (A = 31 mm). In this case there is a divergent
coupling along with the Fano profile dip. If the spacing is
beyond this limit, a new lattice-forced ED Fano profile leads
to revoking the zero-reflection point [40]. Contrary to the ED,
the MQ resonance shifts to the blue side of the spectrum until
it becomes deteriorated by higher diffraction orders when the
lattice spacing is increased (see Fig. 3). However, according

to the characteristics of the periodic Green tensors, the ED-
MQ (MD-EQ) coupling is nonvanishing due to the lattice
symmetry [33]. For instance, the coupling between MD and
EQ in a symmetric lattice of finite size in a homogeneous
medium causes a shift in the EQ resonance [42]. In the current
profile, the ED contribution to the reflection and transmission
at the frequency of the MQ resonance is sufficient (Fig. 2) and
their coupling causes a blueshift in the MQ resonance. One
can notice close to the first diffraction order (see curves for the
lattice spacing a = 28 and 31 mm) on the short-wavelength
side that the strong coupling between the modes of the lattice
causes a series of reflection and transmission resonances and
eventually dominates the ED-MQ subdiffractive coupling.
In general, the opposite displacements of the ED and MQ
resonances lead to a broadening of the low-reflection area
around the zero-reflection point.

We now proceed to analyze the effect of the particle
inherent losses on the reflection suppression. From Fig. 3
(see the dashed green line), we find the reflection to become
slightly enhanced at the point of interest; however, no change
in its spectral position can be appreciated. In fact, losses
decrease the Q factor of the Fano resonance. Resonances
in subwavelength open dielectric resonators are governed by
the imaginary part of the permittivity [43,44] because Q
Re(e)/Im(2¢). With the current permittivity of ceramic parti-
cles ¢ =21 + 0.168i and Q « 63, we can conclude that, for
example, if our lattice was constituted of silicon particles in
the near-infrared region, where the quality factor can exceed
several thousand, our spectra would display an almost-zero-
reflection point.

For the sake of the completeness of our investigation of
the protected-like transparency point, we plot several cases
of oblique angle incidence (¢ # 0) in Fig. 4 for both x and

y polarizations of the incident wave. For oblique incidence,

the first diffraction order is effectively moved to shorter wave-
lengths [45] and the particles receive nonuniform incident
field depending on the angle on incidence. However, with a
small angle deviation from the normal incidence (bounded to
15°), our system shows very low reflection at the wavelength
of the transverse scattering. Moreover, the protected-like
transparency point is more stable for the y-polarized wave,
surviving even for large angles of incidence (Fig. 4).

IV. EXPERIMENTAL DEMONSTRATIONS

To verify the theoretical and numerical predictions, we
manufactured and tested two square metasurfaces, each one
containing 18 x 18 unit cells and having the side length of
400 mm. Their unit cells correspond to those presented in
Figs. 2(a) and 2(b) for the metasurfaces composed from disks
and cubes, respectively. As a dielectric material, we used the
Taizhou Wangling TP-series microwave ceramic character-
ized by the relative permittivity ¢ = 23 for disks and ¢ = 21
for cubes. The loss tangent for the ceramic istan§ ~ 6 x 1073
at 10 GHz. The dielectric particles with the sizes mentioned
in the caption of Fig. 2 were fabricated with the use of
precise mechanical cutting techniques. To arrange them into a
lattice, an array of holes was milled in a custom holder made
of a styrofoam material whose permittivity is &, = 1.05 and
thickness of the plate is h; = 20.0 mm. Furthermore, its
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FIG. 4. Calculated reflection and transmission coefficient spectra
for different angles of incidence of the illuminating wave for a
metasurface constituted of ceramic cubes. Solid and dashed lines are
related to the x- and y-polarized waves, respectively. The vertical
gray dashed line indicates the protected-like transparency point for
the normally incident wave. The geometrical parameters of the
particles are the same as in Fig. 2.

complex reflection and transmission coefficients were mea-
sured in the same frequency range as in the simulations by
using the common technique where the measurements are per-
formed in the radiating near-field region and then transformed
to the far-field zone.

The measurement procedure as well as experimental setup
are described in detail in Refs. [46,47]. During the investi-
gation, the prototype was fixed at 2.0 m from a rectangu-
lar linearly polarized broadband horn antenna. The antenna
generated a quasi-plane-wave with the required polarization.
The antenna was connected to the first port of the Keysight
E5071C Vector Network Analyzer (VNA) by a 50 Ohm
coaxial cable. To detect the electric field, an electrically small
dipole probe connected to the second port of the VNA was
used.

The measured transmission and reflection coefficients for
both metasurfaces are collated in Fig. 5. For comparison,
additional numerical simulations were performed, taking into
account the measured deviations in metasurface dimensions
from the nominal values appeared in fabrication as well
as losses in the particles. The data presented demonstrate
very good agreement between measurements and simulations,
where one can see the areas discussed above of complete
transparency.
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FIG. 5. Simulated (dashed lines) and measured (solid lines)
transmission (¢,,) and reflection (r,,) coefficients of the all-dielectric
metasurface composed of (a) disk and (b) cubic particles. The insets
demonstrate fragments of the metasurface prototypes. In the simula-
tion the substrate is modeled as a lossless dielectric with near-unity
refractive index, while actual material losses in ceramic particles are
taken into account, where (a) ¢ = 23 4 i0.138, (b) ¢ = 21 +i0.168,
and all geometrical parameters of the particles and lattice spacing are
the same as in Fig. 2.

V. METASURFACES PLACED ON A CONDUCTING
SUBSTRATE

For various practical realizations, where the lattice is to be
placed on a substrate, we extend the semi-analytic derivation
of the reflection and transmission decomposition of the lattice
shown in Sec. II to account for a substrate. We found the
transverse scatterers gradually transform to Kerker scatterers
on high-index substrates [32], and the broadband Huygens’
metasurfaces can be realized as a result of this mechanism
[29]. Nonetheless, in this section we discuss the transforma-
tion of the considered metasurface to a fully absorbing lattice
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FIG. 6. Absorption cross section and its approximated multipole
decomposition of the stand-alone ceramic cube in the two situations
presented in the text, i.e., free space and placed 3 mm above the
PEC sheet. The left inset shows the calculated electric-field distri-
bution associated with the MQ at resonance for the cube above the
PEC sheet (the point of maximal absorption), and the right inset
depicts the electric-field amplitude of the m = 5/2 eigenmode for the
equivalent 1D Fabry-Pérot resonator. The material and geometrical
parameters of the cube are the same as in the metasurface in Fig. 5(b).

with the addition of a conducting substrate (a PEC sheet in
the microwave range). Analytic results will be supported by
numerical calculations and experimental measurements.

We start our discussion with an investigation of the spectral
behavior of an isolated meta-atom, i.e., a single cube (in-
troduced in Fig. 1) deposited over a PEC sheet. Since the
holder has a finite thickness, there can be a distance (gap)
between the particles and the PEC sheet. We suppose that
the gap is much smaller than the wavelength of the wave in
the substrate material (in our experimental samples the gap is
3 mm). Hereinafter we account for this gap between the cubes
and the sheet.

To provide better physical intuition, let us follow Ref. [48]
and consider only spatial variations along the height of the
cavity. In the 1D case, an open cavity can be seen as a lossy
dielectric Fabry-Pérot resonator of refractive index n = \/e.
After excitation with an external pulse (the incident wave),
the resonator supports a series of standing-wave-like field
patterns whose excitation depends on the number of effective
wavelengths that can be introduced inside the cavity of length
Ay (see inset of Fig. 6). In the general case, the walls of
the resonator have nonzero transmittance and thus allow the
confined modes to leak into the environment in the form
of outgoing plane waves. When the internal field interferes
constructively with itself, mode resonances occur. The latter
take place only when the phase shift induced in the circulating
wave after reaching the second wall and returning to the
first accounts for 2m. Using this fact, it is straightforward
to show that the resonant frequencies for a lossless dielectric
Fabry-Pérot resonator are [49]

I

cm

=—, 9
2nA0 ( )

where m is an integer or half-integer number accounting for
the different resonance modes [50]. If losses are considered,
an imaginary term needs to be added to the expression for f;,
[48], but the real part remains the same as in Eq. (9). Higher
values of m allow us to contain additional quarter wave-

lengths inside the resonator. For example, for the first three
m=1/2, 1, 3/2, a quarter wavelength, half wavelength, and
three quarters of a wavelength can be fit in the length Ay,
respectively. In the general case, the effective wavelengths that
can be fit in the resonator for a given m are Ag/Aer = m/2,
where A = A/n and A is the wavelength in free space.

In Fig. 6 we show the numerically calculated absorption
cross section of the cubic particle above PEC substrate, its
multipole decomposition, and insets showing the link between
the aforementioned Fabry-Pérot mode and the resonant MQ.

The individual contribution of the leading multipoles was
calculated approximately as the difference between the extinc-
tion and scattering cross sections [9,11]. First, we considered
the exact expressions for the extinction cross sections of the
electric and magnetic dipoles and quadrupoles [9,51]:

w *

O-e‘L:([ = 2_10 Im{p : Eexo(ro)}a
@[Lo "

Oou = Sy~ Imim - Hego (o)),

0 @ i - VE*
Oext = FI() Re{iQ : VEexc|r=ro}’
1 N
oM = _2_10Re{[v x M -V)]-Egl—p, b, (10)

where w is the angular frequency, I is the incident energy
flux, and E} (r9) and HZ (ry) are the complex conjugates
of the excitation electric and magnetic fields evaluated at the
center of the particle ry. The expressions above are valid for
any excitation field and particles of arbitrary shape. For an
x-polarized plane wave normally incident on a PEC substrate
along the z axis, the exciting field which needs to be substi-
tuted in Eq. (10) corresponds to the sum of the incident and
reflected waves. Second, the individual contributions of each
multipole to absorption are assumed to be

UaII;s = Ge{;(t - U:;:a’ 1n
where L denotes any of the leading multipole moments. The
formulas for each term in the scattering cross-section decom-
position are taken from Ref. [11]. Therefore, the approximate
total absorption cross section can be written in the form

~ P m (4] M
Oabs = Oy + Oabs + Oabs + Oabs- (12)

Here we neglect magnetoelectric coupling between the mul-
tipoles due to the PEC [51], and other cross terms between
the multipoles. However, Fig. 6 shows that Eq. (12) is in
good quantitative agreement with the numerically calculated
absorption cross section obtained with COMSOL Multiphysics,
indicating the validity of the approach used in the spectral
range considered.

Consequently, in Fig. 6 we observe a strong enhancement
of the absorption peak centered at the eigenfrequency in com-
parison with the free-space scenario. Moreover, the induced
magnetic quadrupole responsible for this enhancement is fully
driven by the eigenmode (standing wave) of the Fabry-Pérot
resonator. This is confirmed by the identical internal field
distributions of the mode and the one obtained from numerical
simulations (insets of Fig. 5). Thus, simple physics of 1D
open resonators suffices to qualitatively describe the resonant
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behavior of the single nanoparticle on PEC, as well as the
metasurface, as will be discussed shortly.

With the physical intuition gained by the investigation of
the single meta-atom, we now turn our attention toward the
case of the metasurface. Following the analytical treatment
from Sec. II, modeling the metasurface as a plane cross-
ing the center of the particles with non-Fresnel reflection
and transmission coefficients (4), and the method given in
Refs. [52-54], we can apply the well-known Airy-Fresnel
formulas to study the reflection from the whole system. It
is similar to the 1D Fabry-Pérot model but is suitable for
metasurfaces since it takes into account the mutual particle
interaction and provides useful information on each multipole
contribution.

Now, A, is the distance from the substrate interface to
the plane, where point-like multipoles are localized (particle
centers), considered as an imaginary interface [52-54]. These
two boundaries now play the role of the walls of a resonator.
The reflection and transmission coefficients of the whole
system take the form

rStr%L eZikA;,

13)

ot = I'm T AL
1 - rsrmeZIkAh ’
and

Istm

1 — ryr,e2ikan’ 14

ot =
where ry, and #,,, are the overall system reflection and trans-
mission with the substrate, and r, and ¢, are Fresnel coeffi-
cients of the substrate for the normally incident wave. When
a PEC is used as substrate (i.e., the reflection of the lower
wall of our Fabry-Pérot resonator is —1), the total reflection is
simplified to

£2 o2k
— __m
Ttot = T'm 1+ 1,02k Ay s (15)
where r; = —1 and ¢, = 0 have been substituted. Therefore,

to cancel the reflection and absorb all incident light, the an-
tireflection condition should be fulfilled, and direct reflection
from the lattice and the substrate-aided reflection [the second
term of Eq. (15)] should be in a 7 phase relation having equal
amplitudes [50].

Let us use formula (15) to study the reflection from the
metasurface on a substrate. Figure 7 shows the results of the
analytical calculations together with the measured reflection
and the results of simulations in COMSOL Multiphysics. It
is noteworthy that the results are very close to each other,
validating the suggested approach.

The multipolar decomposition (15) of r, gives us the
particular contributions of the multipoles to the reflection. As
is clearly seen from Fig. 6(b), the resonant MQ is once again
responsible for the reflection dip (absorption peak, because
the PEC interface now allows for nonzero transmission). The
spectral position of the MQ resonance at f, = 10.25 GHz
is slightly shifted in comparison with the free-space case
shown in Fig. 2, which is at f;, = 10.17 GHz. However, both
positions are in the vicinity of the original MQ resonance of
the stand-alone cubic particle (see Fig. 6), underlining that
the resonant modes of an isolated meta-atom provide valuable
insight into the optical response of the metasurface.
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FIG. 7. (a) Simulated and measured total reflection coefficient
of the all-dielectric metasurface (r;) composed of cubic particles
and placed 3 mm above the PEC substrate. (b) The multipole
decomposition of the first term of Eq. (15) (r,,) which represents
the lattice direct contribution to the total reflection. Note here r,,
has been calculated by taking into account the total excitation field
acting on the particles. The material and geometrical parameters of
the metasurface are the same as in Fig. 5(b).

VI. CONCLUSIONS

We have studied, both theoretically and experimentally, a
novel class of all-dielectric Mie-resonant metasurfaces gov-
erned by the transverse Kerker effect. Such metasurfaces can
demonstrate a complete transparency similar to Huygens’
metasurfaces, but they experience zero phase shift between
the incident and transmitted waves. We have clarified the
underlying physics of this effect, and we have formulated the
specific conditions for which both reflection and transmission
coefficients vanish simultaneously for a square lattice com-
posed of Mie-resonant dielectric particles. This type of optical
response occurs when the coherent dipole modes and coherent
quadrupole modes excited in the individual dielectric particles
satisfy the so-called generalized Kerker condition, and they
possess a phase difference between each others. When these
conditions are satisfied, the metasurface becomes absolutely
transparent, and both amplitude and phase of a transmitted
wave are completely unaffected. We demonstrate this effect
experimentally for microwave frequencies. Importantly, the
coupled multipoles in the lattice do not affect the transparency
point, and we have shown that a variation of the lattice
spacing in the subdiffractive scattering regime results in either
narrowing or broadening of the near-zero-reflection region,
and the reflection dip itself does not disappear.

We have studied theoretically and also verified in ex-
periment the effect of the total absorption by the dielectric
metasurfaces supporting the transverse Kerker effect placed
on a conducting substrate. The qualitative explanation of
this effect is based on the Fabry-Pérot resonances, and it
shows that the absorption peak is due to a standing wave
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corresponding to the magnetic quadrupole resonance. A more
detailed analysis based on the metasurface multipole decom-
position and the Airy formulas suggests a good agreement
with both numerical simulations and experimental data, and
it proves a dominant role played by the MQ resonance in the
metasurface absorption.

Thus, the dielectric metasurfaces governed by the trans-
verse Kerker effect can provide both transparency and full
absorption, and they could be useful for a design of a va-
riety of optical elements with enhanced properties, allow-
ing for more flexible manipulation of light with ultrathin
planar optics. Moreover, strong near-fields mediated by the
almost-nonscattering regime pave the way to a plethora of
applications such as nonlinear harmonic generation, enhanced
lasing and Raman scattering, and ultrasensitive sensing. On
the other hand, we believe that the perfect absorption delivered
naturally by low-absorbing dielectric particles could be of a

significant relevance for the future device applications that
require efficient light trapping and absorption, such as active
integrated photonic circuits, selective thermal emitters, or
microwave-to-infrared signature controllers.
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