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A computational scheme integrating the atomistic spin model (ASM) and micromagnetic simulations is
proposed to predict the coercivity of Nd-Fe-B permanent magnets at high temperatures. ASM simulations
are applied to calculate the temperature-dependent intrinsic parameters of Nd2Fe14B, including the saturated
magnetization, magnetocrystalline anisotropy, and exchange stiffness, which are shown to agree well with the
experimental values. With the ASM results as input, finite-temperature micromagnetic simulations based on the
stochastic Landau-Lifshitz-Gilbert equation are performed to calculate the magnetic reversal and coercivity (Hc)
at high temperatures. It is found that in addition to the decrease of anisotropy field with temperature, thermal
fluctuations further reduce Hc by 5–10% and β (temperature coefficient of coercivity) by 0.02–0.1% K−1 in the
presence of a defect layer. The computed thermal-activation volume, which increases with temperature, is shown
to be enhanced by several times due to the defect layer with strong magnetization (e.g., 1 T), but can be decreased
by introducing a hard shell. Both Hc and β can be enhanced by adding the Dy-rich shell, but saturate at a shell
thickness (t sh) around 6–8 nm after which further increasing t sh or adding Dy into the core is not essential.
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I. INTRODUCTION

Nd-Fe-B permanent magnets, which were discovered in
1984 [1,2], have been widely used in modern technology
such as motors, wind turbines, and memory devices due
to their excellent magnetic properties. Those magnets are
required to retain its functionality at high temperatures in
many applications. For example, the operating temperature
of Nd-Fe-B magnets can approach 350 and 450 K in the
wind turbines and motors inside electric and hybrid vehi-
cles, respectively. Therefore, increasing thermal stability, and
understanding and predicting the temperature dependence of
magnetic properties, is of great significance in the design
of Nd-Fe-B permanent magnets for the applications at high
temperatures.

In order to increase the thermal stability of Nd-Fe-B
permanent magnets, up to now diverse methods have been
tried. The effects of the alloying elements Co, Dy, Al, Nb, Zr,
Cu, Gd, etc. on the high-temperature properties of sintered
Nd-Fe-B magnets have been explored [3,4]. The most efficient
way to increase thermal stability is the partial substitution
of Nd with heavy rare earth (HRE) such as Dy and Tb [5,6]
since (Nd, HRE)2Fe14B possesses a higher intrinsic
anisotropy field. However, due to the limited supply and
high cost of HRE, the community of permanent magnets
makes great efforts to reduce the usage amount of HRE
or totally remove HRE. In this respect, hot deformation is
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shown to achieve an improved temperature coefficient of
coercivity (β) in HRE-free Nd-Fe-B magnets, owing to the
finer grains and thus smaller local demagnetization field [7].
Alternatively, grain-boundary diffusion of Nd-Cu [8] and
Pr-Cu alloys [9] in HRE-free Nd-Fe-B magnets also enhances
β. However, for high-end applications such as electromobility
where the temperature can approach 450 K, the addition of
HRE is still necessary. In order to reduce the HRE usage
amount, HRE is not added to the main phase during the
alloying step, but is diffused along the grain boundary of
Nd-Fe-B magnets to form a thin HRE-rich hard shell around
the main phase Nd2Fe14B. [10–13]. Nevertheless, continuous
efforts toward HRE-free Nd-Fe-B magnets with excellent
performance at high temperatures never stop.

Apart from the experimental efforts to enhance the high-
temperature performance of Nd-Fe-B magnets, theoretical
models and computational methodology have also been very
helpful in terms of reducing the research cost and accelerating
the design process. Currently, three modeling and simulation
techniques are available for the theoretical and computational
study of Nd-Fe-B magnets. First-principles calculations are
important for the prediction of intrinsic magnetic parameters
of the Nd2Fe14B phase and some subphases in Nd-Fe-B
magnets at 0 K and the associated physical mechanism at the
electronic level [14–19]. But it is still challenging to directly
apply first principles for the calculation of finite-temperature
properties of Nd-Fe-B magnets. Recently, the atomistic spin
model (ASM) has been utilized to calculate the temperature-
dependent intrinsic parameters of Nd2Fe14B [20–27]. ASM
is based on a spin Hamiltonian and can be parameterized by
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the input from first principles. Generally, ASM is capable
of calculating magnetic parameters at different temperatures
by considering temperature effects via Langevin-like spin
dynamics or Monte Carlo scheme [28–30]. Due to its intrinsic
scale at the atomic level, ASM works well for nanomagnets,
but is less powerful when the microstructure is considered. In
the analysis of the experimental hysteresis and the simulation
of magnetic domain reversal and microstructural influences,
the micromagnetic model plays an important role and is
already widely used [31–42].

Based on the micromagnetic nucleation model, the coer-
civity of Nd-Fe-B magnets is often expressed as Hc(T ) =
αkHk(T ) − NeffMs(T ) − Hth(T ) [43], where the coefficients
αk represents the microstructural influence on the anisotropy
field and Neff is related to the effect of the microstructure-
sensitive local demagnetization factor. Efforts to tune the mi-
crostructure such as grain boundary, hard shell, intergranular
phase, and texture contribute to the increase of αk [8–13,31,
35–40,44]. The work on grain size or shape is actually related
to the tailoring of Neff [7,31–33,45–49]. Hth(T ) gives the
reduction of coercivity by the temperature-induced thermal
fluctuations. It should be noted that this thermal fluctuation
related to Hth(T ) is exerted on the macrospin or magnetization
vector in terms of micromagnetic theory, whereas the thermal
fluctuation in ASM is exerted on the atomistic spin. According
to the above expression for Hth(T ), the temperature-dependent
Hk, Ms, and Hth play a decisive role in the coercivity of
Nd-Fe-B magnets at finite temperatures.

As mentioned above, experimental results or first-
principles-informed ASM provide a feasible way to calculate
temperature-dependent Hk and Ms. But the application of
ASM to permanent magnets or, more specifically, rare-earth
permanent magnets is still in its infancy. For the estimation
of Hth influence, micromagnetic simulations are indispens-
able and there are two different choices depending on how
the temperature-induced thermal fluctuations are taken into
account. One choice is to compute the energy barrier as a
function of the applied field by micromagnetic simulations
without the consideration of thermal fluctuations. When the
energy barrier is equal to the thermal energy 25kBT , the cor-
responding external magnetic field is defined as the thermal
coercivity at temperature T . For the calculation of the energy
barrier, the elastic band method [50–52] or the string method
[53–56] is often utilized. Recently, Schrefl et al. applied this
method to calculate the temperature-dependent coercivity and
thermal activation of magnetic reversal in Nd-Fe-B permanent
magnets [37,41,42,57]. The alternative choice for dealing
with the temperature influence and thermal activation in the
magnetic reversal process is to add a stochastic term into the
effective magnetic field in the Landau-Lifshitz-Gilbert (LLG)
equation, leading to the stochastic LLG equation [58]. The
strength of the stochastic term is related to temperature. Nu-
merical implementation of the stochastic LLG equation makes
it possible to study the thermally activated magnetization
reversal and the temperature influence on switching dynamics
by micromagnetic simulations [59–64]. But its application to
rare-earth permanent magnets is still rare.

From the viewpoint of modeling and simulation, no in-
dividual methodology is applicable for simultaneously cal-
culating all the three terms Hk, Ms, and Hth at different

temperatures to evaluate the temperature-dependent coerciv-
ity of Nd-Fe-B magnets. To this end, we present a multi-
scale scheme by combining ASM and micromagnetic sim-
ulations for the computational prediction of the coercivity
of Nd-Fe-B permanent magnets at high temperatures. We
construct the ASM Hamiltonian for Nd2Fe14B and calcu-
late the temperature-dependent intrinsic material parameters
of Nd2Fe14B, including the saturated magnetization (Ms),
the magnetocrystalline anisotropy (K1), and the exchange
stiffness constant (Ae). Taking the calculated Ms(T ), K1(T ),
and Ae(T ) as input, micromagnetic simulations based on
the stochastic LLG equation are performed to reveal the
temperature influence on the coercivity of Nd-Fe-B magnets.
The representative microstructural features including surface
defect and Dy-rich hard shell are also explored to reveal their
influences on the coercivity at high temperatures.

II. METHODOLOGY

A. Atomistic spin model simulation

ASM simulation is used to calculate the temperature-
dependent intrinsic magnetic parameters of the Nd2Fe14B
phase with the space group of P42/mnm, 68 atoms per unit
cell, and a ferromagnetic ground state. ASM treats each atom
as a classic spin [28–30]. For the special case of Nd2Fe14B,
the ASM Hamiltonian can be written as [21–23,27]

H = − 1

2

i, j∈Fe∑
i �= j

JFe-Fe
i j si · s j −

j∈Nd∑
i∈Fe

JFe-Nd
i j si · s j

−
∑
i∈Fe

kFe
i (si · ez )2 + Hcf

Nd. (1)

Here the calculation of intrinsic parameters is the focus, so
the energy terms related to the external magnetic field and
the dipole interaction between atomic spin moments are not
included in Eq. (1). Here, si is a unit vector denoting the
local spin moment direction. In Eq. (1), the first two terms
are the Heisenberg exchange energies, which only contain the
exchange interactions in Fe-Fe (JFe-Fe

i j ) and Fe-Nd (JFe-Nd
i j )

atomic pairs. The B sites are usually taken to be nonmag-
netic and the interaction between Nd sites can be negligible
[21–23]. The third term corresponds to the uniaxial magnetic
anisotropy energy of Fe atoms, with kFe

i as the anisotropy
energy per Fe atom and ez the z-axis unit vector. The fourth
term denotes the crystal-field (CF) Hamiltonian of Nd ions,
which is the main source of large magnetic anisotropy of
Nd2Fe14B and can be approximated as [21,22,65]

Hcf
Nd =

∑
i∈Nd

∑
n=2,4,6

αn〈rn〉4 f ,iA
0
n,i�̂

0
n,i, (2)

in which αn is the Stevens factors, 〈rn〉4 f ,i is the 4 f radial
expectation value of rn at the respective Nd site i, A0

n,i are
the CF parameters, and �̂0

n,i are the Stevens operator equiv-
alents whose detailed expressions can be found in [66]. For
Nd+3 ions, α2 = −6.428×10−3, α4 = −2.911×10−4, and
α6 = −3.799×10−5 [66]. The 〈rn〉 values of Nd+3 ions can
be calculated as 〈r2〉 = 1.001a2

0, 〈r4〉 = 2.401a4
0, and 〈r6〉 =

12.396a6
0, in which a0 is the Bohr radius [67]. The reliable

first-principles calculation of high-order CF parameters in
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TABLE I. Magnetic moments and atomic-site resolved magnetic
anisotropy energy of each crystallographically equivalent atom.

Atom μi (μB) ki (×10−21 J)

kNd
i

kNd
i,1 = −4.935

Nd(4g) 2.86
kNd

i,2 = 25.98
Nd(4 f ) 2.871

kNd
i,3 = −22.94

kFe
i

Fe(4c) 2.531 −0.342
Fe(4e) 1.874 −0.0048
Fe(8 j2) 2.629 0.093
Fe(8 j1) 2.298 0.171
Fe(16k2) 2.206 0.0608
Fe(16k1) 2.063 0.0880

Nd2Fe14B is still challenging. Here we take the A0
n values

which are determined from the experiment results [65], i.e.,
A0

2 = 295 K/a2
0, A0

4 = −12.3 K/a4
0, and A0

6 = −1.84 K/a6
0.

We approximately set all Nd ions with the same CF parame-
ters. Substituting the expressions of �̂0

n,i [66] into (2) yields
the CF energy as

Hcf
Nd = −

∑
i∈Nd

[
kNd

i,1 (si · ez )2 + kNd
i,2 (si · ez )4 + kNd

i,3 (si · ez )6].
(3)

The parameters kNd
i,1 , kNd

i,2 , and kNd
i,3 are listed in Table I. The

constant term in Hcf
Nd is not important and thus not presented

in Eq. (3). The magnetocrystalline anisotropy energy of the Fe
sublattice and the magnetic moments of each atom, as listed
in Table I, are taken from the previous first-principles cal-
culations [21,68]. The exchange parameters JFe-Fe

i j and JFe-Nd
i j

in Eq. (1) are taken from the previous calculations based on
the Green’s function method and the magnetic-force theorem
by using OPENMX [27,69–71]. Ji j , in both cases of nearest
neighbor and 9 Å cutoff, is calculated, as shown in Fig. 1.
It can be found that beyond the nearest neighbor, the Fe-Nd
exchange almost vanishes, while the Fe-Fe exchange is small
and oscillates. The long-range behavior of Fe-Fe exchange is
also reported in [72]. In order to reduce computational costs,
as a simplification, sometimes only the exchange parameters

FIG. 1. Exchange parameters Ji j as a function of interatomic
distance, with the nearest-neighbor range marked. Inset: unit cell of
Nd2Fe14B.

within the nearest neighbor are used. In the case here for
Nd2Fe14B, we show in the following that the calculated
intrinsic parameters from this simplification agree well with
the experimental report (Fig. 3) [73–75], and the disparity
between using nearest-neighbor and 9-Å-cutoff Ji j is small
(Figs. 3 and 4).

It should be noted that the noncollinearity of the magnetic
configuration is shown to significantly influence the exchange
parameters, as reported in [76,77]. However, in our case
Nd2Fe14B here, it has been verified that the angle difference
between the total magnetization and the Fe/Nd magnetization
is extremely low over the entire temperature range [78],
especially in temperatures higher than 300 K considered
here. Thus, the noncollinearity effect here is negligibly small.
Therefore, calculating Ji j (Fig. 1) in Nd2Fe14B by assuming
the collinearity is reasonable.

After parametrization, the ASM in Eq. (1) is implemented
in VAMPIRE [29]. For the calculation of Ms(T ), the Monte
Carlo Metropolis method is used. After performing 10 000
Monte Carlo steps at each temperature, the equilibrium prop-
erties of the system are calculated by averaging the mag-
netic moments over a further 10 000 steps. The results are
confirmed to remain the same when the Monte Carlo steps
exceed 10 000. For the calculation of K1(T ), the constrained
Monte Carlo method is used [29,79]. The direction of the
global magnetization at a fixed polar angle (θ ) is constrained,
while the individual spins are allowed to rotate. In this way,
the energy as a function of θ can be obtained. Ae is estimated
at high temperatures through the relationship δw = π

√
Ae/K1

[80]. δw denotes the domain-wall width, which is calculated
by applying the spin dynamics approach and the Heun inte-
gration scheme. A sharp Bloch-like domain wall (wall plane
perpendicular to the x axis) in the middle of the sample with
40×5×5 unit cells is set as the initial condition. The system
with the demagnetizing field included further relaxes from
this initial condition by 100 000 steps with a time step of 1
fs. The final domain configuration is determined by averaging
the magnetic moment distribution of 100 states at 90.1, 90.2,
90.3, . . . , 100 ps.

B. Micromagnetic simulation

In contrast to the ASM at the atomistic spin scale, the mi-
cromagnetic model is a continuum theory that disentangles the
magnetization process on the length scale of magnetic domain
and domain walls [81]. The magnetic state is described by
the magnetization M = mMs, with m as the unit vector for
the magnetization direction. For Nd-Fe-B magnets with the
uniaxial magnetic anisotropy, the magnetic Gibbs energy is
expressed as

E (m, T ) =
∫

�

{
Ae(T )‖∇m‖2 + K1(T )[1 − (m · ez )2]

− 1

2
μ0Ms(T )m · Hd − μ0Ms(T )m · Hext

}
dv.

(4)

The spatial distribution of the temperature-dependent
exchange stiffness Ae(T ), magnetocrystalline anisotropy
K1(T ), and magnetization saturation Ms(T ) represents the
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microstructure of Nd-Fe-B magnets. In micromagnetic
simulations, the demagnetization field is included. Hd and
Hext denote the demagnetization field and external magnetic
field, respectively.

The magnetization dynamics are described by the LLG
equation [82,83],

ṁ = − γ

1 + α2
[m × Heff + αm × (m × Heff )], (5)

where γ denotes the gyromagnetic ratio, α the dimensionless
Gilbert damping parameter, and Heff = − 1

Ms

δE
δm the effective

field. The finite-temperature effect is modeled by adding a
fluctuating thermal field Htherm into Heff, so that a stochastic
LLG (sLLG) equation is obtained. According to Brown [58],
the thermal field can be expressed as

Htherm = η

√
2αkBT

Ms(T )γ
V 
t
, (6)

in which η is a random vector from a standard normal dis-
tribution and is regenerated after every time step. 
V is the
single-cell volume and 
t is the time step. In general, Htherm

has zero average and is uncorrelated both in time and space.
The stochastic LLG equation is solved in MUMAX3 [84,85]
by using the Heun integration method and a fixed time step,
which will be optimized in the following to reduce the com-
putation cost. Therefore, there are five kinds of energy being
considered in micromagnetics, which are exchange energy,
anisotropy energy, Zeeman energy, demagnetization energy,
and thermal energy. For the calculation of magnetic reversal
curves, Hext is applied as a stepwise field.

The dodecahedral grain model, as an approximation of the
polyhedral geometry of grains observed in actual Nd-Fe-B
permanent magnets, is used in this work. For the dodecahedral
grain, we use an open boundary condition, not a periodic
boundary condition. In the current work, we focus on the
single grain. Since there are already previous micromagnetic
studies on the similar single grain [41,42], it is convenient
for us to compare our micromagnetic results with previous
ones and thus verify our method. The single grain is not
realistic here, but a model to verify the proposed multiscale
scheme. The multigrain case will be studied later. Typical
microstructures such as the magnetically soft grain-boundary
phase (modeled as a defect layer) and grain-boundary diffused
Dy-rich layer (modeled as a hard shell) are also considered.
They provide the possibility of improving the coercivity
of Nd-Fe-B permanent magnets by microstructure engineer-
ing, while alleviating the risk of the heavy-rare-earth crisis.
Namely, three kinds of models based on the single dodecahe-
dral grain are built here: (a) a pure Nd2Fe14B grain without
defect or hard shell; (b) a Nd2Fe14B grain covered with a
3-nm-thick defect layer; (c) a Nd2Fe14B core with a hard
(Nd0.53Dy0.47)2Fe14B shell and a outer defect layer of 3 nm,
as shown in Fig. 2. The diameter of the Nd2Fe14B core is kept
constant at 51 nm. The hard-shell thickness (t sh) is varied to
investigate its effectiveness in enhancing coercivity.

According to the ASM results on the temperature-
dependent intrinsic parameters in the following, the ex-
change length lex(T ) = √

2Ae(T )/[μ0M2
s (T )] and the Bloch

parameter δw(T )/π = √
Ae(T )/K1(T ) at 300–550 K can be

FIG. 2. Three kinds of models for micromagnetic simulations.
(a) Nd2Fe14B dodecahedral grain with a diameter of 51 nm.
(b) Nd2Fe14B grain covered with a 3 nm defect layer. (c) Nd2Fe14B
grain covered with (Nd0.53Dy0.47)2Fe14B hard shell (thickness t sh)
and 3 nm outer defect layer.

estimated and their minimum value is found to be around
1.6 nm. The finite-difference cell size should be smaller than
lex(T ) and δw(T )/π [86] and thus is chosen to be 1.5 nm. It
should be noted that in the thermal micromagnetic problems,
the cell size is suggested to satisfy an additional criteria,
i.e., it should be smaller than the thermal exchange length
lth(T ) = √

Ae(T )/[μ0Ms(T )‖Htherm(T )‖] [62]. Here, in the
case of Gilbert damping parameter 0.1, cell size 1.5 nm, and
time step 50 fs, the minimum lth(T ) at 300–550 K is estimated
as 1.3 μm, which is much larger than the cell size, indicating
a cell size of 1.5 nm is reasonable.

The temperature-dependent Ms and K1 of the
(Nd1−xDyx )2Fe14B hard shell (model “c” in Fig. 2) are
obtained by using the experimental data [87]. Ae(T ) of
the hard shell is taken the same as that of Nd2Fe14B.
Direct calculation of these intrinsic magnetic parameters of
(Nd1−xDyx )Fe14B by ASM simulations is still challenging
and will be explored in the near future. In the following
calculations, (Nd1−xDyx )2Fe14B with x = 0.47 is chosen as
the hard shell.

III. RESULTS AND DISCUSSION

A. Intrinsic parameters at high temperatures

The temperature-dependent magnetization calculated by
ASM simulations is shown in Fig. 3(a). It can be found that
the ASM simulation results show excellent agreement with
the experimental one [74]. Fitting the data in Fig. 3(a) by
the Curie-Bloch equation Ms(T ) = M0[1 − (T/Tc)α1 ]α2 yields
the Curie temperature Tc = 602 K, parameter α1 = 1.802, and
parameter α2 = 0.418.

The magnetocrystalline anisotropy is determined by cal-
culating the system energy when the global magnetization is
aligned along different directions at different temperatures.
The energy density F at different temperatures is estimated by
the constrained Monte Carlo method, in which the azimuthal
angle is fixed at zero degree and the polar angle is gradually
changed from 0 to 90 degrees. The ASM simulation results
on temperature-dependent F are shown in Fig. 3(b) and can
be well fitted by F = K1 sin2 θ , from which the magnetocrys-
talline anisotropy constant K1 is attained. As presented in
Fig. 3(c), the fitted K1 is well in line with the experimental
measurement [73].

In order to calculate the exchange stiffness Ae at high
temperatures, we first determine the domain-wall width δw.
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FIG. 3. ASM simulation results on (a) temperature-dependent
magnetization saturation Ms, (b) free-energy density as a function
of polar angle θ at high temperatures, and (c) magnetocrystalline
anisotropy K1(T ). The experimental results in (a) and (c) are taken
from Refs. [74] and [73]. Results for both nearest-neighbor and
9-Å-cutoff Ji j are shown and compared.

For the calculation of δw, we set the magnetic moment di-
rection in the y-z plane with a polar angle as 0 and 180◦
in the upward and downward domain, respectively. Then the
system is relaxed to obtain the Bloch domain-wall config-
uration represented by the atomistic magnetic moments, as
shown in Fig. 4(a). It can be seen that the domain wall

is intuitively observable. As the temperature increases, the
effect of thermal fluctuations is stronger and the domain wall
becomes wider. In order to compute δw, the magnetization
distribution along the x axis in Fig. 4(a) is fitted by the contin-
uum description of the domain wall or diffusive interface, i.e.,
Mz = −M0

z tanh [(x − x0)/(δw/π )] [80]. The parameter M0
z is

determined by fitting the Mz − x data points which describe
the domain-wall configuration. The fitted M0

z is found to agree
well with the values in Fig. 3(a) at high temperatures. The
typical fitting results at 400 K are shown in Fig. 4(b), from
which δw is readily attained. The fitted δw as a function of
temperature is presented in Fig. 4(c). Finally, the combination
of δw in Fig. 4(c), K1 in Fig. 3(c), and the relationship δw =
π

√
Ae/K1 [80] yield temperature-dependent Ae, as shown in

Fig. 4(d). It can be found that Ae decreases with the increasing
temperature. Ae = 10.3 pJ/m at 300 K is also consistent with
the literature report [80]. With these temperature-dependent
intrinsic parameters at hand, micromagnetic simulations in-
cluding the microstructure features are feasible.

It should be mentioned that the main objective of this work
is to demonstrate the proof of concept, i.e., the feasibility of
multiscale simulations combining the atomistic spin model
(ASM) and micromagnetics to calculate the coercivity of per-
manent magnets at high temperatures. As a preliminary step,
we take Nd-Fe-B as an example whose intrinsic parameters
(Ms, K1, and Ae) are experimentally available so that the fea-
sibility of multiscale simulations can be verified. In the near
future, the multiscale simulation methodology in this work
will be extended to another set of materials whose properties
are not experimentally available and thus the predictive power
of the methodology will be further explored.

B. Temperature-dependent coercivity

1. Influence of stepwise external field and step time

In order to calculate the magnetic hysteresis and thus the
coercivity, a stepwise external field is applied. The stepwise
field is characterized by two parameters, 
Bex and trB, as
illustrated in Fig. 5(a). 
Bex is the increment step of the
external field. trB indicates the duration of each external field,
i.e., how long an external field is kept until it is decreased
by 
Bex. According to Eq. (6), it is obvious that the thermal
fluctuation field is strongly influenced by the cell volume

FIG. 4. ASM simulations results on (a) temperature-dependent domain-wall configuration presented by the distribution of atomistic
magnetic moments, (b) Mz distribution along the x axis at T = 400 K, (c) domain-wall width, and (d) exchange stiffness at high temperature.
Results for both nearest-neighbor and 9-Å-cutoff Ji j are shown and compared in (c) and (d).
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FIG. 5. (a) Schematics of applying stepwise external field for the coercivity calculation. 
Bex: increment step of the external field; 
t : step
time for solving sLLG equation; trB: duration of applying a constant external field. Temperature-dependent coercivity of model “a” (Fig. 2)
as a function of (b) 
Bex with fixed trB = 0.4 ns and 
t = 50 fs, (c) trB with fixed Bex = 0.01 T and 
t = 50 fs, and (d) 
t with fixed

Bex = 0.01 T and trB = 0.4 ns.

(
V ) and the integration time step (
t) for solving the sLLG
equation. Here we fix the cell size as 1.5 nm and thus 
V
as 1.53 nm3, as mentioned in Sec. II B. In principle, smaller

t and larger trB favor the reliable calculation of coercivity,
but take more computation time. Hereby, in order to make the
calculated coercivity Hc at high temperatures convincing and,
at the same time, save the computation cost, we evaluate the
influence of 
Bex, trB, and 
t for the three models in Fig. 2.

Figures 5(b)–5(d) shows the typical results for the case
of model “a”. It can be seen from Fig. 5(b) that the Hc vs

Bex curves present very weak increasing trends when 
Bex

is changed by one order of magnitude (ranging from 0.004
to 0.05 T). This indicates that Hc is not strongly influenced
by 
Bex. For the following calculations, 
Bex = 0.01 T is
chosen. In contrast, as shown in Fig. 5(c), Hc is found to first
decrease with the increasing trB and then nearly saturate at
trB = 0.2–0.4 ns. Similarly, in Fig. 5(d), Hc decreases with the
increasing 
t when 
t is above 70 fs. Hc almost saturates
when 
t is reduced from 60 fs at 300–500 K. Similar results
are also found for the cases of models “b” and “c.” Ideally,
trB should be in the scale of second, which is the typical
experimental timescale for the coercivity measurement. How-
ever, trB in the order of second makes the computational
cost unacceptable. Seeing that the saturation behavior of
Hc with respect to both trB and 
t appears in Figs. 5(c)
and 5(d), we take 
t = 50 fs and trB = 0.4 ns for the follow-
ing micromagnetic simulations.

2. Influence of thermal fluctuations

At finite temperatures, the thermal activation will induce
the premature nucleation and thus influence the coercivity.
In micromagnetic simulations, the temperature effects should
be attributed to not only the temperature-dependent intrinsic
parameters, but also the finite-temperature-induced thermal
fluctuations.

In order to investigate the effect of thermal fluctuations,
the geometry, composition, and magnetic properties of the
defect layer and hard shell are kept unchanged. As shown in
model “b” (Fig. 2), the Nd2Fe14B grain surface is assumed to
be covered by a 3-nm-thick soft defect layer whose magnetic

properties are set as μ0Md
s = 1 T, Ad

e = 6.2 pJ/m, and Kd
1 =

0 MJ/m3. These values for Md
s , Ad

e , and Kd
1 of the defect layer

are chosen according to the experimental measurement of
the ferromagnetic grain-boundary (GB) phase that is demon-
strated to contain an Fe+Co content of about 60% [40]. Since
the change in Ms of Fe and Co within 300–500 K is negligible
[88] and the recent experimental measurement shows not too
much change in the magnetization of GB phase at low temper-
atures [89], Md

s of the defect layer with the main composition
as Fe+Co is reasonably assumed to be temperature inde-
pendent within 300–500 K. The Dy-rich hard shell is set as
3 nm thick with a composition of (Nd0.53Dy0.47)Fe14B whose
temperature-dependent magnetic properties can be readily
extracted from the experimental measurements [87].

Figure 6 shows the typical magnetization reversal curves
and the corresponding magnetic states in the three models
at 400 K. It can be found from Fig. 6(a) that without ther-
mal fluctuations, the reversal curves are smooth, while they
fluctuates when temperature-induced thermal fluctuations are
considered. The coercivity is also obviously reduced by ther-
mal fluctuations. Figure 6(b) shows the separate contributions
to the magnetization reversal from the Nd2Fe14B core, GB
defect layer, and Dy-doped hard shell for models “b” and “c.”
It is clear that magnetization reversal in the GB defect layer
is much faster in model “b” without a hard shell than that
in model “c” with a hard shell. The thermal fluctuations also
induce faster magnetization reversal in the GB defect layer.
In model “c,” the hard shell is directly exchange coupled to
the GB defect layer and thus is magnetically reversed faster
than the Nd2Fe14B core. At the coercivity point, the total
magnetization in core, GB, and shell is reversed instantly.
The representative magnetic states during the magnetization
reversal process at the coercivity point are shown in Fig. 6(c).
It can be seen that the magnetic reversal starts at a corner or
edge of the grain due to the inhomogeneous stray field therein
[32,90]. The thermal fluctuations make the magnetization
contour fluctuate in Fig. 6(c), and add additional fields to
induce premature reversal at a corner or edge under even
lower external field. It can be seen from Figs. 6(c) that the
soft GB layer in models “b” and “c” is magnetically reversed
first, followed by the expansion of reversed domains and the
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FIG. 6. (a) Total magnetization reversal curves and (b) magneti-
zation curves with separate contributions from the core (Nd2Fe14B),
GB, and shell at 400 K with and without thermal fluctuations (TF).
The z-component magnetization in (a) and (b) is normalized with
respect to its remanent value. (c) Magnetization states at the points
marked in (a). 4.5-nm-thick hard shell in model “c.” 3-nm-thick
defect layer: μ0Md

s = 1 T, Ad
e = 6.2 pJ/m, Kd

1 = 0 MJ/m3 [40].

propagation of domain walls. This phenomenon is compatible
with the exchange-spring behavior [91–93].

Figure 7 presents a quantitative analysis to reveal the
influence of thermal fluctuations on both the coercivity and its
temperature coefficient β for the three models. As expected,
the coercivity rapidly decreases with the increasing temper-
ature, mainly due to the quick decrease of anisotropy field.
For the pure Nd2Fe14B dodecahedral grain (model “a”) at
different temperatures, it can be found from Fig. 7(a) that the
thermal-fluctuations-induced coercivity reduction (μ0Hth) is
around 0.8 T. This 0.8 T reduction of coercivity agrees well

with the previous calculation results for a similar grain by
Bance et al. [41,42], who used the elastic band method or
string method to obtain the energy barrier and then determined
the thermally activated coercivity. This agreement indicates
that our simulation results based on the sLLG equation are
credible. In contrast, for models “b” and “c,” μ0Hth is smaller,
around 0.1 and 0.2 T, respectively.

According to the so-called phenomenological global model
proposed by Givord et al. [94–96],

μ0Hth = 25kBT

vMs
, (7)

in which v is the activation volume. Accordingly, μ0Hth

(proportional to 1/v) decreases with increasing v. In fact, by
using Eq. (7) and μ0Hth determined from Fig. 7(a), v can be
calculated, as shown in the case of μ0Md

s = 1 T in Fig. 8.
It can be seen that the defect layer leads to a remarkably
increased v, which is reduced by adding the hard shell. v is
found to decrease in the following order: model “b” > model
“c” > model “a,” in accordance with the previous study using
the energy-barrier method [41]. Therefore, the dependence of
v on the model microstructure features could be intrinsically
responsible for the different reduction of coercivity by thermal
fluctuations (μ0Hth = 0.8, 0.2, and 0.1 T for models “a,” “c,”
and “b,” respectively) in the three models.

We define the coercivity reduction ratio by thermal fluctua-
tions as 
hth = Hth/H0

c , in which H0
c is the coercivity without

thermal fluctuations. It can be seen clearly from Fig. 7(b) that

hth increases with the temperature, indicating the stronger
intensity of thermal fluctuations at higher temperatures. H0

c is
deduced to be proportional to v−2/3 [96] and Hth to v−1, so

hth is proportional to v−1/3. Here, v decreases in the follow-
ing order: model “b” > model “c” > model “a.” Therefore,
at the same temperature, 
hth is the highest in model “a” and
lowest in model “b.” For example, 
hth increases from 15.3%,
5.1%, and 6.8% at 300 K to 31%, 15.4%, and 16.4% at 500 K
for models “a,” “b,” and “c,” respectively.

The temperature coefficient of coercivity, β, is a very
important parameter for the performance evaluation of Nd-
Fe-B magnets at high temperatures. Here we calculate β by
β(T ) = 1

Hc

dHc
dT [97]. Since the curve Hc vs T is found to be

almost linear, we estimated dHc
dT by linearly fitting the Hc vs T

curve. Figure 7(c) presents β as a function of temperature for
all three models. β is found to decrease with the increasing
temperature. At 300 K, β is around −0.24 to −0.35% K−1. A
typical value of β for the hot-deformed Nd-Fe-B magnets and
commercial Nd-Fe-B sintered magnets at room temperature
is about −0.48 and −0.6% K−1, respectively [7,9]. These β

values are smaller than our calculated ones, possibly owing
to the ideally simplified microstructure in our simulations.
In addition, it is clear in Fig. 7(c) that thermal fluctuations
further decrease β and thus make Nd-Fe-B magnets with
lower thermal stability. For example, thermal fluctuations
reduce β by 0.04 and 0.19% K−1 for model “a” at 300 and
450 K, respectively. At 500 K, the reduction of β by thermal
fluctuations is 0.3, 0.16, and 0.11% K−1 for models “a,” “b,”
and “c,” respectively.
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FIG. 7. (a) Coercivity, (b) coercivity reduction ratio (
hth = Hth/H 0
c ) by thermal fluctuations (TF), and (c) temperature coefficient of

coercivity (β) as a function of temperature for three models. β(T ) = 1
Hc (T )

dHc
dT in which dHc

dT is the fitted slope of curve Hc vs T . The defect

layer is 3 nm thick with an Fe+Co content around 60% [40]: μ0Md
s = 1 T, Ad

e = 6.2 pJ/m, Kd
1 = 0 MJ/m3. The hard shell is 4.5 nm thick

(Nd0.53Dy0.47)2Fe14B with temperature-dependent magnetic properties from [87].

3. Influence of defect layer

In Nd-Fe-B magnets, the ferromagnetic thin grain bound-
aries or surface defects are found to be the weak region where
the magnetization reversal occurs at a low external magnetic
field. This weak region is an important microstructure feature
for Nd-Fe-B magnets, and is often modeled as a soft defect
layer covering the grain. Its influence on the coercivity at high
temperatures will be computationally explored here.

According to the results of model “b” with thermal fluctua-
tions in Fig. 7(a), the introduction of a 3-nm-thick defect layer
can significantly reduce the coercivity by 2.9 and 2.4 T at 300
and 350 K, respectively. In contrast, the coercivity reduction
is only 1.3 and 0.9 T at 450 and 500 K, respectively. This
implies that the defect layer has a much stronger influence on
coercivity at lower temperatures. In addition, the defect layer
can significantly decrease the influence of thermal fluctuations
on coercivity [Fig. 7(b)] and increase the thermal stability
[curves with thermal fluctuations in Fig. 7(c)]. The enhanced
thermal stability and the reduced influence of thermal fluctua-
tions in model “b” when compared to model “a” are mainly

FIG. 8. Temperature-dependent activation volume (v) for dif-
ferent models with very strong magnetization (μ0Md

s = 1 T) and
very weak magnetization (μ0Md

s = 0.15 T) in the defect layer. The
hard-shell thickness in model “c” is 4.5 nm.

attributed to the large activation volume, which is induced
by the defect layer in model “b,” as shown in Fig. 8 and the
above discussions based on Eq. (7). The significantly reduced
coercivity in model “b” is due to the zero magnetocrystalline
anisotropy of the defect layer. Consequently, the defect layer
seems like a double-edged sword (increasing the thermal
stability while decreasing the coercivity) which could possibly
be harnessed for a balance between coercivity and thermal
stability.

Figure 9 presents the effect of defect-layer magnetization
(μ0Md

s ) on Hc and β. According to the experimentally mea-
sured magnetization of grain boundary in Nd-Fe-B magnets
[40,98], defect layers with strong (μ0Md

s = 1 T), moderate
(μ0Md

s = 0.65 T), and weak (μ0Md
s = 0.15 T) magnetiza-

tion are considered. The corresponding exchange stiffness
is estimated by Ad

e ∼ ε(μ0Md
s )2 with the material constant

ε = 5.41 pJ/m/T2 which is calculated from the experimental
results of α-Fe [40]. It is evident in Fig. 9(a) that weaker
magnetization in the defect layer leads to higher coercivity,
while a faster decrease of coercivity with respect to temper-
ature. This finding is in accordance with the micromagnetic
theoretical analysis, i.e., in the case of defect-layer thickness

FIG. 9. (a) Coercivity (μ0Hc) and (b) temperature coefficient
of coercivity (β) in model “b” (Fig. 2) with different defect-layer
property.
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(3 nm here) less than the domain-wall width [Fig. 4(c)], both
the nucleation and depinning field are inverse proportional
to μ0Md

s [91,99]. From the temperature coefficient results
in Fig. 9(b), it is found that weak magnetization (μ0Md

s =
0.15 T) in the defect layer leads to lower thermal stability
than strong (μ0Md

s = 1 T) and moderate (μ0Md
s = 0.65 T)

magnetization. The difference in β values for the case of
μ0Md

s = 1 and 0.65 T is not significant. These results indicate
that an increase of defect-layer magnetization above a certain
value (e.g., 0.65 T here) will reduce Hc as usual, but will not
considerably influence β.

The defect-layer magnetization is also shown to influence
the activation volume in Fig. 8. In both models “b” and “c,”
the introduction of strong magnetization (μ0Md

s = 1 T) in the
defect layer increases the activation volume by several times.
In contrast, a weak magnetization of μ0Md

s = 0.15 T only
slightly enhances the activation volume.

4. Influence of hard shell

It is expected that Dy substitution near grain surfaces
effectively enhances coercivity. This idea has been realized by
the grain-boundary diffusion of Dy to form a hard shell around
the grain surface [10–13]. So the Dy-rich hard shell is another
important microstructure feature for high-performance Nd-
Fe-B magnets, as illustrated in Fig. 2(c). Currently, it is still
essential for Nd-Fe-B magnets used at high temperatures.

As shown for the results of model “c” in Fig. 7(a), adding
a 4.5-nm-thick (Nd0.53Dy0.47)2Fe14B hard shell enhances the
coercivity by ∼0.5 T when compared to model “b” only
with a 3-nm-thick defect layer. But the 4.5-nm-thick shell
cannot fully cancel out the reduction of coercivity from the
3.5-nm-thick defect layer. In addition, the hard shell remark-
ably enhances β and thus the thermal stability [Fig. 7(c)],
in accordance with the strategy of designing the high-
temperature Nd-Fe-B magnets by adding Dy.

As for the activation volume v in Fig. 8, in the case
of strong defect-layer magnetization (μ0Md

s = 1 T), adding
a 4.5-nm-thick hard shell approximately reduces v by half.
However, if the defect-layer magnetization is very weak (e.g.,
μ0Md

s = 0.15 T), the hard shell shows no significant influence
on v (circle markers in Fig. 8). This suggests that decreasing
the defect-layer magnetization and meanwhile adding the
hard shell not only appreciably increases the coercivity, but
also suppresses the thermal-fluctuations-induced coercivity
reduction.

Figure 10 shows the dependence of coercivity, thermal
stability, and activation volume on the shell thickness (t sh).
The dashed line in Fig. 10(a) shows the coercivity when the
core is assumed to have the same properties as the shell,
corresponding to the limit of a very thick shell. In Fig. 10(a),
the coercivity is first improved by increasing t sh and then
saturates toward the dashed line at around t sh = 6–8 nm.
Similarly, the temperature coefficient of coercivity increases
with t sh and does not change significantly after t sh exceeds
6–8 nm, as shown in Fig. 10(b). The activation volume in
Fig. 10(c) is found to not remarkably change with t sh, indi-
cating a weak dependence of the thermal-fluctuations-induced
coercivity reduction on the hard-shell thickness. These results
imply that a shell thickness of t sh = 6–8 nm is enough to

FIG. 10. (a) Coercivity, (b) temperature coefficient of coercivity
(β), and (c) activation volume (v) as a function of the hard-shell
thickness (t sh) in model “c” (Fig. 2) at different temperatures. Dashed
lines in (a) correspond to the results when the core takes the same
properties as the shell and t sh = 4.5 nm. 3-nm-thick defect layer:
μ0Md

s = 1 T, Ad
e = 6.2 pJ/m, Kd

1 = 0 MJ/m3 [40].

achieve the maximum coercivity enhancement and thermal
stability, and adding Dy into the core (e.g., Dy alloying in the
initial sintered magnets before grain boundary diffusion) is
not indispensable.

IV. CONCLUSIONS

In summary, we have performed a multiscale study on
the calculation of coercivity in Nd-Fe-B permanent magnets
at high temperatures by combining the atomistic spin model
(ASM) and micromagnetic simulations. Using the ASM
Hamiltonian constructed for Nd2Fe14B, we carry out ASM
simulations to obtain the temperature-dependent saturated
magnetization Ms(T ), magnetocrystalline anisotropy K1(T ),
and exchange stiffness constant Ae(T ) at high temperatures.
The calculated Ms(T ), K1(T ), and Ae(T ) are demonstrated to
coincide with the experimental measurement.

Taking the ASM results as input, finite-temperature micro-
magnetic simulations using the stochastic Landau-Lifshitz-
Gilbert equation are performed to calculate the magnetic
reversal, thermal-activation volume v, thermal-fluctuations-
induced coercivity reduction Hth and its ratio 
hth, and coer-
civity Hc and its temperature coefficient β in a pure Nd2Fe14B
and Nd2Fe14B grain with surface defect layer or Dy-rich hard
shell. Specifically, the stepwise external field and the step time
for calculating the magnetic reversal curves are optimized.
It is found that apart from the anisotropy field decreasing
with temperature, the thermal fluctuations further reduce Hc

by 5–10% and β by 0.02–0.1% K−1. The defect layer with
strong magnetization (e.g., 1 T) is demonstrated to result in
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a remarkably increased v (which can be reduced by adding
the Dy-rich hard shell) and significantly decreased Hc, while
suppressing the influence of thermal fluctuations and thus
reducing Hth and 
hth. It is also revealed that even though
the presence of a Dy-rich hard shell cannot fully cancel out
the reduction of coercivity from the defect layer, a 4.5-nm-
thick (Nd0.53Dy0.47)2Fe14B shell enhances Hc by 0.5 T and
considerably improves the thermal stability. Both Hc and β

are found to saturate at a Dy-rich shell thickness of 6–8 nm.
A even thicker shell or Dy alloying into the core prior to
grain-boundary diffusion is not necessary.

The multiscale scheme and the calculation results are use-
ful for the design of high-performance Nd-Fe-B permanent
magnets used at high temperatures in terms of microstructure
engineering.
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