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Alternative materials for perovskite solar cells from materials informatics
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Perovskite solar cells based on lead-halide perovskites have attracted significant attention as prime candidates
for next-generation solar cells because of their high-power conversion efficiency. To avoid the toxicity of lead-
based perovskites, alternatives such as tin-halide perovskite have been investigated. However, the photovoltaic
performance of these alternatives is relatively low, and novel perovskites with low cost, low toxicity, and high
performance have not yet been discovered. In this study, to investigate whether promising alternative perovskites
exist, a high-throughput material search scheme based on materials informatics was developed and performed
for perovskite solar cell materials. Using this scheme, over 28 million AA′BB′X3X ′

3 double-perovskite-like
compositions were screened. Among the 24 most promising candidates identified, 5 were well-known organic-
inorganic tin-halide perovskites and 17 were sodium-, potassium-, and ammonium-based tin-halide perovskites.
Interestingly, two transition-metal-based perovskites were also identified as promising solar cell materials. The
pioneering material search scheme reported is expected to find use in the identification of practically feasible
materials for a number of real-world applications.
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I. INTRODUCTION

Organic-inorganic hybrid perovskites such as methylam-
monium lead iodide (MAPbI3) have enormous potential as
solar cell materials because of their suitable band gaps for
solar light absorption [1], very small exciton binding ener-
gies [2], and long carrier diffusion lengths [3]. The power
conversion efficiency (PCE) of perovskite solar cells (PSCs)
skyrocketed from 3.8% in 2009 to 23.3% in 2018 [4,5]. There-
fore, PSCs are prime candidates for next-generation solar cells
and are expected to provide a solution to the energy problem.
However, the toxicity of lead-based hybrid perovskites is a
serious obstacle to their practical application [6]. To avoid
the toxicity of lead, lead-free hybrid perovskites in which
other ions are substituted for lead have been examined both
experimentally and using computational simulations [7–15].
However, the PCEs of lead-free PSCs based on CH3NH3SnI3,
which is widely used as an alternative to lead-based per-
ovskites, are significantly lower than the PCEs of lead-based
PSCs [5,7]. Additionally, SnI2, which is the main degradation
product of tin-based perovskites, may present even greater
toxicity concerns than lead-based perovskites [16]. Therefore,
the development of novel perovskites with high photovoltaic
performance is required.

Recently, data-driven machine learning and materials
informatics have succeeded in the discovery of novel
materials such as solid-state electrolytes [17], organic light-
emitting diodes [18], shape memory alloys [19], piezoelectrics
[20], and polymers for organic photovoltaics [21]. These
approaches have also been employed for crystal structure
prediction [22–25], physical property prediction [26–31], and
high-throughput computational screening [32,33]. Accord-
ingly, massive and efficient material design based on machine
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learning and materials informatics has attracted significant
attention in the field of materials science.

In this study, we developed a massive and highly efficient
material-search scheme based on materials informatics and
applied it to the screening of over 28 million AA′BB′X3X ′

3
double-perovskite candidates. In this material-search scheme,
in addition to the semiconductor properties of the candidates
such as the band gap and carrier effective mass, the synthetic
feasibility, toxicity, and cost, which were rarely considered
in previous studies, were systematically analyzed using an
informatics strategy based on a combination of experimental
and the theoretical databases built from our calculations.
To date, many lead-free and tin-free perovskites have been
reported from material searches based on computational sim-
ulations [13–15]. However, there have been no successful
experimental reports regarding the alternative perovskites pro-
posed from these computational simulations, possibly because
these previous reports used only theoretical databases from
first-principles calculations. In particular, it is difficult to
calculate the band gaps of hybrid perovskites because of the
electron correlation and the strong spin-orbit coupling [34]. In
this study, we estimate band gaps based on the experimental
databases to guide material searches for PSCs. Through the
screening of 28 million candidates, we identified alternative
perovskites with suitable semiconductor properties, stable
cubic- or pseudocubic structures, low toxicity, and low cost
for use in PSCs.

II. METHODS

A. Machine-learning models for band-gap prediction

To train the machine-learning model for band gap pre-
diction, a training dataset of high quality is required. Past
studies have employed band-gap datasets evaluated by first-
principles calculations [28,31]. However, studies indicated
that electron correlation and relativistic spin-orbit coupling
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FIG. 1. Training and test processes for machine-learning models
for band-gap prediction. Percentages in figure are split ratios for
each set. Random seed for (1) random was changed every time in 50
iterations, and random seed for (2) random was fixed in the iterations.

(SOC) play important roles in the band-gap calculations of
PSC materials [34]. To determine the efficacy of the band-gap
learning model, we used an experimental band-gap dataset of
282 perovskites. The details are summarized in Table S1 and
Fig. S1 (see Supplemental Material) [35].

To define the feature vectors for each AA′BB′X3X ′
3 double

perovskite, we used atomic and ionic features of the six
constituent ions (A, A′, B, B′, X, and X′) of the perovskite.
For each ion, we used nine elemental features (viz., first
ionization potential, electron affinity, Mulliken electronegativ-
ity, ionic radius, group number, Pettifor’s Mendeleev number
[36], ionic highest occupied molecular orbital (HOMO) level,
ionic lowest unoccupied molecular orbital (LUMO) level, and
ionic HOMO-LUMO gap). Therefore, an AA′BB′X3X ′

3 double
perovskite is described by a 54-dimensional feature vector in
the target chemical space. To determine the first ionization po-
tentials and electron affinities for organic molecules and ionic
HOMO/LUMO levels for all ions, density-functional theory
(DFT) calculations were carried out. The computational de-
tails and features for each element and organic molecule are
summarized in Table S2 (see Supplemental Material [35]).

Using the band-gap dataset and the feature vectors, we
validated machine-learning models for band-gap prediction.
Figure 1 illustrates the validation process. In this process, the
band-gap dataset was randomly split into a training set and a
test set in ratios of 80% and 20%. Ten pairs of a fitting set and
a validation set with ratios of 60% and 40% were generated
from random splits in the training set. Using the fitting sets,
validation sets, and test sets, the accuracy of the band-gap
predictor was validated. As the preprocess for regression co-
efficient fitting and cross validation, the features were scaled
by normalization, and the dimension of the feature vector was

TABLE I. Averaged R2 values for training set R2
train and test set

R2
test , and rmse in test set for each band-gap prediction model.

Regression model R2
train R2

test rmse

MLR 0.46 0.36 1.11
Ridge regression 0.46 0.37 1.10
Lasso regression 0.45 0.36 1.11
SVR with linear kernel 0.43 0.34 1.12
SVR with Gaussian kernel 0.89 0.65 0.81
GPR with Gaussian kernel 0.90 0.58 0.89

reduced from 54 to 15 dimensions by principal component
analysis. After the preprocessing, machine-learning models
were trained via fitting and cross validation using the ten
pairs of the fitting set and the validation set. Next, the trained
machine-learning models were tested using the test set. In
order to investigate the generality of the machine-learning
models, this process was iterated for 50 cycles with different
random seeds to split the band-gap dataset, and the accuracies
of the machine-learning models were assessed by averaging
R2 values for the training sets (R2

train) and test sets (R2
test).

The averaged R2
train, averaged R2

test, and root-mean-squared
errors (rmse) in the test set for each regression model are
listed in Table I. In this assessment, we employed multiple
linear regression (MLR), ridge regression, lasso regression,
support vector machine regression (SVR) with a linear kernel
or Gaussian kernel, and Gaussian process regression (GPR)
with a Gaussian kernel as regression models. These are imple-
mented in the SCIKIT-LEARN library [37]. In addition, ensem-
ble learning models such as random forest and neural network
are also known as powerful regression models. However, in
this study, the number of datasets was insufficient to perform
these regressions, and they were not reasonable for this study.
For linear-regression-based prediction models (MLR, ridge
regression, lasso regression, and SVR with a linear kernel),
the averaged R2

train and averaged R2
test are very low; hence,

these models cannot predict the band gaps of perovskites.
On the other hand, for nonlinear regression-based prediction
models (SVR and GPR with a Gaussian kernel), the prediction
accuracies are dramatically improved. This result implies that
nonlinear correlation between the band gap and the features
is important for band-gap prediction, and similar perovskites
show similar band gaps. In particular, SVR with a Gaussian
kernel shows the best prediction accuracy in our examination,
and the averaged R2

train, averaged R2
test, and rmse in the test

set are 0.89, 0.65, and 0.81 eV, respectively. We employed
this SVR with a Gaussian kernel as the band-gap predictor. To
improve the prediction accuracy, additional band-gap data are
required. We believe that our machine-learning model will be
improved by an expanded band-gap dataset in the future.

B. Computational details for first-principles calculations

First-principles calculations were carried out to perform
structural optimization and determine the band gap, electron
and hole effective mass, and exciton binding energy. For
structural optimization, the ion positions and cell parameters
in a 2 × 1 × 1 cubic-based unit cell (Fig. S2) were optimized
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with the convergence threshold for a change of 10−3 eV in
the total energy. After the structural optimizations, the direct
band gap, indirect band gap, electron and hole effective mass,
and exciton binding energy were calculated using the opti-
mized structure. These calculations were performed using the
Perdew-Burke-Ernzerhof (PBE) exchange-correlation func-
tional with the DFT-D3 method as a van der Waals correction
[38,39], projector-augmented wave pseudopotentials, 700-eV
plane-wave cutoff, and 10 × 10 × 10 sampling k-point grid in
Vienna Ab initio Simulation Package (VASP) code [40,41].

For the most promising perovskites, more accurate
DFT calculations were carried out to evaluate the forma-
tion enthalpies, light-absorption coefficients, and levels of
conduction-band minimum (CBM) and valence-band maxi-
mum (VBM). A computationally inexpensive theoretical ap-
proach based on PBE+U calculations with fitted elemental-
phase reference energies (FERE) was used for reoptimizations
of the structure and estimations of the formation enthalpy
[42]. Here, the values of the effective on-site Coulomb inter-
actions (U) were taken from Ref. [42], and the most stable
crystal structures of each pure element were taken from
the Materials Project [43]. The other computational details
are similar to the above calculations. Furthermore, a Heyd-
Scuseria-Ernzerhof (HSE06) screened hybrid functional with
a 2 × 4 × 4 sampling k-point grid was used to evaluate the
light-absorption coefficients and the levels of CBM and VBM
[44]. The light-absorption coefficients were estimated based
on the calculations of the imaginary part of the frequency-
dependent dielectric matrix implemented in VASP code [45].
The levels of CBM and VBM were determined using empiri-
cal equations [46,47]:

EC = (
χAχA′χBχB′χ3

X χ3
X ′

)1/10 + 1
2 Eg (1)

EV = EC − Eg (2)

where EC and EV are the CBM level and VBM level relative
to the vacuum level, respectively. χA, χA′ , χB, χB′ , χX , and χX ′

denote the absolute electronegativities of A, A′, B, B′, X, and
X′ atoms in AA′BB′X3X ′

3 double perovskite, respectively [48],
and Eg is the band gap calculated by an HSE06 functional.

III. RESULTS AND DISCUSSION

We developed a high-throughput material search for PSC
materials. Figure 2 depicts the AA′BB′X3X ′

3 double-perovskite
search scheme. In this material-search scheme, not only the
feasibility of the perovskite structure and its band gap but
also its toxicity and cost were systematically considered. First,
AA′BB′X3X ′

3 compositions were generated from a library of
ions. For the A and A′ cations, 18 cations including alkali
metal, alkali earth metal, group-3 metal, and organic cations
were employed. For the B and B′ cations, 85 cations including
transition metals and p-block metals were employed. For the X
and X′ anions, nine anions including chalcogens and halogens
were employed. The specific ions are listed in Fig. 2(a).
From the ion library, 28 125 225 AA′BB′X3X ′

3 compositions
were generated. These were screened in a stepwise manner
according to the material-search scheme.

In the first screening step of the material-search scheme,
the ability of the generated AA′BB′X3X ′

3 compositions to form

FIG. 2. (a) Ion library for each site, and number of possi-
ble AA′BB′X3X ′

3 compositions using the library. (b) Diagram of
AA′BB′X3X ′

3 double-perovskite search scheme.

a perovskite was evaluated using the general properties of the
constituent ions (viz., ionic valence, valence electron number,
and ionic radius). A composition was considered to be syn-
thetically feasible if it met the following seven criteria: (1) its
charge was neutral, (2) it had an even number of electrons, (3)
its tolerance factor TF fell between 0.8 and 1.1 [49], (4) its
octahedral factor OF was greater than 0.4 [49], (5) the ionic
radii difference and ratio of its A and A′ cations met the criteria
in Eq. (3); (6) the ionic radii difference and ratio of its B and B′
cations met the criteria in Eq. (4); and (7) its X and X′ anions
had the same group number. TF and OF are defined as

T F = rĀ + rX̄√
2(rB̄ + rX̄ )

, (3)

OF = rB̄

rX̄
, (4)

where rĀ is the average ionic radius of the A and A′ cations,
rB̄ is the average ionic radius of the B and B′ cations, and rX̄
is the average ionic radius of the X and X′ anions. Shannon’s
ionic radii and effective radii were used for atomic ions and
molecular ions, respectively [50,51]. However, TF and OF
were defined for ABX3 single perovskites, and these factors do
not consider the differences between the ionic radii of A and
A′, B and B′, or X and X′ in AA′BB′X3X ′

3 double perovskites.
Recently, Bartel et al. reported a new tolerance factor to
predict the stability of A2BB′X6-type double perovskites [52].
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Even with Bartel’s tolerance factor, it may be impossible
to predict the stabilities of AA′BB′X3X ′

3 double perovskites
because Bartel’s tolerance factor cannot consider the differ-
ences between A and A′ or X and X′. Therefore, the conven-
tional TF and OF parameters and Bartel’s new tolerance factor
cannot simply be applied to AA′BB′X3X ′

3 double perovskites;
additional conditions are required. The fifth and sixth condi-
tions consider the differences in the ionic radii of A and A′ and
B and B′, respectively, by applying the following rules:

0.73 � rA

rA′
� 1.37, |rA − rA′ | � 0.45 Å, (5)

0.50 � rB

rB′
� 2.00, |rB − rB′ | � 2.00 Å, (6)

where rA, rA′ , rB, and rB′ are the ionic radii of the A, A′, B, and
B′ cations, respectively. The fifth, sixth, and seventh condi-
tions were determined from our dataset of 282 experimental
perovskite compounds (see Table S1 in the Supplemental
Material). AA′BB′X3X ′

3 compositions that satisfy the seven
criteria are expected to be able to form a perovskite structure;
128 357 such AA′BB′X3X ′

3 were identified in this step, and
only these combinations proceeded to the next screening step.

In the second screening step, the band gaps of the
128 357 AA′BB′X3X ′

3 double perovskites were predicted using
a machine-learning model. Support vector machine regression
with a Gaussian kernel trained on the experimental band-
gap data of 282 perovskite compounds was employed as the
machine-learning model. The band gaps and compositions
of 282 perovskites are listed in Table S1 (see Supplemental
Material). The feature vectors for the 128 357 AA′BB′X3X ′

3
double perovskites were generated from the atomic and ionic
information of the constituent elements. The details are sum-
marized in the Supplemental Material. To identify double per-
ovskites with suitable band gaps, we set a band-gap criterion
of 1.4 ± 0.8 eV. The values of 1.4 and 0.8 eV correspond to
the ideal band gap for p-n-junction-based solar cell materials
according to the Shockley-Queisser limit and the error bar of
our SVR, respectively [53]. Through this screening, 10 918
AA′BB′X3X ′

3 double perovskites with suitable band gaps were
identified. The 10 918 perovskites included conventional hy-
brid perovskites such as MA2Pb2I6(=MAPbI3), for which the
band gaps determined experimentally and by our SVR were
1.48 and 1.69 eV, respectively [54].

In many material-search studies, the development of such a
database of 10 918 AA′BB′X3X ′

3 double perovskites might be
the end goal. However, to target materials with the potential
for practical application, we considered two additional criteria
(toxicity and cost) in this work. These criteria were selected
because the toxicity of the widely used Pb-based hybrid
perovskites is a serious problem [6], and low manufacturing
cost is a merit of PSCs.

In the third screening step, the 10 918 identified perovskites
were evaluated in terms of their toxicity and cost. The Guide-
line for Elemental Impurities Q3D was employed for the
toxicity estimation [55]. These guidelines classify elements
into four classes: highly toxic Class-1 elements, moderately
toxic Class-2 elements, low-toxicity Class-3 elements, and
low or nontoxic other elements. Pb, Hg, As, and Cd are
Class-1 elements, and Co, V, Ni, Tl, Au, Pd, Ir, Os, Rh,
Ru, Se, Ag, and Pt are Class-2 elements. In this evaluation,

AA′BB′X3X ′
3 perovskites including a Class-1 or -2 element,

such as MA2Pb2I6 and other Pb-based perovskites, were
rejected, and 2146 low-toxicity double perovskites consisting
of only Class-3 and other elements were found. After the
toxicity evaluation, the cost of the remaining 2146 double
perovskites was estimated using the Chemicool database [56].
This database lists the price of each element in pure and bulk
form. Using this database, the cost of each of the 2146 double
perovskites was estimated in US dollars per mole, and the
500 AA′BB′X3X ′

3 double perovskites with the lowest cost were
selected. Note that the prices of each element were collected
for these estimations in February 2018 and may change over
time. The latest prices can be seen in the Chemicool database
[56]. Here, the toxicities and costs of perovskites were con-
sidered in the screening scheme. However, we would suggest
that this screening step is not necessarily required in general
material studies since the toxicities and costs are not physical
properties and relatively evaluated.

In the final screening step, first-principles calculations
were performed to calculate the structures, band gaps, carrier
effective masses, and exciton binding energies of the 500
AA′BB′X3X ′

3 double perovskites. The band gaps predicted
by machine learning, estimated costs, optimized structures,
and semiconductor properties as calculated by DFT for the
500 candidates are listed in Table S4 (see Supplemental
Material), and the computational details are summarized in
the Supplemental Material. From among the 500 candidates,
the 24 most promising AA′BB′X3X ′

3 double perovskites were
identified and are listed in Table II along with their band
gaps, costs, structural properties, hole and electron effec-
tive masses, exciton binding energies, and theoretical PCEs.
The 24 perovskites identified meet the following criteria:
(1) a cubic- or pseudocubic optimized structure with Bra-
vais lattice vector length ratios of 1.90 � |a|/|b| � 2.10,
1.90 � |a|/|c| � 2.10, and 0.95 � |b|/|c| � 1.05, and angles
between the Bravais lattice vectors of 89.0◦ � α, β, γ �
91.0◦; (2) a hole and electron effective mass of less than
1.00 a.u.; and (3) equal direct band gap and indirect band-
gap values. Of the 24 perovskites identified, 5 are organic
tin-halide hybrid perovskites such as methylammonium tin
iodide (MASnI3) and formamidinium tin iodide (FASnI3).
These organic tin-halide hybrid perovskites are well known
and are already employed as alternative perovskites in PSCs.
Their identification reproduces the results of alternative ex-
perimental perovskite searches in recent years, and suggests
that our material search scheme is a very reliable method. In
addition, sodium-, potassium-, and ammonium-based multi-
A-cation tin-halide perovskites that have not been reported
in previous studies, namely, KMASn2Br6, KMASn2Br3I3,
KMASn2I6, KNH4Sn2Br6, KNH4Sn2Br3I3, KNH4Sn2I6,
and NaNH4Sn2I6, were identified. Furthermore, ten inor-
ganic tin-halide perovskites, namely, KSnBr3, K2Sn2Br3I3,
K2Sn2Cl3I3, KSnI3, NaKSn2Br6, NaKSn2Br3I3, NaKSn2I6,
Na2Sn2Br3I3, Na2Sn2Cl3I3, and NaSnI3, are reported in this
study. These perovskites contain the well-known tin-halide
framework. Therefore, the existence of these perovskites is
easy to imagine. In addition to the tin-halide perovskites,
two inorganic perovskites were identified. One is a copper-
halide-based perovskite, CaSrCu2I6, and the other is a sulfide
perovskite, CaBaMnNbS6. These perovskites include divalent
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TABLE II. Band gap predicted by machine learning (Eg), estimated cost, Bravais lattice vector length ratios (|a|/|b|, |a|/|c|, and |b|/|c|),
angles between Bravais lattice vectors (α,β, and γ ), electron effective mass m∗

e , hole effective mass m∗
h, exciton binding energy Eb, and

theoretical PCE of 24 most promising perovskites identified.

Perovskite Eg/eV Cost/$ mol−1 |a|/|b| |a|/|c| |b|/|c| α/deg β/deg γ /deg m∗
e/a.u. m∗

h/a.u. Eb/meV PCE/%

CaBaMnNbS6 2.18 194 1.91 1.91 1.00 90.0 90.0 90.0 0.55 0.62 0 13.6
CaSrCu2I6 1.81 171 2.00 2.00 1.00 90.0 90.0 90.0 0.36 0.45 10 19.1
FASnI3 1.51 122 1.96 2.00 1.02 90.0 90.0 90.1 0.84 0.10 4 22.2
KSnBr3 1.92 159 2.00 2.00 1.00 90.0 90.0 90.0 0.79 0.09 9 17.4
K2Sn2Br3I3 1.13 179 1.98 1.98 1.00 90.0 90.0 90.0 0.81 0.07 0 22.1
K2Sn2Cl3I3 1.75 167 1.98 1.98 1.00 90.0 90.0 90.0 0.98 0.13 5 19.8
KSnI3 1.14 198 2.00 2.00 1.00 90.0 90.0 90.0 0.74 0.08 2 22.1
KMASn2Br6 1.99 121 1.99 2.00 1.00 90.5 90.0 90.0 0.94 0.15 33 16.4
KMASn2Br3I3 1.17 141 1.98 1.98 1.00 90.2 90.3 89.9 0.97 0.13 14 22.2
KMASn2I6 1.16 160 2.00 1.99 1.00 90.4 90.0 90.0 0.81 0.11 9 22.2
KNH4Sn2Br6 1.97 121 2.00 2.00 1.00 90.2 90.0 90.0 0.83 0.08 1 16.7
KNH4Sn2Br3I3 1.14 140 2.00 1.99 1.00 90.8 90.1 90.0 0.79 0.08 0 22.1
KNH4Sn2I6 1.12 160 2.00 2.00 1.00 90.1 90.0 90.0 0.72 0.07 0 22.0
MAFASn2I6 1.39 122 1.98 1.98 1.00 90.1 89.4 90.0 1.00 0.09 2 23.0
MA2Sn2Br3I3 1.33 103 1.99 1.97 0.99 90.4 90.0 90.1 1.00 0.13 13 22.9
MA2Sn2Cl3I3 1.96 91 1.96 1.96 1.00 89.9 89.8 90.5 0.88 0.12 11 16.8
MASnI3 1.29 122 2.00 1.98 0.99 90.3 90.0 90.0 0.78 0.15 16 22.3
NaKSn2Br6 1.94 126 2.00 2.00 1.00 90.0 90.0 90.0 0.78 0.07 0 17.2
NaKSn2Br3I3 2.12 135 1.99 1.99 1.00 90.0 90.0 90.0 0.86 0.18 13 14.5
NaKSn2I6 1.54 138 2.00 2.00 1.00 90.0 90.0 90.0 0.73 0.07 0 21.9
Na2Sn2Br3I3 1.48 112 2.00 2.00 1.00 90.0 90.0 90.0 0.81 0.18 22 22.3
Na2Sn2Cl3I3 1.92 100 1.99 1.99 1.00 90.0 90.0 90.0 0.91 0.15 8 17.4
NaSnI3 1.86 147 2.00 2.00 1.00 90.0 90.0 90.0 0.72 0.07 0 18.3
NaNH4Sn2I6 1.22 126 2.00 2.00 1.00 90.1 90.0 90.0 1.00 0.07 0 22.3

A- and A′ cations and transition metals as the B- and B′
cations. The compositions are significantly different from
those conventionally used in the PSC field, and they have not
been investigated as PSC materials. However, we expect that
CaSrCu2I6, CaBaMnNbS6, and similar perovskites will show
appropriate properties for use as solar cell materials.

For the novel organic-inorganic tin-halide, inorganic
tin-halide, CaSrCu2I6, and CaBaMnNbS6 perovskites,
more detailed examinations are needed to investigate the
thermochemical stabilities, light absorbance, and levels of
CBM and VBM. Table III lists the formation enthalpies
calculated by PBE+U with FERE, band gaps calculated
by the HSE06 functional, gap types, and levels of CBM
and VBM relative to the vacuum level for the perovskite
candidates. In addition, Fig. S3 illustrates the imaginary parts
of the frequency-dependent dielectric function corresponding
to the light-absorption spectra for each perovskite. Notably,
the HSE06 functional might seriously underestimate the band
gaps of CaSrCu2I6 and CaBaMnNbS6 because of the strong
electron correlations of Cu and Mn atoms. The formation
enthalpies are exothermic for all perovskites, and the
candidates discovered in this study can be thermochemically
stable as perovskite structures. All organic-inorganic tin-
halide and inorganic tin-halide perovskites show direct band
gaps and are expected to have relatively large light-absorption
coefficients in the visible-light region (see Fig. S3). However,
the band gaps calculated by HSE06 are smaller than those
predicted by machine learning. Therefore, the HSE06
calculations might underestimate the band gaps of the organic-
inorganic tin-halide and inorganic tin-halide perovskites. By

contrast, for the CaSrCu2I6 and CaBaMnNbS6 perovskites,
the gap types are indirect band gaps, and the light-absorption
coefficients are expected to be relatively small (see
Fig. S3). However, CaSrCu2I6 and CaBaMnNbS6 perovskites
show thermochemical stability and small effective masses of
electrons and holes. These characteristics are related to high
carrier mobility. Therefore, CaSrCu2I6, CaBaMnNbS6, and
similar perovskites can be expected as potential candidates
for photovoltaic materials, and we suggest that experimental
studies are needed for these perovskites.

IV. CONCLUSION

In this study, we examined if promising alternative per-
ovskites with low cost, low toxicity, and high photovoltaic
performance exist. To investigate this efficiently, a high-
throughput material-search scheme based on materials in-
formatics was developed and applied to the screening of
28 125 225 AA′BB′X3X ′

3 double-perovskite candidates. This
scheme systematically considered not only the semiconductor
properties of the candidates (such as the band gap and carrier
effective mass) but also the feasibility of their synthesis,
toxicity, and cost, which have rarely been considered in pre-
vious studies. This study used a combination of informatics
strategies based on experimental databases and a theoretical
database.

To accelerate the material search, the synthetic feasibility,
toxicity, and cost were estimated from elemental and atomic
information. Furthermore, band gaps were predicted by an
SVR machine learning model with a Gaussian kernel. The
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TABLE III. Formation enthalpies, direct band gap, indirect band gap, gap type, and levels of CBM and VBM relative to vacuum level of
19 perovskites identified.

Perovskite Formation enthalpy/kJ mol−1 Direct band gap/eV Indirect band gap/eV Gap type CBM level/eV VBM level/eV

CaBaMnNbS6 −1664 0.55 0.00 Indirect −4.63 −4.63
CaSrCu2I6 −1125 0.65 0.08 Indirect −4.88 −4.97
KSnBr3 −610 0.70 0.70 Direct −5.04 −5.74
K2Sn2Br3I3 −1053 0.39 0.39 Direct −5.01 −5.40
K2Sn2Cl3I3 −1161 0.46 0.46 Direct −5.31 −5.77
KSnI3 −458 0.46 0.46 Direct −4.80 −5.26
KMASn2Br6 −1158 0.95 0.95 Direct −5.53 −6.48
KMASn2Br3I3 −1002 0.56 0.56 Direct −5.51 −6.08
KMASn2I6 −878 0.54 0.54 Direct −5.33 −5.87
KNH4Sn2Br6 −1117 0.51 0.51 Direct −5.76 −6.27
KNH4Sn2Br3I3 −960 0.29 0.29 Direct −5.66 −5.95
KNH4Sn2I6 −828 0.32 0.32 Direct −5.45 −5.77
NaKSn2Br6 −1075 0.49 0.49 Direct −5.23 −5.72
NaKSn2Br3I3 −919 0.51 0.51 Direct −5.04 −5.55
NaKSn2I6 −785 0.37 0.37 Direct −4.93 −5.29
Na2Sn2Br3I3 −821 0.66 0.66 Direct −5.05 −5.71
Na2Sn2Cl3I3 −941 0.51 0.51 Direct −5.27 −5.78
NaSnI3 −327 0.24 0.24 Direct −5.07 −5.32
NaNH4Sn2I6 −699 0.20 0.20 Direct −5.60 −5.80

machine-learning model was trained on the experimental
band-gap data of 282 perovskites. We believe that this dataset
will be useful in follow-up studies in material research. Our
high-throughput material-search scheme can systematically
consider the physical properties, toxicity, and cost, and can
be modified for use in other material searches. For example,
it could be extended to search for novel perovskite materi-
als for the water-splitting photocatalytic reaction by simply
changing the band-gap screening criteria. Our work represents
a pioneering material-search method based on materials in-
formatics that can consider various criteria with the aim of
identifying materials for practical applications.

Through the materials search scheme, 24 promising can-
didates were discovered from 28 125 225 AA′BB′X3X ′

3-type
compositions. Among the 24 discovered perovskites, 22 can-
didates were tin-halide perovskites, 5 of which are already
well known and employed as alternative materials for PSCs.
Their identification is consistent with the results of recent
experimental studies [7,8,57–59] and confirmed the relia-
bility of our material-search scheme. Sodium-, potassium-
, and ammonium-based tin-halide perovskites were also
identified. Therefore, we propose that not only MA-, FA-,
and cesium-based perovskites but also sodium-, potassium-
, and ammonium-based perovskites represent promising
alternative PSC materials. In addition to the tin-halide per-
ovskites, two transition-metal-based perovskites, CaSrCu2I6

and CaBaMnNbS6, were identified. Therefore, the answer to

the question, “Do promising alternative perovskites other than
tin-halide perovskites exist?” is “yes.” We report that there are
alternative perovskites other than tin-halide perovskites that
show low toxicity, low cost, and high performance as PSCs
from the standpoint of materials informatics. This result rep-
resents valuable information to guide experimental alternative
perovskite searches.

ACKNOWLEDGMENTS

Calculations were performed at the Research Center for
Computational Science, Okazaki, Japan. This study was
supported in part by competitive funding for team-based
basic research through the “Creation of Innovative Func-
tions of Intelligent Materials on the Basis of the Ele-
ment Strategy” from Core Research for Evolutional Science
and Technology (CREST) Program, Theoretical Design of
Materials with Innovative Functions Based on Relativistic
Electronic Theory of Japan Science and Technology (JST)
Agency; a Grant-in-Aid for Scientific Research in Innova-
tive Areas of “Coordination Asymmetry” KAKENHI Grant
No. JP17H05380 from the Ministry of Education, Culture,
Sports, Science and Technology (MEXT), Japan; and a Grant-
in-Aid from the Japan Society for the Promotion of Science
(JSPS) KAKENHI Grant No. JP18J12426. We would like to
thank Editage [60] for English language editing.

The authors declare no conflict of interest.

[1] S. De Wolf, J. Holovsky, S.-J. Moon, P. Löper, B. Niesen, M.
Ledinsky, F.-J. Haug, J.-H. Yum, and C. Ballif, J. Phys. Chem.
Lett. 5, 1035 (2014).

[2] Q. Lin, A. Armin, R. C. R. Nagiri, P. L. Burn, and P. Meredith,
Nat. Photonics 9, 106 (2015).

[3] G. Xing, N. Mathews, Sun, S. S. Lim, Y. M. Lam, M.
Grätzel, S. Mhaisalkar, and T. C. Sum, Science 342, 344
(2013).

[4] A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, J. Am.
Chem. Soc. 131, 6050 (2009).

075403-6

https://doi.org/10.1021/jz500279b
https://doi.org/10.1021/jz500279b
https://doi.org/10.1021/jz500279b
https://doi.org/10.1021/jz500279b
https://doi.org/10.1038/nphoton.2014.284
https://doi.org/10.1038/nphoton.2014.284
https://doi.org/10.1038/nphoton.2014.284
https://doi.org/10.1038/nphoton.2014.284
https://doi.org/10.1126/science.1243167
https://doi.org/10.1126/science.1243167
https://doi.org/10.1126/science.1243167
https://doi.org/10.1126/science.1243167
https://doi.org/10.1021/ja809598r
https://doi.org/10.1021/ja809598r
https://doi.org/10.1021/ja809598r
https://doi.org/10.1021/ja809598r


ALTERNATIVE MATERIALS FOR PEROVSKITE SOLAR … PHYSICAL REVIEW MATERIALS 3, 075403 (2019)

[5] NREL efficiency chart, https://www.nrel.gov/pv/assets/images/
efficiency-chart.png (accessed September 2018).

[6] A. Babayigit, A. Ethirajan, M. Muller, and B. Conings,
Nat. Mater. 15, 247 (2016).

[7] N. K. Noel, S. D. Stranks, A. Abate, C. Wehrenfennig, S.
Guarnera, A.-A. Haghighirad, A. Sadhanala, G. E. Eperon,
S. K. Pathak, M. B. Johnston, A. Petrozza, L. M. Herz, and H.
J. Snaith, Energy Environ. Sci. 7, 3061 (2014).

[8] Z. Zhao, F. Gu, Y. Li, W. Sun, S. Ye, H. Rao, Z. Liu, Z. Bian,
and C. Huang, Adv. Sci. 4, 1700204 (2017).

[9] A. H. Slavney, T. Hu, A. M. Lindenberg, and H. I. Karunadasa,
J. Am. Chem. Soc. 138, 2138 (2016).

[10] M. R. Filip, S. Hillman, A. A. Haghighirad, H. J. Snaith, and F.
Giustino, J. Phys. Chem. Lett. 7, 2579 (2016).

[11] G. Volonakis, A. A. Haghighirad, R. L. Milot, W. H. Sio, M. R.
Filip, B. Wenger, M. B. Johnston, L. M. Herz, H. J. Snaith, and
F. Giustino, J. Phys. Chem. Lett. 8, 772 (2017).

[12] C. C. Stoumpos, L. Frazer, D. J. Clark, Y. S. Kim, S. H. Rhim,
A. J. Freeman, J. B. Ketterson, J. I. Jang, and M. G. Kanatzidis,
J. Am. Chem. Soc. 137, 6804 (2015).

[13] T. Nakajima and K. Sawada, J. Phys. Chem. Lett. 8, 4826
(2017).

[14] M. R. Filip and F. Giustino, J. Phys. Chem. C 120, 166
(2016).

[15] K. Takahashi, L. Takahashi, I. Miyazato, and Y. Tanaka,
ACS Photonics 5, 771 (2018).

[16] A. Babayigit, D. D. Thanh, A. Ethirajan, J. Manca, M.
Muller, H.-G. Boyen, and B. Conings, Sci. Rep. 6, 18721
(2016).

[17] M. S. Beal, B. E. Hayden, T. L. Gall, C. E. Lee, X. Lu,
M. Mirsaneh, C. Mormiche, D. Pasero, D. C. A. Smith, A.
Weld, C. Yada, and S. Yokoishi, ACS Comb. Sci. 13, 375
(2011).

[18] R. Gómez-Bombarelli, J. Aguilera-Iparraguirre, T. D. Hirzel, D.
Duvenaud, D. Maclaurin, M. A. Blood-Forsythe, H. S. Chae,
M. Einzinger, D.-G. Ha, T. Wu, G. Markopoulos, S. Jeon, H.
Kang, H. Miyazaki, M. Numata, S. Kim, W. Huang, S. I. Hong,
M. Baldo, R. P. Adams, and A. Aspuru-Guzik, Nat. Mater. 15,
1120 (2016).

[19] D. Xue, P. V. Balachandran, J. Hogden, J. Theiler, D. Xue, and
T. Lookman, Nat. Commun. 7, 11241 (2016).

[20] D. Xue, P. V. Balachandran, R. Yuan, T. Hu, X. Qian, E. R.
Dougherty, and T. Lookman, Proc. Natl. Acad. Sci. USA 113,
13301 (2016).

[21] S. Nagasawa, E. Al-Naamani, and A. Saeki, J. Phys. Chem.
Lett. 9, 2639 (2018).

[22] S. Curtarolo, D. Morgan, K. Persson, J. Rodgers, and G. Ceder,
Phys. Rev. Lett. 91, 135503 (2003).

[23] C. C. Fischer, K. J. Tibbetts, D. Morgan, and G. Ceder,
Nat. Mater. 5, 641 (2006).

[24] G. Pilania, P. V. Balachandran, C. Kim, and T. Lookman,
Front. Mater. 3, 19 (2016).

[25] F. A. Faber, A. Lindmaa, O. A. von Lilienfeld, and R. Armiento,
Phys. Rev. Lett. 117, 135502 (2016).

[26] M. Fernandez, P. G. Boyd, T. D. Daff, M. Z. Aghaji, and T. K.
Woo, J. Phys. Chem. Lett. 5, 3056 (2014).

[27] A. Seko, A. Togo, H. Hayashi, K. Tsuda, L. Chaput, and I.
Tanaka, Phys. Rev. Lett. 115, 205901 (2015).

[28] G. Pilania, A. Mannodi-Kanakkithodi, B. P. Uberuaga, R.
Ramprasad, J. E. Gubernatis, and T. Lookman, Sci. Rep. 6,
19375 (2016).

[29] C. Kim, G. Pilania, and R. Ramprasad, J. Phys. Chem. C 120,
14575 (2016).

[30] M. de Jong, W. Chen, R. Notestine, K. Persson, G. Ceder,
A. Jain, M. Asta, and A. Gamst, Sci. Rep. 6, 34256
(2016).

[31] G. Pilania, J. E. Gubernatis, and T. Lookman, Comput. Mater.
Sci. 129, 156 (2017).

[32] A. D. Sendek, Q. Yang, E. D. Cubuk, K.-A. N. Duerloo, Y. Cuic,
and E. J. Reed, Energy Environ. Sci. 10, 306 (2017).

[33] A. A. Emery, J. E. Saal, S. Kirklin, V. I. Hegde, and C.
Wolverton, Chem. Mater. 28, 5621 (2016).

[34] E. Mosconi, P. Umari, and F. De Angelis, J. Mater. Chem. A 3,
9208 (2015).

[35] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevMaterials.3.075403 for more information re-
garding the dataset and feature vector for machine learning,
computational detail of first-principle calculation, and power
conversion efficiency estimation.

[36] D. G. Pettifor, J. Phys. C: Solid State Phys. 19, 285 (1986).
[37] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B.

Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V.
Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,
M. Perrot, and É. Duchesnay, J. Mach. Learn. Res. 12, 2825
(2011).

[38] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77,
3865 (1996).

[39] S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, J. Chem. Phys.
132, 154104 (2010).

[40] P. E. Blöchl, Phys. Rev. B 50, 17953 (1994).
[41] G. Kresse and J. Hafner, Phys. Rev. B 47, 558(R) (1993).
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