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Transport of hot carriers in plasmonic nanostructures
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Plasmonic hot carrier devices extract excited carriers from metal nanostructures before equilibration and
have the potential to surpass semiconductor light absorbers. However their efficiencies have so far remained
well below theoretical limits, which necessitates quantitative prediction of carrier transport and energy loss in
plasmonic structures to identify and overcome bottlenecks in carrier harvesting. Here, we present a theoretical
and computational framework, nonequilibrium scattering in space and energy (NESSE), to predict the spatial
evolution of carrier energy distributions that combines the best features of phase-space (Boltzmann) and particle-
based (Monte Carlo) methods. Within the NESSE framework, we bridge first-principles electronic structure
predictions of plasmon decay and carrier collision integrals at the atomic scale, with electromagnetic field
simulations at the nano- to mesoscale. Finally, we apply NESSE to predict spatially-resolved energy distributions
of photoexcited carriers that impact the surface of experimentally realizable plasmonic nanostructures at length
scales ranging from tens to several hundreds of nanometers, enabling first-principles design of hot carrier devices.
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Surface plasmon resonances shrink optics to the nanoscale,
facilitating strong focusing and localized absorption of light
[1-5]. Decay of plasmons generates energetic electrons and
holes in the material that can be exploited for applications
including photodetection, imaging and spectroscopy [6—12],
photonic energy conversion, and photocatalysis [13—18].
However, these applications require carriers that retain a sig-
nificant fraction of their energy absorbed from the plasmon,
which is typically two orders of magnitude larger than the
thermal energy scale. Experimentally, the energy distribu-
tions of hot carriers that critically impact their efficiency of
collection cannot be measured directly but must instead be
inferred indirectly from optical response in pump-probe mea-
surements [19-21], from photocurrent measurements [22,23],
or from redox-reaction chemical markers [24]. This critically
necessitates theoretical prediction of charge transport in metal
nanostructures far from equilibrium, which presents a major
challenge for current computational methods [25-28].

In extremely small nanoscale systems, electron dynamics
require a full quantum mechanical treatment, and several
classes of techniques have been developed for quantum trans-
port simulations. In diagrammatic many-body perturbation
theory, quantum transport can be described using the nonequi-
librium Greens function (NEGF) formalism [29], which has
been applied extensively to electron transport in molecular
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junctions [30] atoms in rarefied gases [31], nanoscale metal
interconnects [32], and small plasmonic nanoparticles [33].
Open quantum system approaches applied to photons have
similarly enabled efficient prediction of retardation and radia-
tive effects on plasmon resonances of nanostructures [34,35].
Correspondingly, within the density-functional formalism,
time-dependent density-functional theory (TD-DFT) [36] and
simplified nonadiabatic molecular dynamics (NAMD) [37]
simulations have also been used to describe electron transport
in molecules [38,39], at material interfaces [40,41], and in
small plasmonic nanoparticles [42,43]. Both NEGF and TD-
DFT methods can be applied to systems approaching tens
of nanometers in dimension using simplified free-electron-
like models. However, in first principles simulations retaining
detailed electronic structure information, these techniques are
limited by computational complexity to at most a few hundred
atoms, corresponding to dimensions of a few nanometers.
Plasmonic nanostructures designed for harvesting hot car-
riers typically range from ten to several hundred nanome-
ters in dimensions, well beyond dimensions where quantum
transport simulations would be practical. Additionally, with
increasing dimensions, classical transport becomes a better
approximation, appropriate for hot carrier transport in these
devices. Classical transport methods include stochastic ap-
proaches that track dynamics of individual particles and prob-
abilistic approaches that describe the evolution of distribution
functions. The Boltzmann transport equation, of the latter
kind, is still computationally intensive in its most general
form because it requires tracking probability distributions in a
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six-dimensional phase space of spatial and momentum de-
grees of freedom [44,45]. Conventional simplifications of
the Boltzmann equation include restriction of the space of
allowed distribution functions or simplified collision integrals
such as the relaxation-time approximation [46—48], but these
neglect key electronic structure details critical in plasmonic
hot carrier transport. On the other hand, stochastic approaches
such as Monte Carlo (MC) simulations [49] introduce signif-
icant computational advantages for simple models of colli-
sions, but they become much more computationally demand-
ing for a complex collision model such as one based on
electronic structure theory.

We have previously shown the importance of describing
hot carrier generation and transport in plasmonic materials
with full electronic structure details in the densities of states
of carriers and their matrix elements for optical transitions
and interactions with phonons [50,51]. Neglecting spatial
transport, we have combined these calculations with simpli-
fied Boltzmann equation solutions to elucidate nonequilib-
rium effects in the ultrafast spectroscopy of small plasmonic
nanoparticles [52,53]. However, capturing the spatial variation
of carrier distributions is critical in larger and more complex
plasmonic nanostructures, where carrier generation is strongly
inhomogeneous and often localized near electromagnetic hot
spots [54,55]. Simultaneously capturing electronic structure
details with spatial transport in realistic plasmonic nanostruc-
tures has so far remained a challenge.

In this paper, we present a hybrid computational frame-
work for efficiently describing nonequilibrium classical
charge transport that combines the advantages of the prob-
abilistic and stochastic approaches. In Sec. I, we derive
this nonequilibrium scattering in space and energy (NESSE)
framework as a limit of the Boltzmann equation by tracking
distribution functions indexed by number of collisions, under
the assumption of momentum randomization at each collision.
We then specialize the general NESSE approach to plasmonic
hot carriers in Sec. II, linked with first-principles calculations
of carrier generation and scattering, as well as electromagnetic
field simulations. In Sec. IV, we use NESSE to predict the
spatially-resolved energy distributions of hot carriers that
reach the surface in metal nanostructures of various materi-
als and geometries up to several hundred nanometers in di-
mensions, simultaneously accounting for electronic structure
detail and nanoscale geometry. These spatially-resolved hot
carrier energy distributions are vital to understand optical,
electronic, or chemical signatures of hot carriers in exper-
iments and provide a direct mechanistic understanding of
the transport and energy relaxation effects which are only
indirectly measurable experimentally.

I. COMPUTATIONAL FRAMEWORK (NESSE)

The general goal of nonequilibrium transport calculations
is to predict the distribution of particles in phase space, i.e.,
with spatial as well as momentum resolution, accounting for
sources of particles and the various scattering mechanisms
between particles. For example, for plasmonic hot carrier
devices we need to predict the usable carrier distribution
that reaches the surface above a threshold energy, starting

from the initial distribution generated by plasmon decay
and accounting for electron-electron, electron-phonon, and
surface scattering in the material. Such devices are typically
operated under constant illumination, where carriers are be-
ing generated at a constant rate. This results in steady-state
time-independent carrier energy distributions, while we are
interested primarily in the far-from-equilibrium hot-carrier
component of these energy distributions (far from the Fermi
level). Additionally, in most cases, the number of hot carriers
excited is a small fraction of the number of electrons in
the plasmonic metal, such that hot carriers predominantly
scatter against thermal carriers, enabling a linearization of the
transport equations as we discuss below. Hence, in this work,
we focus on far-from-equilibrium transport in the linearized
steady-state limit, which is the predominant regime for hot-
carrier solar energy harvesting.

In steady state, the general transport problem is described
by the time-independent Boltzmann equation,

V- Vf(s,r) = Py(s, 1) + T[f], ey

in terms of the spatially-varying state occupation f(s, r). The
abstract state label s includes all degrees of freedom at a given
point in space, which is just momentum p in the classical case.
For electrons in a material, s combines crystal momentum k
in the Brillouin zone with a band index .

The term on the left side of (1) accounts for drift of
particles in state s with velocity v,. The first term on the right
side, Py, accounts for particle generation, while the second
term, the collision integral I" accounts for scattering. See
Sec. II for a complete specification of these terms for the
plasmonic hot carrier example starting from the electronic
structure of the material.

Once the source term and collision integrals have been
defined, the Boltzmann equation is fully specified and can,
in principle, be solved. However, this deceptively simple-
looking equation is a nonlinear integrodifferential equation
in six dimensions, differential in the three spatial dimensions
r and integral (nonlocal) in the three-momentum dimensions
in k within s, which makes it extremely expensive compu-
tationally. The remainder of this section develops a practical
approximation to this equation that is suited for analyzing hot
carrier transport and related scenarios.

The first substantial simplification is linearization of the
collision integral, which is possible whenever the particles
in which we are interested in scatter predominantly against a
background of particles whose distribution is fixed or already
known. For plasmonic hot carriers, this is the case in the
low intensity regime, where the number of excited far-from-
equilibrium carriers is small compared to the background of
equilibrium carriers. In this regime, hot carriers scatter pre-
dominantly against equilibrium carriers, and phonons remain
approximately in equilibrium at the ambient temperature 7;.
We can then separate f(s,r) = fo(es, Tp) + ¢ (s, r), where
the first term is the equilibrium (Fermi) distribution, and the
second term is the deviation from equilibrium. Substituting
this into (1), Taylor expanding the collision integral about
the equilibrium Fermi distribution fj, and dropping terms
at second order and higher in ¢(s, r) yields the linearized
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steady-state Boltzmann equation,

Vo Vo (s, 1) = Po(s, 1)+ Y _ Cowgp(s', 1), )

where the ‘collision matrix’ C arises from the first order term
in the Taylor expansion of the collision integral,

_ LA
T s

The zeroth order terms in this equation, which correspond
to the equilibrium configuration, cancel by definition. Above
and henceforth, any sum over a state index s is understood to
imply integration over the continuous k degrees of freedom
contained within.

Importantly, while the collision integral I'[f (s, r)] varies
spatially due to the spatial dependence of f (s, r), the collision
matrix does not. In the hot carrier case, linearization is only
valid for energies several kzT away from the Fermi level be-
cause electron-electron scattering produces more low-energy
carriers, eventually affecting all electrons near the Fermi
energy in the material, regardless of the incident intensity
and initial number of carriers. Assuming linearity (inherently
an approximation) is adequate for analyzing plasmonic hot
carrier devices, but retaining the nonlinearity is important for
describing the thermalized regime and, of course, for high-
intensity regimes explored in ultrafast spectroscopy, which we
have analyzed in detail elsewhere (neglecting spatial depen-
dence instead in that case) [52,53].

The linearized steady-state Boltzmann equation (2) re-
mains extremely challenging to solve since it still requires
keeping track of a six-dimensional distribution function. In
order to address this issue, we rearrange the equation to
separate the distribution functions by the number of scattering
events. First, we separate the diagonal terms of the scattering
matrix, which correspond to the state inverse lifetimes 7,”!, to
write

3

Coy = —1 185y + M,y “)

and thereby define the ‘mixing matrix” My . Intuitively, My
specifies the rate of generating carriers in state s due to
scattering of a carrier in state s". Substituting (4) into (2) and
rearranging yields

(r7 4 s - V)g(s, 1) = Pols, 1) + ) Mywop(s', 1), (5)

Now substitute ¢ = ¢y + ¢1 + ¢» + - - - above, where ¢, col-
lects contributions at nth order in M, and collect terms by
order in M. This leads to the recurrence relations

(27" + s V)du(s, t) = Py(s, 1) (6)

Poyi(s,1) =) Mywp(s',T) @)

for n > 0, with the initial point P, given as before by (14).
Figure 1 illustrates this formulation of Boltzmann trans-
port. Optical absorption produces carriers at rate Py. Solving
(6) yields unscattered hot carrier distribution ¢y. Applying
the mixing matrix to this in (7) then calculates the rate of
generating carriers due to the first scattering event, P;. The

S,(@

S 1(8)

EF 3
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FIG. 1. Nonequilibrium scattering in space and energy (NESSE)
framework for evaluating nonequilibrium carrier transport in plas-
monic nanostructures. Electromagnetic field simulations and first-
principles calculations of plasmon decay determine the spatially-
resolved initial carrier distribution, P,. Tracing the distributions
using ab-initio calculated mean free paths and collision integrals
determines the collected surface flux before scattering Sy and the
distribution of carriers after one scattering event P;. Repeating this
process yields energy-resolved carrier fluxes after fixed numbers of
scattering events Sy, S1, Sz, etc. (upper insets). Propagation of carrier
distributions between scattering events is calculated efficiently on
a tetrahedral discretization of the nanostructure geometry (bottom
inset). NESSE effectively solves the linearized Boltzmann equation
simultaneously for the spatial and energy distributions of carriers,
assuming momentum is randomized at each scattering event, in
structures with arbitrary geometry and topology, as illustrated by the
arbitrarily complex shape chosen above.

process then repeats to evaluate carrier distributions after one
scattering, ¢, generation rate due to the second scattering
event, P,, and so on. For each n, the carrier flux reaching the
surface of the nanostructure after n scattering events can be
evaluated as S, (s, r) = (v, - )¢, (s, r), at point r with surface
normal unit vector a.

The bottleneck at this stage is keeping track of states s
with wave vector and band indices. In particular, the mixing
matrix M,y is dense with nonzero elements for all pairs of
s and §' (i.e., total six dimensions with k and k), which
makes it computationally impractical to store and use. Our
final simplification is to assume that each scattering event
randomizes the momentum direction, which is an excellent
approximation for hot carriers in plasmonic metals (see e.g.
Fig. 3(d) of Ref. [56]). We can now define carrier distributions
with respect to energy by summing over all states that yield a
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given energy,

X(e.r) =) 8(s — £)X(s.1) (8)

for each distribution function X = P,, ¢,, and S,. We solve
for ¢o(s, r) using explicit states as in (6), since this is before
first scattering, but from that point onward, we only work with
energy distributions. The randomized-momentum equations
after obtaining ¢ (¢, r) take the form

Puyi(e, 1) = / de'M(e, e")pa(e’, 1) )
¢n(s,r)=/%(rll(E)+v(E)a.v)’IP,,(g,r), (10)

where rll(s) and v(e) are the average inverse lifetime and
speed of carriers with energy ¢, and the mixing-matrix in
energy is

Mg, &) = Z(S(s — 8 )M,y 8(gy — &'). (11

ss’

Note that the averages above are defined by x(¢) = ZS 8(e —
&s)x,/g(e) for each quantity x, where g(e) = ) 8(¢ — &) is
the density of states. In numerical simulations for plasmonic
hot carriers, we discretize carrier energy on a uniform grid
extending from 7w below to hiw above the Fermi energy and
perform the integral over ¥ in (10) by Monte-Carlo sampling.

The final remaining ingredient is the spatial propagation of
distributions at a given s (for n = 0) or a given pair of E and
v (for n > 1), both of which require solution of a differential
equation of the form

(t '+ v-V)p(r) = P(r). (12)

Importantly, this is an ordinary differential equation, which
can be solved very efficiently by appropriate choice of coordi-
nate system. Without loss of generality, pick the z axis along
v to get ¢(z)/t 4+ v(d¢/dz) = P(z) for each x, y, which has a
simple solution of the form

—G—z)— ¢ PE)
8@ = gl 0y [Cay B e )
20 v

For a general three-dimensional geometry discretized using a
tetrahedral mesh, we apply this solution in each tetrahedron,
effectively evolving the distribution functions from the input
faces ‘i’ to the output faces ‘o’, as shown in the bottom inset
of Fig. 1.

In particular, we store P(r) and ¢(r) on the vertices with
(3D) linear interpolation in the interior of each tetrahedron
and store fluxes S(r) = (v - a)¢(r) on the vertices of every
triangular face (with unit normal &) with (2D) linear interpo-
lation in the interior of each face. The solution within each
tetrahedron can then be expressed as matrices yielding the
output ¢ on the volume and S on ‘o’ faces, given the input
P on the volume and S on the ‘i’ faces, where the matrix
elements can be calculated by integrating (13) against the face
and volume interpolants. Then the solution for the whole mesh
starts by applying this solution to all tetrahedra whose ‘i’ faces
are exclusively incoming faces of the structure (so that their S
input is already known). This determines S on ‘o’ faces for

all these tetrahedra, which makes the S on ‘i’ faces known for
a new set of tetrahedra. The solution can then be applied to
these tetrahedra and the process repeated until all tetrahedra
are exhausted and S on the outgoing surface of the overall
structure is determined. (See bottom inset of Fig. 1.)

For the propagation at n = 0, we apply the above scheme
for several electron and hole velocities and energies, ob-
tained from a Monte Carlo sampling of the Brillouin zone
integrals in (15). At this stage, the only source term is P,
distributed on the volume, while the output is ¢y on the
volume and Sy at the surface. In subsequent stages n > 1,
we apply the above scheme with a Monte Carlo sampling
as described. For these stages, an additional surface source
term is possible due to reflection of carriers at the sur-
face, adding Sfl'i)l (e,1) = a(e, r)S,(e, 1) to the propagation
scheme, where a(¢, r) is the energy- and surface-dependent
reflection fraction. Here « (e, r) should depend on the material
outside the plasmonic metal, varying from O for total internal
reflection (e.g., below Schottky barriers) to 1 for perfect injec-
tion (an unattainable upper bound). In this work we explore
the effect of arbitrary reflection fractions on the collected
carrier distributions, but for specific experimental designs we
can incorporate appropriate models of carrier injection across
interfaces.

II. PLASMONIC HOT CARRIER TRANSPORT

The general NESSE framework for transport developed
above in Sec. I requires two quantities that must be specified
for a given problem: the source term P, and the collision
integral T". For plasmonic hot carrier transport, the source
term, i.e., the spatially-resolved initial carrier distribution, can
be evaluated as

Py(s,r) = ﬁE*(r) -Imé(w, s) - E(r), (14)

where Py(s, r) is the rate of generation of carriers per unit
volume at location r and at bulk state index s = kn that
combines crystal momentum k and band n. Here, Im €(w, s)
is the imaginary dielectric tensor at incident frequency w
histogrammed by carrier state s, and E(r) is the electric
field distribution in the material. As above, in the steady-
state problem, the field and carrier distributions are all time
independent.

Above, we make two approximations. By resolving the
distribution in both space and momentum (k contained within
index s), we are making a semiclassical approximation that
precludes quantum effects in the transport but retains the bulk
electronic structure of the material (s indexes bulk states).
Additionally, we assume locality in that photons are absorbed
in the material spatially distributed by the field intensity
and that they then produce carriers in the same location.
Both these approximations are applicable when the structures
are much larger than the nonlocality and coherence length
scales (at the nanometer scale for plasmonic metals at room
temperature), which will be the case for typical plasmonic
metal nanostructures with dimensions of at least several
nanometers.
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For calculating (14), the field distribution E(r) in a plasmonic nanostructure of interest can be readily evaluated using any
standard finite-element method (FEM) or finite-difference time-domain (FDTD) simulation tool. The carrier-resolved imaginary
dielectric tensor Im € (w, §) is obtained using our previously established ab initio method [50-53],

42e?

X*Imé(w,s)l: W

4m2e? / dK'dk
B

m2w? Jgz (271)6

n'nat

x 8(exy — exn — howo F hwyg _x )

where the first and second terms capture the contributions
of direct and phonon-assisted transitions, respectively, and
A is an arbitrary test vector to sample the tensorial compo-
nents. Briefly, ek, and fi, are electron energies and Fermi
occupations indexed by wave vector k and band n, hwgq
and ng, are phonon energies and Bose occupations indexed
by wave vector q =k’ —k and polarization «, and (p)
and g are, respectively, the momentum matrix elements for
electron-light interactions and the electron-phonon matrix
elements, all of which we calculate ab initio using density-
functional theory. See Ref. [51] for a detailed discussion of
the above terms and the computational details in evaluating
them. The only modification is the first factor containing
8(s, kn), a Kronecker § that selects the combined state in-
dex s that corresponds to wave vector k and band n. This
histograms the contributions by carrier state: The positive
terms for final states in the transitions correspond to electrons,

J

2

Ml f] = 2 /B e S G — o Prraan GV (G

n GG
271 Qdk’

87 (27_[)3 ygh (fk'n’ - fkn)(nk’—k,a + =

where the first and second terms account for electron-
electron and electron-phonon scattering, respectively. Briefly,
the new quantities here are p, the density corresponding
to the product of a pair of electronic wave functions in
reciprocal space where G are reciprocal lattice vectors,
and e_(';,, the frequency-dependent inverse dielectric ma-
trix (full nonlocal response) evaluated within the random-
phase approximation. (This is closely related to a quasipar-
ticle linewidth calculation in many-body perturbation theory
within the GoW, approximation.) See the discussion of the
corresponding electron linewidth contributions in Ref. [51]
for further details. The only differences here are a factor
of 2/h to convert from linewidth to scattering rate and a
trivial generalization from Fermi distributions to arbitrary
occupations f.

A
nz <8kn1 — &kn — ho + ”7 * Ex'n,

/ (2 )3 Z(S(S kl’l ) - 8(5 kn))(fkn fkn )3(8kn’ — &kn — ha))’l
BZ n'n

1 1
3 (35, K'n') = (5. km)(fuw — fiew (nk/_k,a +5F —)

22

2

k' —k,«a k K’ k'—k,«a
gk’n Jkny (p>n|n <p>ﬂ'"1gk’nl,kn
— &kn F hwk’—k,a + ”7

s5)

(

while the negative terms for the initial states correspond to
holes.

We have previously shown for plasmonic metals that
the DFT-calculated band structure is in excellent agreement
with GW calculations and ARPES measurements [50,57] and
that the electron-phonon and optical matrix elements result
in accurate prediction of resistivity and dielectric functions
in comparison to experiment [51]. However, note that the
NESSE framework is completely general, and the specific
electronic structure choices we make here can be systemati-
cally improved upon using TD-DFT [36] or many-body GW
perturbation theory [58], if necessary for other materials.

For transport of hot carriers in plasmonic nanostructures,
the collision integral, I';[ ], must account for scattering be-
tween electrons as well as scattering of electrons against
phonons. We can evaluate this using ab initio band structures
and matrix elements as

477 ¢?

k—+G|2 (K — K, &k — €]

[ Neled

k'—Kk,a 2
gk’n kn

1
T E)S(Ek’n/ ekn F Iy o) ; (16)

III. COMPUTATIONAL DETAILS

We use density-functional theory calculations of elec-
trons, phonons, and their matrix elements in the open-source
JDFTx software [59] to evaluate the generated carrier distri-
butions (15) and collision integrals in the mixing matrix form
(16, 3, 4, 11). See Ref. [51] for a complete specification of the
electronic structure details.

In NESSE calculations of hot carrier transport, we use
~10° random pairs of electron and hole states that conserve
energy with the incident photons of energy 7w for the n = 0
step (prior to the first scattering event). For subsequent steps,
we use a uniform energy grid with resolution ~0.1 eV and use
~10* random samples of energy and velocity direction. We
perform the transport solution on the same tetrahedral mesh
as the electromagnetic simulation.
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The solution scheme detailed above scales linearly with
the number of tetrahedra and achieves a typical throughput of
1-2x10° tetrahedra/second per CPU core (timed on NERSC
Edison and Cori) and parallelizes linearly over the velocity
and energy (state) samples. For typical geometries requiring
~10° tetrahedra in the plasmonic metal, our solution scheme
with the chosen number of samples therefore takes ~10?
seconds on 100 cores for the n = 0 step and ~10 seconds for
each subsequent n. Note that NESSE presents significant ad-
vantages over Monte Carlo simulations of individual carriers,
because we completely avoid ray-tetrahedron intersections
and obtain solutions for the entire mesh together for a given
electronic state (energy & velocity).

For electromagnetic (EM) simulations, we use the com-
mercial software COMSOL, based on the finite element
method. In all cases, we use the Wave Optics package, solving
the EM wave equations in the frequency domain. Further-
more, we employ the scattering field formulation, analyti-
cally defining the incident (background) electric field with
the desired polarization and computing the scattered field.
The simulated structure is placed at the center of a spherical
domain and is enclosed by a perfectly matched layer. We use a
tetrahedral mesh which is highly refined inside and around the
structure of interest. Both the enclosing domain dimensions
and the mesh refinement have been tested to ensure parameter
independence of the results (both EM and transport, since they
share the same mesh).

IV. RESULTS AND DISCUSSION

Our NESSE framework resolves carrier dynamics spatially,
energetically, and as a function of the number of times they
scatter. Therefore it provides fine-grained information on the
physics of transport of hot carriers. To explore this data we
begin with Fig. 2(a), which shows the carrier distribution
that reaches the surface of a spherical gold nanoparticle as
a function of energy and the size of the particle. Smaller
nanoparticles collect a larger fraction of their carriers at high
energy. This is because these carriers have had less distance
(and therefore fewer opportunities) to scatter.

To begin, we examine the carrier distribution in energy
and scattering count. Figure 2 shows the collected carrier
distributions, both (a) total and (b),(c) by scattering event,
in spherical gold nanoparticles of various diameters. As ex-
pected, the smaller particles collect more carriers at low
scattering counts. In addition, even at a given scattering count
the smaller particle collects carriers of higher energy than
the larger particle, because the mean free path of carriers
decreases with increasing energy [51].

Broadly speaking then there are two primary effects which
vary with particle size: The first is a change in regime;
small particles collect carriers nearly ballistically, whereas
large particles collect them semidiffusively. The second is
a change in energy scale; large particles preferentially col-
lect low-energy carriers as high-energy carriers scatter more
readily. Note that small nanoparticles will additionally gen-
erate carriers by intraband transitions due to the nanoscale
field geometry (Landau damping). However, phonon-assisted
transitions dominate over this effect in particles larger than
about 40 nm [51], which is the regime in which transport
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FIG. 2. (a) Hot carrier energy distribution reaching the surface of
spherical gold nanoparticles of various diameters D, normalized to
one absorbed photon (A = 490 nm). This distribution is the pertur-
bation from equilibrium: Negative probabilities here correspond to
holes. Note increasing thermalization with increasing D. (b),(c) Cu-
mulative carrier distributions that reach after scattering <» times in
20 and 160 nm nanoparticles. Note that holes predominantly reach
after 1 scattering event, and the contributions of successive scattering
events diminishes rapidly (at a faster rate for smaller particles).

effects are important anyway. We therefore focus on these
larger nanostructures and do not explicitly include geometry-
assisted carrier excitations in the results presented below.

Figures 2(b) and 2(c) reveal another key feature: the
asymmetry between electron and hole scattering. High-energy
holes in gold are located in the d bands and have a much
smaller mean free path than electrons of comparable energy
because of lower band velocities [51]. As a result almost
no holes are collected before the first scattering event. Col-
lection then peaks after the first scattering and subsequently
diminishes rapidly as the holes thermalize. The implication
of this result for hole-driven solid-state and photochemical
systems is that structures should be designed either below the
high-energy hole mean free path length scale (~1-3 nm) to
collect them before the first scattering event or around the
intermediate-energy hole mean free path scale (~10 nm) to
exploit the once-scattered holes.

Finally, Figs. 2(b) and 2(c) show that with increasing
numbers of scattering events, the carrier energy distributions
approach symmetric electron and hole perturbation close to
the Fermi level, corresponding to an increase of electron tem-
perature as expected. Notice that it takes only 3—4 scattering
events to approach this limit, underscoring the importance of
designing hot carrier devices in the sub-to-few mean free path
scale.

The results discussed above so far assumed perfect col-
lection at the surface. In realistic metal-semiconductor in-
terfaces, injection of carriers from the metal to the semi-
conductor is possible only when the carrier energy exceeds
the Schottky barrier height and when the carrier momentum
tangential to the interface is conserved across it [60]. This
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FIG. 3. Dependence of hot carrier energy distribution reaching
the surface on what carrier energies are allowed to pass through, for
particles of diameter (a) 20 nm and (b) 160 nm. When only electrons
with ¢ > 1 eV pass through, reflected holes slightly enhance the
number of these electrons, and vice versa, when only holes with ¢ <
—1 eV pass through. However this is a small effect, especially for
larger dimensions, so it is safe to assume that the carrier distribution
reaching the surface is independent of the selection rules for hot
carrier extraction at the surface.

energy and momentum-dependent injection probability limits
carrier collection efficiency [61] and is sensitive to the energy-
momentum dispersion relations of both the metal and the
semiconductor, their energy level alignment at the interface,
as well as to the roughness of the interface [62]. The NESSE
framework contains information regarding the momentum
distributions impinging on the surface for each scattering
count n and can readily be coupled to a detailed model of the
injection probability.

Here, we focus on the effect of carrier injection on carrier
transport within the metal and therefore adopt simplified in-
jection probability models that would introduce the maximum
effect on carrier transport. Figure 3 examines the carrier
distribution collected at the surface of a gold nanoparticle
with varying surface collection properties. We compare four
distinct scenarios here, one in which all carriers are collected
(ideal) and three in which carriers are only collected above
a specific energy. Note that the carriers that are not collected
are assumed to reflect back into the material, where they can
undergo further scattering processes.

These scenarios suggest that, by and large, fractional re-
flection of carriers at one energy has the primary effect of
reducing carrier collection at that energy. The secondary effect
of reintroducing the reflected carriers into the material only
minimally enhances collection at other energies. Moreover
this enhancement is limited to energies just above the col-
lection threshold and noticeable only for smaller particles
where the reflected carriers are likely to reach another surface
prior to additional scattering. This observation has an impor-
tant implication both for experimental design and hot carrier
device simulation: The available hot carrier flux at the sur-
face is mostly independent of the surface collection property,
cleanly separating the geometric design of the metal structure
with the material design of the metal-collector interface.

Having examined the dependence on energy and scatter-
ing properties in spherical particles where spatial variations
are less important, we now turn to complex structures with
high spatial inhomogeneity and exploit the full power of

Holes Field Electrons
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——100 nm
max = 0.26 max=1.16 max 0.71 max =0.13

o = N W N

Flux/photon-area (eV'1)

'
N

'
N
'
e
_
N

0
€€ (eV)

FIG. 4. Spatially-resolved hot carrier energy distribution reach-
ing the surface of a gold bowtie nanoantenna illuminated on reso-
nance (650 nm). The top panels compare the spatial distribution of
the electric field with fluxes of electrons or holes with energy further
than 0.5 or 1.5 eV from the Fermi level, while the lower panels show
the average energy-resolved carrier flux in various spatial slices.
The fluxes are normalized per absorbed photon per unit area of the
surface. Higher energy carriers decay rapidly and are localized to the
electromagnetic ‘hot spots,” whereas lower energy carriers can reach
further away.

the NESSE framework. Figure 4 shows carrier distributions
resolved in energy and space for a gold bowtie nanoantenna
(100 nm equilateral triangles with 40 nm thickness, 10 nm cor-
ner radius, and a 30 nm gap), illuminated at normal incidence
with the electric field direction along the gap and at a resonant
wavelength of 650 nm. For this structure and illumination, the
field intensity (central top panel), and hence the initial dis-
tribution of generated carriers, are sharply localized near the
gap. The remaining top panels show the carrier fluxes of holes
(left) and electrons (right) above different cutoff energies,
normalized per absorbed photon per unit total surface area.
Note that these normalized fluxes are dimensionless, but they
are not probabilities; they can exceed one both because they
are a ratio of carrier flux at one point to the average absorbed
photon flux and because each electron-electron scattering
event produces multiple lower energy hot carriers.

The collected carriers localize quite strongly near the field
maximum, indicating that field enhancement remains a signif-
icant factor even after transport processes are accounted for.
Importantly, however, the extent of localization of collected
carriers is strongly dependent on the energy of collected carri-
ers. With a higher energy threshold for collection, the overall
carrier flux diminishes and becomes more strongly localized
towards the high-field gap region. This is also shown in the
carrier energy distributions reaching the surface at various
distances from the gap region in the bottom panel of Fig. 4.
Low-energy carriers can reach further from the high-field ‘hot
spots’ both because of their higher mean free path and because
they can be generated by scattering of higher energy carriers.
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FIG. 5. Comparison of spatially- and energy-resolved hot carrier
fluxes reaching the surface of a gold (upper) and aluminum (lower)
rectangular nanorod illuminated at 800 nm wavelength for the long
axis (left) and 390 nm wavelength for the short axis (right). The top
panels compare the spatial distributions of carrier flux with energy
greater than 1.5 eV (left) or 2.5 eV (right) away from the Fermi
level, while the lower panels show the spatially-averaged energy
distributions. Fluxes are normalized per photon absorbed per unit
area of the surface. Aluminum is less efficient at collecting low
energy carriers due to a shorter electron-phonon scattering mean free
path but enhances high-energy electron collection compared to gold
because of increased generation of (and comparable mean free paths
for) high-energy electrons.

Overall these results show that both the electromagnetic
field distribution and the carrier scattering properties play a
vital role in shaping the carrier distributions that reach the
surface. Predictions solely based on field intensity will over-
state carrier localization, particularly at lower energies, while
predictions made without accounting for the field distribution
will completely miss the spatial inhomogeneity. Experimen-
tally, this spatial inhomogeneity on the tens to hundreds of
nanometers is vital to understand hot carrier imaging, pho-
todetection, photovoltaic and photochemical energy conver-
sion, which all involve carrier collection into a semiconductor
or molecule [54,55]. However, optical probes of the carrier
response (which we can predict quantitatively using our first-
principles framework as shown previously [53]) cannot sense
this inhomogeneity due to the diffraction limit and instead
measures a spatially-averaged result. The hot carrier distribu-
tion that we predict here is critical to understand experiments
where hot carrier transport matters, precisely because it is not
possible to measure these distributions directly.

Finally, we investigate the influence of material choice on
the carrier distribution, and in particular, due to the increasing
interest in aluminum plasmonics, compare carrier distribu-
tions in gold and aluminum structures with similar geome-
tries. In particular, we pick the rectangular nanoantenna geom-
etry shown in Fig. 5, with long-axis length 140 nm, short-axis
length 80 nm, height 40 nm, and 10 nm corner radius. At
normal incidence, the resonant absorption frequency depends

both on the material and whether the polarization (electric
field) direction is along the long or short axis. In particular,
we find broad absorption resonances centered at 600 nm and
800 nm, respectively, for aluminum and gold for the long-axis
polarization and at 390 nm and 610 nm, respectively, for the
short-axis polarization. In order to compare carrier dynamics
keeping all other parameters similar, we pick a common
long-axis illumination wavelength of 800 nm and a short-axis
illumination wavelength of 390 nm, which covers the greatest
range of photon energies and exhibits strong absorption in
both materials. Since we care about the collected carriers per
absorbed photon, minor differences in the absolute absorption
cross section are irrelevant.

The top panels of Fig. 5 show the spatially-resolved carrier
fluxes above a threshold energy in both materials and for
both illuminations. As before, the carriers are less localized
than the field intensity and the spatial extent increases with
decreasing energy due to the higher mean free path and
secondary-scattered contributions at lower energies. This ef-
fect is comparable in the two materials. Now, compare the
probabilities of carrier collection at various energies in the
two materials, also shown in the bottom panels as an energy
distribution integrated over the structure. At low energies, the
carrier collection is overall smaller in aluminum because of
a lower electron-phonon mean free path close to the Fermi
level (in turn because of lighter atoms and higher density
of states in Al) [51]. At higher energies, the mean free path
is dominated by electron-electron scattering which is similar
between the two materials, and the collection probabilities
become comparable. However, at energies above the inter-
band threshold of gold, accessible by the 390 nm short-axis
illumination, aluminum exhibits much stronger collection of
high-energy electrons compared to gold, because most of the
photon energy is now deposited in the d-band holes in gold
[50]. Aluminum wins for high-energy electrons because of
a more favorable initial distribution and comparable carrier
transport.

V. CONCLUSIONS AND OUTLOOK

We have presented a new general theoretical and computa-
tional framework, NESSE, for transport phenomena far from
equilibrium and demonstrated its utility in detail for hot carrier
physics in large nanoscale to mesoscale structures. NESSE
hybridizes the best features of phase-space (Boltzmann) and
particle-based (Monte Carlo) methods and allows us to bridge
ab initio electronic structure calculations, carrier collision in-
tegrals, and electromagnetic simulations to predict the dynam-
ics of photoexcited carriers. The detailed analysis of scattering
mechanisms and transport presented here, specialized for the
case of plasmonic hot carrier dynamics, provides insight into
designing new materials and device motifs which are suitable
for carrier transport. Material design is especially relevant for
doped-semiconductor plasmonic materials where electronic
band structures, and hence phase space for generation as well
as scattering, could be controlled by altering composition.
This work additionally paves the way for geometric design of
hot carrier devices that carefully optimize against and exploit
carrier scattering.
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In general, NESSE fills a void in theoretical methods to
analyze far-from-equilibrium semiclassical transport phenom-
ena with highly-detailed models of the scattering processes,
such as those involving electrons and phonons in the hot
carrier example detailed here. It will therefore be invaluable in
several areas of physics where transport of charged particles
in strong nonequilibrium is pervasive, at length scales both
microscopic and astronomical.
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