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Disorder-induced broadening of excitonic resonances in transition metal dichalcogenides
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The presence of impurities and disorder has an important impact on the optical response of monolayer
transition metal dichalcogenides (TMDs). Here, we investigate elastic exciton-impurity scattering and its
influence on the linewidth of excitonic resonances in different TMD materials. We derive an analytic expression
for the linewidth broadening within the density matrix formalism. We find that the exciton linewidth increases
for states up to the 3s exciton due to the scattering with impurities. For higher states, the impurity contribution
decreases, reflecting the reduced scattering cross section. Furthermore, we reveal that the scattering efficiency
is the largest for transitions between s and p exciton states. Finally, different TMDs show generally a similar
behavior. The quantitatively smaller broadening in tungsten-based TMDs can be ascribed to their smaller
effective masses resulting in a less efficient scattering.
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I. INTRODUCTION

Atomically thin monolayers of transition metal dichalco-
genides show an exceptional optical response due to high exci-
ton binding energies of a few hundreds of meV, resulting from
the reduced Coulomb screening in the low-dimensional con-
figuration. Many studies have investigated the linewidths of
excitonic resonances revealing the underlying many-particle
scattering processes, such as exciton-exciton, radiative re-
combination, and exciton-phonon scattering [1–4], whereas
disorder scattering has been rather disregarded. Despite the
improvement of the fabrication techniques of TMD monolay-
ers, it is impossible to entirely eliminate imperfections [5].
Disorder is present in every sample at any temperature [6–8],
making it a crucial aspect to exciton dynamics. In particular,
inhomogeneities in the substrate, e.g., spatial fluctuations
of the dielectric constant, lead to statistical fluctuations of
resonance energies throughout the sample giving rise to an
inhomogeneous broadening. In addition, lattice defects such
as vacancies or impurities, can contribute to a homogeneous
broadening resulting from elastic scattering of excitons at the
electrostatic potential induced by the defects. The broadening
of the exciton ground state is usually dominated by exciton-
phonon scattering, radiative recombination [9,10], and inho-
mogeneous broadening mechanisms resulting from the above-
mentioned fluctuations of the resonance energy. Since elastic
scattering with impurities requires a resonant scattering chan-
nel, these processes are strongly suppressed in the ground
state. However, for higher excitonic states the impact of
impurity-assisted scattering becomes important since we find
here a larger number of possible resonant scattering channels,
cf. Fig. 1. While in previous studies we have focused on the
intrinsic broadening mechanism in TMD monolayers, we ex-
amine here the impact of extrinsic defects in the linewidth of
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excitons. In particular, we theoretically investigate the impact
of the elastic exciton-impurity scattering on the absorption
spectrum of different TMD monolayer materials. The goal is
to obtain an analytic expression for the impurity-induced ho-
mogeneous broadening of excitonic linewidths and to investi-
gate the dependence on the exciton quantum number n as well
as the differences for the four most studied semiconducting
TMD materials (WS2, WSe2, MoS2, MoSe2).

FIG. 1. Schematic illustration of elastic impurity scattering chan-
nels for the first four s excitonic states. An optically excited exci-
ton with zero center of mass momentum (yellow area) can scatter
elastically into the possible resonant states by a momentum transfer
introduced by impurities. The 1s state has no resonant scattering
partners. The thickness of the arrows indicates the strengths of the
scattering efficiency.
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II. THEORETICAL APPROACH

The strong Coulomb interaction between electrons and
holes results in a series of optical (excitonic) resonances and
a Rydberg-like series similar to the hydrogen atom [11]. Exci-
tonic resonances have a characteristic width reflecting the de-
phasing time of the microscopic polarization corresponding to
the lifetime of coherent excitons [10]. We distinguish between
inhomogeneous and homogeneous broadening processes.
While the first result from statistical fluctuations of resonance
energies throughout the investigated sample, the latter are
given by exciton-phonon scattering, radiative recombination,
and exciton-exciton scattering that becomes important at high
excitations. In addition, elastic exciton-impurity scattering
can significantly contribute to the homogeneous broadening.
This scattering mechanism is in the focus of this work.

We start our study by investigating the absorption coef-
ficient α(ω). An optical perturbation caused by an external
vector potential A(ω) induces a response according to the
optical susceptibility χ (ω) of the material resulting in [12–14]

α(ω) ∝ ω�[χ (ω)] ∝ 1

ω
�

∑
i, j

Mi j pi j (ω), (1)

where Mi j is the optical matrix element with the compound
index i = {λ, k} for the band λ and the momentum k. The
quantity pi j = pλ λ′

k k′ = 〈a†
λkaλ′k′ 〉 is the microscopic polariza-

tion, which is given by the expectation value of the transi-
tion from the electronic state |λ′k′〉 to |λk〉. To obtain the
time dependence of this quantity, we exploit the Heisenberg
equation [12,15–17] ṗλ λ′

k k′ = i
h̄ 〈[H, pλ λ′

k k′]〉 and consider the
many-particle Hamilton operator [13,18] H = H0,e + He,e +
He− f + Hd. The latter includes the noninteraction electron
(H0,e), the electron-electron (He,e) and the electron-light inter-
action He− f as well as the exciton-disorder coupling [19,20]

Hd =
∑

λλ′,kk′
Dλλ′

kk′a†
λkaλ′k′ . (2)

The operators a†
λk and aλ′k′ are the electron creation and

annihilation operators, respectively. The appearing disorder
matrix element Dλλ′

kk′ indicates the strength of the transition
due to scattering on impurities and is given by

Dλλ′
kk′ = 〈λk|U (r) |λ′k′〉 = 1

V

∑
q

Uq 〈λk| eiq·r |λ′k′〉 , (3)

where U (r) is the disorder potential [19,20] and V the volume.
To keep the study general, we do not assume a specific U (r),
but only require that the potential possesses the properties
of white noise, where a disorder average results in U (r) =
0, U (r)U (r′) = D2

0V δ(r − r′) with D2
0 = ρdu2, where u is

the strength of the disorder potential and ρd the density of
impurities, which we consider to be low.

In vicinity of minima and maxima of the electronic band
structure, we apply the effective mass model, so that wave
functions are well approximated by plane waves. For small
momentum transfers this yields Dλ λ′

k k′ = 1
V 2 δλ,λ′

∑
q Uqδk′,k+q

where δλ,λ′ results from the rotating wave approximation, only
allowing intraband transitions. Now, the disorder Hamiltonian

can be simplified to

Hd =
∑
λkq

Dqa†
λkaλ,k+q.

Applying the Heisenberg equation, we obtain the disorder
contribution of the semiconductor Bloch equation

ṗλλ′
kk′

∣∣
Hd

= i

h̄

∑
q

Dq
(
pλλ′

k−qk′ − pλλ′
kk′+q

)
. (4)

To account for the strong Coulomb interaction in TMDs,
we transform the results into an excitonic basis [21]. First,
we define center-of-mass Q = k − k′ and relative momenta
q = βk + αk′ with α = mv/(mv + mc) and β = mc/(mv +
mc) with the effective conduction and valence band masses
mc, mv . The microscopic polarization then reads pq,Q(t ) =∑

ν 
ν
q pν

Q(t ), where the sum ν runs over all excitonic states.
The excitonic wave functions 
ν

q as well as the excitonic
energies E ν are obtained by solving the Wannier equation
[12,22,23], where we have considered TMD on silicon diox-
ide with a dielectric constant of εSiO2 = 3.9. Then, the semi-
conductor Bloch equation [12] for the excitonic polarization
pμ

Q(t ) reads

ṗμ

Q(t ) = i

h̄

(
Eμ + h̄2Q2

2M

)
pμ

Q(t ) + �μ(t )δQ,0

+
∑
ν,Q′

Dμν

Q′ pν
Q−Q′ (t ). (5)

The first term describes the dispersion relation of exci-
tons with the binding energy Eμ and the kinetic energy of
its center-of-mass motion, where M = mc + mv is the total
mass. The Rabi-frequency �μ(t ) = ie0 h̄

m

∑
q 


μ∗
q Mcv

q · A(t )
expresses the excitation of the polarization due to an ex-
ternal vector potential A(t ) with the elementary charge e0

and the free electron mass m. The appearing Kronecker δQ,0

accounts for the negligibly small photon momentum requiring
k′ = k and Q = 0. Finally, the disorder term couples the
polarizations with different center-of-mass momenta, where
Q′ describes the momentum transfer due to exciton-impurity
scattering. In the excitonic basis, the disorder scattering ma-
trix reads

Dμν

Q′ = i

h̄V 2
UQ′

∑
q

[

μ∗

q

(

ν

q−βQ′ − 
ν
q+αQ′

)]
. (6)

This illustrates that the impurity-induced excitonic transition
μ → ν strongly depends on the wave function overlap of
the involved states. Note that the disorder scattering matrix
does not depend on the excitonic momentum Q, but only
on the momentum transfer Q′ due to impurity scattering.
Additionally, we only consider small momentum transfer not
sufficient to scatter excitons into dark states. This is a reason-
able assumption as it translates to a low impurity density in
real space, which is desirable in fabrication of clean samples.

A typical measurement of the absorption spectrum con-
siders the sample as a whole and the revealed quantities
are in fact an average over the sample. Here, we perform
an ensemble average, i.e., Eq. (5) is solved for different
configurations of U (r) (different samples) and an average
over all solutions is performed. This is equivalent to solving
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the equation for different areas of the sample and performing
the spatial average. Since the zeroth order of the correlation
expansion DQ′ pQ−Q′ = DQ′ · pQ−Q′ + DQ′ pQ−Q′

c
vanishes

due to the white noise property of the impurity potential, we
calculate the temporal evolution of the correlated part [24]

d

dt
Dμν

Q′ pν
Q−Q′

c
(t ) ≈ i

h̄

(
E ν + h̄2(Q − Q′)2

2M

)
Dμν

Q′ pν
Q−Q′

c
(t )

+
∑
λK

Dμν

Q′ Dνλ
K pλ

Q−Q′−K(t ). (7)

The last term is an approximation, since the correlated part of
the average is neglected (second-order Born approximation)
to break the hierarchy d

dt D1 . . . Dn p ∝ D1 . . . Dn+1 p. To ac-
count for this neglected correlation, a damping term is phe-
nomenologically added to the equation. Fourier transforming
this equation leads to

∑
Q′

Dμν

Q′ pν
Q−Q′ (ω)

c ≈
∑

λQ′,K

Dμν

Q′ Dνλ
K pλ

Q−Q′−K(ω)
i
h̄

[
E ν

Q−Q′ (ω) − iδν
Q(ω)

] ,

where we have introduced the abbreviation E ν
Q−Q′ (ω) =

h̄ω − E ν − h̄2(Q−Q′ )2

2M and the damping rate δν
Q(ω). Inserting

this result back into the averaged, Fourier transformed Bloch
equation and only considering the diagonal contribution yields

pμ

Q=0(ω) = −ih̄�μ(ω)

h̄ω − Eμ + (
h̄2 ∑

ν,Q′

|Dμν

Q′ |2[
E ν

Q′ (ω)−iδν

] ) . (8)

Now, we can identify the broadening of the exciton state μ

as iγ μ(ω) = h̄2 ∑
ν,Q′

|Dμν

Q′ |2
E ν

Q′ (ω)−iδν . In the following we only

consider perfectly elastic scattering processes (Markov ap-
proximation) with δ → 0 and neglect energy renormalization
terms given by the real part. Therewith, we obtain an analytic
expression for the broadening of excitonic resonances caused
by elastic disorder scattering

γ μ = πD2
0

∑
νQ

∣∣Fμν

Q

∣∣2
δ

(
E ν + h̄2Q2

2M
− Eμ

)
(9)

with the dimensionless form factor Fμν

Q = 1/V∑
q 


μ∗
q (
ν

q−βQ − 
ν
q+αQ), accounting for the orbital

symmetry of the involved exciton states. Elastic impurity
scattering only causes a change in the center-of-mass
momentum and no energy transfer as ensured by the δ

function. Hence, the broadening of the state with the
energy Eμ and the center-of-mass momentum Q = 0 is
caused by elastic scattering processes into the energy states
E ν + h̄2Q2/2M = Eμ with the momentum transfer Q, cf.
Fig. 1. The efficiency of the scattering is given by the disorder
parameter D0 and the orbital form factor F . Assuming that the
impurity density is not sensitive to temperature ρd(T ) = ρd,
the impurity-induced broadening of excitonic resonances is
also temperature independent.

To obtain an analytic expression for the broadening,
we performed a few approximations as mentioned above.
Among others, we have neglected off-resonant processes
as well as impurity-induced inhomogeneous broadening.

Solving Eq. (5) numerically for a significant amount of sam-
ples and averaging over the resulting spectra would reveal
additional effects including an asymmetrical broadening of
excitonic resonances, which is beyond the scope of this work.
Here, we focus on an analytical investigation allowing us to
reveal the microscopic processes behind the broadening of
exciton lines.

III. RESULTS

Recent studies [26,27] demonstrated that the encapsulation
of TMDs with hBN smooths out the dielectric disorder, which
allows the spectral resolving of energetically close-lying ex-
cited states, revealing exciton states above 2s. In our study
we have investigated the impurity broadening of up to the 5s
state. First, we evaluate Eq. (1) and calculate the absorption
spectrum for the exemplary WS2 monolayer, cf. Fig. 2 with
an exemplary value for the disorder parameter D0 = 0.03 eV.
We find a clear broadening of higher excitonic states due to an
efficient exciton-impurity scattering. The energetically lowest
1s state remains unchanged, reflecting the lack of resonant
states for the elastic scattering with impurities, cf. Fig. 1.
Note that this is only the case as long as one stays in the
low impurity density limit, where the momentum transfer is
not sufficient to scatter the excitons into possibly lower-lying
dark exciton states.

To further investigate the broadening due to elastic exciton-
impurity scattering, we apply the analytic expression in
Eq. (9). To make our investigations independent of the dis-
order strength D0, the broadenings are normalized to the
linewidth of the 2s exciton state, cf. Fig. 3, since we are mainly
interested in the qualitative behavior of the broadening with
respect to the quantum index n including different scattering
contributions in various TMD materials. Figure 3 illustrates
different contributions governing the linewidth broadening of
all bright, i.e., optically accessible, exciton states (1s, 2s, 3s,
etc.). Since the impurity-induced scattering is elastic, excitons

FIG. 2. Impurity-broadened absorption spectrum of WS2 on sil-
icon dioxide at room temperature. The inset shows a zoom-in to
the higher exciton states. Broadening due to phonons and radiative
losses are considered [10,25]. Adding the elastic exciton-impurity
scattering, we observe no change in the 1s ground state, while
higher excitonic states become significantly broadened. Note that the
spectrum has been normalized to the intensity of the 1s ground state.
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FIG. 3. Impurity-induced scattering channels contributing to the
linewidth broadening of the s-type exciton states in WS2. The values
are normalized to the γ2s corresponding to the width of the 2s exciton.
This way the results are independent of the disorder strength D0. The
figure illustrates the dominant contribution of the s-p scattering. The
broadening of the 3s state is generally higher compared to the 2s
exciton reflecting the increased number of scattering states. However,
the broadening decreases for the higher 4s and 5s states reflecting the
reduced scattering efficiency.

can only be scattered to lower-lying exciton parabolas, as
illustrated in Fig. 1. A direct consequence is that the broad-
ening of the 1s ground state is not influenced by impurity
scattering, since E1s is the energetically lowest state and has
no resonant states to scatter into. In the case of the 2s state,
scattering into energetically lower-lying 1s and 2p exciton
parabola is possible (Fig. 1). Interestingly, the broadening of
2s is entirely determined by the impurity-induced transition
2s → 2p (Fig. 3). Similarly, the broadening of the 3s (4s) state
is also dominated by the scattering into the energetically lower
p states. Only a minor contribution stems from the transition
to the lower-lying s states.

To understand this behavior, we study the scattering form
factor Fμν

Q from Eq. (6), which essentially gives the scat-
tering efficiency for the transition μ → ν with the required
momentum transfer Q. We illustrate the squared absolute
value of the form factor for the exemplary 3s state, cf.
Fig. 4. Here, we find three possible scattering states: the
2s, 2p, and 3p exciton parabola (Fig. 1). After discussing
Fig. 3, we know that the 3s → 3p transition presents the
most efficient impurity-induced scattering channel. This is
in line with the largest maximum in the form factor for the
3s → 3p scattering process, cf. the orange line in Fig. 4. The
form factor for the 3s → 2s transition almost vanishes, which
leads to the vanishing contribution to the linewidth, cf. the
gray line in Fig. 4. The weak scattering between s states
can be understood, when considering the two contributions
composing the excitonic form factor. In the case of equal
electron and hole masses, α ≈ β the difference appearing in
the excitonic form factor vanishes for isotropic wave functions
(s states), but has a finite value for antisymmetric final states
(e.g., p states). Note, however, that for interactions differently
affecting electrons and holes, e.g., deformation potential in-
teraction with phonons, the excitonic form factor can favor
s-to-s scattering instead of s-to-p scattering. Studying Eq. (9)
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FIG. 4. Dimensionless scattering form factor |Fμν

Q |2 for the μ =
3s exciton state as a function of the momentum transfer Q and
for different in-scattering states ν. The vertical lines mark the mo-
mentum transfer Q0 that insures the energy conservation for the
elastic scattering process (Fig. 1). The inset shows the momentum
uncertainty of the state as defined in Eq. (10) for the corresponding s
state.

for the exciton linewidth broadening γ μ, there is only one
momentum transfer Q that fulfills the energy conservation for
each scattering process μ → ν. Therefore, the corresponding
scattering matrix is evaluated only at specific values Qμν ,
which are marked by a vertical dashed line in Fig. 4. From the
perspective of the 3s state, the nearest state is the 3p exciton.
For the required momentum transfer Q3s−3p, the scattering
matrix has an absolute maximum. In contrast, the value of the
scattering matrix at Q3s−2s is much smaller. This explains the
largest linewidth contribution of the 3s state stemming from
the scattering into the 3p exciton parabola (Fig. 3).

Another important observation in Fig. 3 is that the largest
impurity-induced broadening is predicted for the 3s exciton.
It is obvious that the state is broader than the 2s exciton
due to the increased number of possible scattering partners
in energetically lower-lying parabolas. However, it is not
intuitive why the broadening decreases for states higher than
the 3s exciton, in spite of the presence of more resonant states
available for scattering. This can be explained by examining
the momentum uncertainty of a state

〈k2〉μ =
∑

k

∣∣φμ

k

∣∣2
k2, (10)

which is a measure for the width of the state in momentum
space and is crucial for the overlap appearing in the form
factor. As the exciton radius in real space increases for higher
states, the momentum uncertainty decreases (inset in Fig. 4),
leading to a reduced scattering efficiency. The above discussed
reduction of the scattering cross section also gives rise to a re-
duced exciton-phonon scattering efficiency for excited exciton
states, which is in detail discussed in a previous experiment-
theory study [25]. However, in contrast to the scattering with
phonons, the impurity scattering requires complete energy
conservation only allowing scattering to states with the same
energy but different momentum. As a consequence, the scat-
tering to a state with the same quantum index n (e.g., 2s →
2s), which is very efficient for phonon-mediated transitions
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FIG. 5. Comparison of the impurity-induced exciton linewidths
for different TMD materials. The broadening was calculated for an
exemplary disorder parameter of D0 = 0.03 eV. Generally, the con-
tributions are similar for all investigated TMDs, since the excitonic
wave functions and therefore the scattering efficiency does not vary
much. The impurity-induced broadening is quantitatively smaller in
tungsten-based TMDs due to their smaller effective mass.

[25] do not contribute to the impurity-induced broadening.
Moreover, exciton-phonon scattering has been shown to lead
to an efficient intervalley scattering [10,25]. In the case
of impurity scattering, the momentum dependence results
from the Fourier transform of the disorder potential. There-
fore, in the case of low impurity density (correlation length

 lattice constant) the disorder potential can not provide the
momentum necessary for intervalley scattering. Apart from
the above mentioned differences, the derived scattering rate in
Eq. (9) has the same form as the exciton-phonon scattering
and the used approach can be generalized to the treatment
of impurity-induced scattering of incoherent excitons with
finite center of mass momentum, which, e.g., contributes to
a reduction of diffusion velocity for excitons in disordered
systems.

So far, we have discussed the impurity-induced homo-
geneous broadening of excitonic states in the exemplary
WS2 monolayer. Now, we study the comparison between
the four most studied semiconducting TMDs including WS2,

WSe2, MoS2, and MoSe2, cf. Fig. 5. Here we assume an
exemplary value of D0 = 0.03 eV. We find that all four
TMDs behave qualitatively similar, i.e., exhibiting a maxi-
mum broadening for the 3s exciton and also regarding the
dominant contribution stemming from scattering between s
and p states. This is not surprising, since the exciton binding
energies and the exciton wave functions are similar for all
four TMDs. However, we observe a quantitative difference
between molybdenum- and tungsten-based materials, despite
the same disorder strength D0. For tungsten-based TMDs
we find clearly smaller broadening for all excitonic states.
Further evaluating the momentum integral in Eq. (9) leads to
γ μ ∝ M

2πh2

∑
ν |Fμν

Qμν
|2, with Qμν = 1

h̄

√
2M(Eμ − E ν ). Here

the prefactor proportional to the total mass M reflects the
density of states (∂EQ/∂Q)−1, which is higher for flat exciton
dispersions. The total mass ratio between, e.g., MoS2 and

WS2
MMoS2
MWS2

≈ 1.54 is roughly the factor between the linewidth

broadening of the two materials.

IV. CONCLUSION

In conclusion, we have derived an analytic expression for
the spectral broadening of excitonic resonances due to elas-
tic exciton-impurity scattering in monolayer transition metal
dichalcogenides. The main findings are that (i) the scattering
between s and p states is dominant reflecting an optimal
overlap of excitonic wave functions, (ii) the broadening is
maximal for the 3s state and then decreases for higher excitons
due to the larger exciton radii and thus smaller scattering
cross sections in momentum space, and (iii) molybdenum-
based TMDs show an overall higher broadening due to their
higher effective mass leading to an increased density of res-
onant states for impurity scattering. Our work brings new
insights into possible homogeneous broadening mechanisms
for higher excitonic states in TMD monolayers.
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