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We derive a dielectric-dependent hybrid functional which accurately describes the electronic properties of
heterogeneous interfaces and surfaces, as well as those of three- and two-dimensional bulk solids. The functional,
which does not contain any adjustable parameter, is a generalization of self-consistent hybrid functionals
introduced for homogeneous solids, where the screened Coulomb interaction is defined using a spatially varying,
local dielectric function. The latter is determined self-consistently using density functional calculations in finite
electric fields. We present results for the band gaps and dielectric constants of 3D and 2D bulk materials, and
band offsets for interfaces, showing an accuracy comparable to that of GW calculations.
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I. INTRODUCTION

Density functional theory (DFT) was first applied to com-
pute the structural and electronic properties of condensed sys-
tems more than 35 years ago [1–3], using the local density ap-
proximation [4,5] of the exchange and correlation (xc) energy
functional. Approximately ten years later, when gradient cor-
rected approximations (GGA) [6–11] for the xc energy were
derived, DFT was adopted for some molecular investigations
by the quantum chemistry community. Shortly after the first
GGA molecular calculations, hybrid functionals were pro-
posed [12–18] and most DFT applications for finite systems,
which use localized basis sets, have been carried out with
hybrid functionals [19,20], most notably B3LYP [13,21,22].
These are functionals where the exchange energy is defined
as a linear combination of exact (Hartree-Fock) and local
exchange [23]. The condensed matter physics community
adopted hybrid functionals later than the quantum chemistry
community, due to computational difficulties in evaluating
the Hartree-Fock (HF) exchange energy using plane wave
(PW) basis sets; these are the basis set of choice in most of
the codes used for materials [24–31], although periodic DFT
codes using localized basis sets are also in use [32–35]. The
difficulties in evaluating HF exchange in PW basis sets have
now been largely overcome, with the advent of fast algorithms
based on bisection techniques [36–39] or maximally local-
ized Wannier functions [40,41]. Nevertheless periodic DFT
calculations with hybrid functionals and PW basis sets remain
substantially heavier, from a computational standpoint, than
local or semilocal DFT calculations. The functionals PBE0
[42] and HSE [43–45] are among the most popular hybrid
functionals used for condensed systems, and lately dielectric-
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dependent hybrid functionals [46–57] have been increasingly
used to predict structural and electronic properties of solids
[53,55,57–64] and liquid [65–67] and of several molecules
[55,56,68]. Another category of orbital dependent functionals
recently proposed is that of Koopmans-compliant functionals,
used for both molecules and solids [69–72].

A drawback of most of the functionals mentioned above is
that while they work well for certain classes of homogeneous
systems, e.g., solids, they are usually not as accurate for het-
erogeneous systems, e.g., surfaces and interfaces, where the
dielectric screening of different portions of the system differ
substantially. For heterogeneous semiconductors, Shimazaki
et al. [54] introduced an estimator of the electrostatic environ-
ment surrounding the atoms in a semiconductor leading to the
definition of position-dependent atomic dielectric constants.
For solid/solid interfaces, Borlido et al. [73] introduced a
nonlocal mixing fraction, based on an estimator of a local
dielectric function that contains parameters to be evaluated
with system-dependent fitting procedures.

In this work, we propose a hybrid functional that describes
equally accurately three- and two-dimensional solids, as well
as surfaces and interfaces, and which is derived entirely
from first principles, with no need to define any adjustable
parameter. The functional is based on an approximation of
the screened Coulomb interaction using a local dielectric
function, which is derived from first principles by minimizing
a dielectric enthalpy functional. We first discuss (Sec. II) the
foundation of dielectric disentanglement by showing that the
dielectric screening of a system composed of two subsystems
interfaced with each other, may be decomposed into the
screening of the two subsystems plus an interfacial contri-
bution. The disentanglement is carried out using a localized
representation of the eigenvectors of the dielectric matrix, ob-
tained using bisection techniques originally proposed for the
eigenfunctions of Kohn-Sham Hamiltonians [36]. Our results
on dielectric decomposition are used to justify the definition
of a local, spatial dependent dielectric function (Sec. II),
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which in the bulk portion of the subsystems coincides with
their respective dielectric constants. We then use this local
dielectric function to define a dielectric hybrid functional for
heterogeneous systems (Sec. III); the functional is derived
from first principles, without any adjustable parameter, by car-
rying out calculations in finite electric field. Finally we present
results for 3D and 2D solids in Sec. V A and for surfaces and
interfaces in Sec. V B, with focus on the calculations of band
gaps, dielectric constants, and band offsets.

II. SPATIAL DISENTANGLEMENT
OF DIELECTRIC SPECTRA

In this section, we address the following question: can
the dielectric matrix of an heterogeneous system (composed,
e.g., of two solids or a liquid and a solid) be expressed
in terms of the dielectric matrices of the subsystems? For
simplicity we restrict our attention to a system of volume �

composed of two subsystems, A and B interfaced with each
other and we consider a single interface between A and B. We
address the question by writing a spectral decomposition of
the dielectric matrices of the heterogeneous system and of A
and B, and then we use bisection techniques [36] to localize
the eigenvectors of the dielectric matrices in desired regions
of space.

According to linear response theory, the density-density
response function χ and the irreducible polarizability χ0

are related to the dielectric matrix (ε) of the system by the
following equation:

ε̄ = 1 − χ̄0, χ̄ = χ̄0

1 − χ̄0
, (1)

where the bar in Eq. (1) indicates that the functions have been
symmetrized with respect to the Coulomb potential (see, e.g.,
Ref. [74]). We represent χ̄0 using its spectral decomposition,

χ̄0(r, r′) =
∑

n

λnφn(r)φ∗
n (r′) , (2)

where φn and λn are eigenvectors and eigenvalues, re-
spectively. In the following, we focus on static dielectric
responses.

Figure 1 shows the eigenvalues of χ̄0 (left panels) for two
representative interfaces, H-Si/H2O and Si/Si3N4, one where
the two subsystems are noncovalently bonded and one where
there are covalent bonds at the interface (the geometry of
the model slabs and how they were obtained are described
in Ref. [75]). The square moduli of selected eigenvectors
projected in the direction perpendicular to the interface (z)
and their corresponding eigenvalues (dots) are shown on the
right and left panels of Fig. 1, respectively. For both surfaces,
we see that some eigenmodes are predominantly localized
on one side of the slabs while other modes, especially those
corresponding to |λi| → 0 (green and red curves) are localized
over the entire slab.

In order to express response functions of the entire system
in terms of those of the subsystems, we represent the dielectric
matrix in terms of localized functions, instead of eigenfunc-
tions. We first define two subsystems using the projection of
the electronic charge density on the z axis perpendicular to
the interface, as illustrated in Fig. 2. The use of the charge

FIG. 1. Spectral decomposition of the response function χ̄0 of
H-Si/H2O (top) and Si/Si3N4 (bottom) interfaces. (Left) Eigenval-
ues of χ̄ 0; the points correspond to eigenvectors shown on the right
panel. (Right) Selected eigenpotentials (labeled by different colors)
projected on the axis (z) perpendicular to the interface: |φi(z)|2 =

1
LxLy

∫
dxdy|φi(x, y, z)|2. The black vertical dashed lines denote the

position of the interface and are determined according to the spatial
variation of the charge density (see Fig. 2)

density to define regions A and B introduces a certain degree
of arbitrariness, as a criterion is required to determine charge
density minima, in correspondence of which interface planes
are defined. Such a criterion is system dependent. While the
charge density is used in this section to define interfacial
planes for the purpose of illustrating the concept of disen-
tanglement of the dielectric response, it will not be used in
practical calculations. As we will see in Sec. IV, a general,
system independent procedure can be defined to compute
local dielectric functions.

After partitioning the full system into subsystems using the
charge density, we obtain a set of localized functions from the

FIG. 2. Charge density ρ (e/Bohr3) of four slabs representing
solid/liquid and solid/solid interfaces projected on the axis z per-
pendicular to the interface [ρ(z) = 1

LxLy

∫
dxdydzρ(r)]. Vertical red

lines represent the position of the interfaces and were determined
based on the spatial variation of the charge density.
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FIG. 3. Weights (w, left) of bisected localized potentials for two
interfaces, as defined in Eq. (4), and representative bisected localized
potentials (φloc, right), projected on the direction z perpendicular
to the interface. The localized potentials have been obtained from
the eigenpotentials of χ̄0 for the H-Si/H2O (top) and Si/Si3N4

(bottom) interfaces. The dots on the left panels correspond to the
localized potentials shown on the right panels. In our calculations we
included 10 240 eigenpotentials in the spectral decomposition of the
irreducible polarizability and we verified that such number yielded a
converged results for the localized orbitals and weights shown in the
figure.

set of eigenvectors φi by constructing and diagonalizing the
filtered overlap matrix M,

Mi j :=
∫

r∈�S

drφ∗
i (r)φ j (r),

M · Vm = wmVm, wm ∈ [0, 1] , (3)

where wm and Vm are eigenvalues and eigenvectors of M,
and �S is the volume of either subsystem A or B as defined
using the electronic charge density (see Fig. 2). The set of
eigenvectors of M provides the transformation matrix from
the set of φi(r)’s to a set of localized orbitals. The eigenvalues
wm represent the weights of the localized orbital φloc

m (r) within
the subspace �S:

wm =
∫

r∈�S
dr

∣∣φloc
m (r)

∣∣2

∫
dr

∣∣φloc
m (r)

∣∣2 . (4)

If wi � 1, φloc
i is localized on �S; if wi � 0, φloc

i is localized
on � − �S . We classify the φloc

i (r)’s into three subsets:

FA = {
φloc

i

∣∣wi < wthr
}
,

FB = {
φloc

i

∣∣wi > 1 − wthr
}
, (5)

FI = {
φloc

i

∣∣wthr < wi < 1 − wthr
}
,

where wthr is a chosen localization threshold that can be
systematically varied to verify the robustness and convergence
of the localization procedure (it was chosen to be 0.01 in the
examples shown in the figures).

Figure 3 displays the weights w and the square moduli
of localized basis functions for the H-Si/H2O and Si/Si3N4

interfaces: we found that most of the basis functions are
localized in one of the two subsystems, with the rest of them
localized near the interface.

After obtaining the localized basis set F (FA ∪ FB ∪ FI ),
we expressed the matrix elements of χ̄0 as χ̄0 = χ̄0

A + χ̄0
B +

FIG. 4. Disentanglement of the dielectric spectra of several in-
terfacial systems. The eigenvalues (λ) of the subsystems (dots) are
compared with those of the whole system (solid curve) to verify the
validity of Eq. (6).

χ̄0
I + χ̄0

off-diag., where χ0
off-diag. includes all the off-diagonal

blocks representing the coupling between the two subsystems.
By diagonalizing χ̄0

A , χ̄0
B , and χ̄0

I in the respective subspaces
FA, FB, and FI defined in Eq. (5), we found that the response
of the whole system can be disentangled into contributions
from the subsystems, i.e., we found that for all systems studied
here:

eig
(
χ̄0

A

) ∪ eig
(
χ̄0

B

) ∪ eig
(
χ̄0

I

) � eig(χ̄0) . (6)

Figure 4 shows decomposed spectra [Eq. (6)] compared
with the spectrum of the whole system. It is seen that
[eig(χ̄0

A ) ∪ eig(χ̄0
B ) ∪ eig(χ̄0

I )] and eig(χ̄0) give very similar
results, with small differences in the low eigenvalue regions,
due to the neglect of the elements of χ0

off-diag.. As expected
neglecting these elements is a better approximation for aque-
ous interfaces than for the Si-Si3N5 interface, where covalent
bonds are formed. Therefore we conclude that the dielectric
screening of the whole slab may be approximated as the
sum of contributions from the subsystems plus an interfacial
dielectric screening contribution.

The results of this section indicate that it is reasonable to
approximate the screening of the entire slab by a local di-
electric function ε(r), a smooth function expected to describe
accurately the screening of the two separate subsystems in
their respective bulk regions. We will see in the next section
that these assumptions lead to a definition of a generalized
dielectric hybrid functional which yields accurate band gaps
and dielectric constants for 2D and 3D systems and band
offsets for complex interfaces.

We now turn to describing a procedure to obtain ε(r) which
does not rely on the definition of an interface plane based on
the electronic charge density, nor on any parameters defining
subsystems A and B.

III. DIELECTRIC-DEPENDENT HYBRID FUNCTIONALS

The results on dielectric disentanglement described in the
previous section led to the idea of defining a local dielectric
function whose limiting values in the two subsystems is
expected to coincide with the dielectric constants of the re-
spective bulk subsystems. Such a local dielectric function can
then be used to generalize the hybrid functionals introduced in
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Refs. [46–57]. In the following, we define the local dielectric
function from first principles.

In Refs. [46–57], the screened Coulomb interaction in a
homogeneous system is approximated as W (r, r′) = 1

ε∞|r−r′| ,
where ε∞ is the macroscopic static dielectric constant. This
approximation is used in the definition of a hybrid functional
similar to PBE0 but with mixing fraction α = 1/ε∞ instead of
0.25. Several authors have suggested using α as an adjustable
parameter to reproduce the experimental band gap of solids
[46,48,49,51,57,76,77].

Following the definition of exchange in Refs. [53,73], if we
write the screened Coulomb potential as

W (r, r′) = α(r, r′)
1

|r − r′| , (7)

the exchange energy of the entire system takes the following
form [73]:

Ex = −
∑
i< j

∫
drdr′α(r, r′)

ψ∗
i (r)ψ∗

j (r′)ψ j (r)ψi(r′)

|r − r′|

+
∫

dr[1 − α(r, r)]ρ(r)ePBE
x [ρ(r)] . (8)

We assume that the function α(r, r′) is a simple separable
function of ε(r) and ε(r′), with α(r, r) = ε(r) and we write

α(r, r′) � 1√
ε(r)ε(r′)

. (9)

We then arrive at the following ansatz for the exchange and
correlation energy:

Exc = −
∑
i< j

∫
drdr′ 1√

ε(r)ε(r′)

ψ∗
i (r)ψ∗

j (r′)ψ j (r)ψi(r′)

|r − r′|

+
∫

dr
[

1 − 1

ε(r)

]
ρ(r)ePBE

x [ρ(r)]

+
∫

drρ(r)ePBE
c [ρ(r)] . (10)

where we have chosen the PBE approximation to represent the
local part of the exchange and correlation energy.

The exchange-correlation functional defined in Eq. (10) is
similar, in spirit, to the local functional proposed in Ref. [73].
However, we emphasize two important conceptual and practi-
cal differences: we have provided a theoretical justification of
Eq. (10) based on the decomposition of the screened Coulomb
interaction into that of subsystems and an interfacial region.
Next we show that ε(r) may be obtained from first principles
by carrying out calculations in finite field, eliminating the
need to tune any arbitrary parameter, or adopt any fitting,
system-dependent procedure, which are necessary instead in
the formalism of Ref. [73].

IV. SELF-CONSISTENT DETERMINATION OF LOCAL
DIELECTRIC FUNCTIONS USING

A FINITE FIELD APPROACH

Here we describe a finite field approach to compute ε(r).
In general, the macroscopic dielectric tensor of any condensed
system can be obtained by carrying out calculations in a finite

electric field and by minimizing the functional [78–80]:

F (E, [ρ]) = EKS[ρ] +
∫

V (r)ρ(r)dr = EKS[ρ]

−
∫

E · rρ(r)dr, (11)

where
∫

E · rρ(r)dr is called the electric enthalpy, and EKS is
the Kohn-Sham energy of the system. Alternatively one could
minimize the functional:

U (D, [ρ]) = EKS[ρ] + 1

8π

∫
dr(D − 4πP)2, (12)

where D = E + 4πP = ε · E, and P is the polarization of the
system; the components of the dielectric tensor ε are

εαβ = δαβ + 4π
∂Pα

∂Eβ

, (ε−1)αβ = δαβ − 4π
∂Pα

∂Dβ

, (13)

where α and β are Cartesian coordinates. In periodic systems,
the induced polarization can be computed from the shift of
the centers of the Wannier functions (�ri

c) of the unperturbed
system when an electric field is applied [81,82]. For a homo-
geneous system of Ns occupied states, the average change in
macroscopic polarization is given by

�P = −e

�

Ns∑
i=1

�ri
c. (14)

This allows us to define a spatial dependent polarization
for heterogeneous systems (e.g., 2D materials, surfaces and
interfaces):

�P(r) = −e
Nc∑

i=1

Ni�Ri
cδ

(
r − Ri

c

)
, (15)

where Ns Wannier centers have been grouped in Nc clusters:
Ni is the number of Wannier centers in the ith cluster, �Ri

c =
1
Ni

∑Ni
j=1 �r j

c is the shift of the center of the ith cluster induced
by the applied electric field. In practical calculations the δ

function is replaced by a Gaussian function of finite width
equal to the average of the spreads of the corresponding
Wannier orbitals belonging to the same cluster. We note that
�P entering Eq. (14) can be obtained from �P(r) using the
following relation:

�P = 1

�

∫
�

�P(r)dr. (16)

The spatial dependence of ε is then defined by the spatial
dependence of the polarization, as given in Eq. (15).

We computed the local dielectric function ε(r) by mini-
mizing the electric enthalpy [Eq. (11)] with the Kohn-Sham
energy defined using the exchange correlation functional of
Eq. (10). The minimization is carried out using a finite field
approach, as implemented in the Qbox code [26,83]. The
function ε(r) is computed self-consistently. The whole pro-
cedure is schematically shown in Fig. 5. At the first iteration,
we perform a DFT calculation at the PBE level [α(r, r′) =
0]. At the second iteration we set ε(r) = εPBE(r) in Eq. (9)
and repeat the process until ε(r) and the total energy are
converged.
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FIG. 5. Dielectric-dependent hybrid (DDH) functional calcula-
tions. In evaluating ε(r), the derivatives entering Eq. (13) are com-
puted numerically by performing two independent calculations with
E = ±δ a.u. and taking the difference, where δ is chosen small
enough so as to ensure calculations in the linear regime.

V. VALIDATION OF SELF-CONSISTENT HYBRID
FUNCTIONALS FOR 3D AND 2D MATERIALS, SURFACE

AND INTERFACES

A. Three-dimensional and two-dimensional materials

Figure 6 shows the band gap at each iteration for bulk Si
and a 3C-(SiC) computed using supercells with 512 atoms
and the � point to sample the Brillouin zone (the corre-
sponding ε(z) [average of ε(r) in the xy plane] are shown in
Ref. [75]). In both cases, calculations rapidly converge and the
computed band gap agrees with the experimental one within
∼0.1 eV (see Table I). The results for dielectric constants
and band gaps of several solids, including covalently, ionic
and van der Waals bonded systems, are shown in Tables I
and II, respectively. Our results for the dielectric constants
are all close to those of self-consistent hybrid calculations
reported in Ref. [53] [using the functional of Eq. (10) with
ε∞ replacing ε(r)]. The use of the microscopically averaged ε

over the whole cell appear to yield results in slightly better
agreement with experiments. Part of the small differences

FIG. 6. Fundamental electronic gaps of 3D solids, 3C-SiC, and
Si (top), and 2D materials, MoS2 and h-BN (bottom), computed
using the functional of Eq. (10), as a function of the number of
iteration of the self-consistent procedure (see Fig. 5). The horizontal
dash lines denote experimental values. The dotted line (bottom, right)
is the self-consistent GW result for h-BN from Ref. [84].

TABLE I. The electronic dielectric constants (ε∞) of three
dimensional materials obtained from PBE and spatial-resolved
dielectric-dependent hybrid functional (DDH) calculations
[Eq. (10)], compared with the results of Ref. [53] and experiment.
All calculations (PBE and DDH) were carried out using ONCV
pseudopotentials [85] and by sampling the Brillouin zone with
the � point. The number of atoms or units used in the supercell
calculations are indicated as subscripts for each solids.

PBE DDH Ref. [53] Exp.

Si 12.46 11.80 11.76 11.9 [86]
SiC 6.86 6.49 6.50 6.52 [86]
AlP 8.08 7.57 7.23 7.54 [86]
Diamond 5.77 5.58 5.61 5.70 [86]
MgO 3.26 2.99 2.81 2.96 [87]
LiCl 2.93 2.77 2.77 2.70 [88]
Ar 1.73 1.66 1.66 1.66 [89]
Ne 1.29 1.25 1.21 1.23 [90]

between columns 3 and 4 in Table I is due to the use of
pseudopotentials (this work) versus all electron calculations
(Ref. [53]).

Table II shows band gaps obtained with the functional of
Eq. (10) and the procedure shown in Fig. 5 (column 3) and
those obtained with the global hybrid functional defined in
Ref. [53] with two different values of ε∞: the bulk average
of ε(r) computed in this work (column 4), and the ε∞ from
Ref. [53] (column 5). Considering that the all-electron results
of Ref. [53] (reported in column 6) are obtained with all
electrons and a localized basis set, the comparison between
columns 5 and 6 shows differences arising from the use of
pseudopotentials and the plane-wave basis set. The compari-
son between columns 4 and 5 shows the sensitivity of the band
gaps to slightly different values of α. The most interesting
comparison is between column 3 and 4 which shows that
the spatial variations of ε(r) hardly affect the band gap of
covalently bonded systems; however they do influence the
computed gap for ionic and especially van der Waals bonded
solids.

Figure 6 shows the band gap for monolayer MoS2 and
h-BN. The dielectric-dependant hybrid functional (DDH) of
Eq. (10) predicts a fundamental gap of 3.1 eV for MoS2.
The effect of spin-orbit coupling, known to lead to a splitting
of the degenerate valence bands of about 0.1 eV [98], was
neglected in our calculations. Therefore we conclude that
our quasiparticle gap is in reasonable agreement with the
experimental value of 2.78(2) eV [99].

The self-consistent hybrid functional of Eq. (10) predicts a
gap of 8.2 eV for h-BN. This is consistent with that obtained
with self-consistent GW calculations (∼8.4 eV) in Ref. [84].
The Kohn-Sham gap obtained in PBE calculations is about
4 eV smaller, and G0W0 and GW0 results using PBE wave
functions also underestimate the quasiparticle gap by ∼2 and
∼1 eV, respectively [84,100].

The dielectric function ε(z) of the 2D systems studied here
turns out to be localized at the monolayers (see Fig. S3 in
Ref. [75]). This provides a physical measure of the “dielec-
tric thickness” of the 2D layers, which we define as wε =
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TABLE II. The fundamental energy gaps (eV) of three dimensional materials obtained from PBE and spatial-resolved dielectric-dependent
hybrid functional (DDH) calculations [Eq. (10)], compared with the results of Ref. [53] and experiment. All calculations (PBE and DDH) were
carried out using ONCV pseudopotentials [85] and by sampling the Brillouin zone with the � point. The number of atoms or units used in the
supercell calculations are indicated as subscripts for each solids. In columns 4 and 5, we report calculations with a constant mixing fraction
[see Eq. (8)] α = 1/ε̄ and 1/ε∞, respectively. The zero-phonon renormalization (ZPR) is reported when available from experiment [60].

PBE DDH α = 1/ε̄a α = 1/ε∞b Ref. [53] ZPR Exp.

Si 0.603 1.00 1.01 1.01 0.99 0.06 1.17 [91]
SiC 1.38 2.35 2.35 2.35 2.29 0.11 2.39 [92]
AlP 1.56 2.27 2.28 2.32 2.37 0.02 2.51[93]
Diamond 4.17 5.48 5.54 5.53 5.42 0.37 5.48 [94]
MgO 4.78 7.70 8.08 8.30 8.33 0.53 7.83 [95]
LiCl 6.47 9.38 9.56 9.56 9.62 0.17 9.40 [96]
Ar 8.70 13.93 14.34 14.34 14.67 14.2 [97]
Ne 11.62 20.60 22.38 22.72 23.67 21.7 [97]

aHybrid functional calculation with α = 1/ε̄ where ε̄ is the bulk average of ε(r): values reported in Table I.
bHybrid functional calculation with α = 1/ε∞ where ε∞ is from Ref. [53]: values reported in Table I.

∫
dz(z−z0 )2χ (z)∫

dzχ (z) where χ (z) := ε(z) − 1 . We obtain a thickness
of 3.4 and 1.6 Bohr for MoS2 and h-BN, respectively. The
spreads of the charge density (see Fig. S3 in Ref. [75]) are 2.3
and 1.3 Bohr respectively, slightly smaller than those of the
respective dielectric functions, but comparable.

B. Surfaces and interfaces

In the case of surfaces and interfaces, we carried out calcu-
lations with the scheme outlined in Fig. 5, applying the E field
parallel to the surface/interface, insuring that the tangential
part of the E field is continuous across the interface. [If a
constant D field were applied, when minimizing the functional
Eq. (12), the D field would be instead perpendicular to the
interface].

Figure 7 shows the dielectric function and band offsets for
an unreconstructed, hydrogen terminated silicon (111) surface
(H-Si). We find that the dielectric constant in the silicon bulk
regions is ∼9, which is smaller than that reported in Table I,
due to finite size effects. Indeed, the silicon slab has only 72
Si atoms, a size insufficient to converge the dielectric constant
to the bulk value.

The band gap of the silicon portion of the slab and the band
offsets between the surface and vacuum obtained from DDH
calculations are in good agreement with those of G0W0@PBE
calculations; we note that there is a slight difference in the
spatial variation of the conduction band at the interface, which
is sharper in the case of the hybrid functional calculations,
possibly indicating differences between the PBE wave func-
tions and charge density (not updated in the GW calculations)
and the respective quantities computed self-consistently at the
hybrid level.

Calculations for representative interfaces (H-Si/H2O,
CH3-Si/H2O, COOH-Si/H2O, and Si/Si3N4) are shown in
Fig. 8. We again observe that the calculation of ε(r) converges
rapidly, after 3–4 iterations (see Fig. 8, top). We can clearly
see that there are two distinct average values of ε in the two
bulk regions where ε oscillates around a constant value. The
transition regions in the four interfaces, defined as the region
where ε(r) changes sharply, have a thickness of approximately

5 Bohr for aqueous interfaces and 10 Bohr for the silicon-
silicon nitride interface.

As already found for the hydrogenated Si-surface, the
DDH functional of Eq. (10) predicts the band gap in the sil-
icon bulk regions (Fig. 8) in agreement with G0W0@PBE. In
the water region of the aqueous interfaces however, the VBM
and CBM are substantially different from those predicted
by G0W0@PBE calculations; this is understandable since the
PBE wavefunctions are not a good approximation of the band
edges of water, as shown in Ref. [67]. The DDH calculations
are instead in good agreement with the values reported in
Ref. [67] and obtained at the G0W0@sc-hybrid level, where

FIG. 7. The local dielectric function ε(z) of the unreconstructed,
H-terminated Si(111) surface (Si-H) [average of ε(r) over the (x, y)
plane] is plotted as a function of z, the direction perpendicular to the
surface, on the upper panel. We show values obtained as a function
of the number of iterations, when using the procedure outlined in
Fig. 5. The band offsets between the H-Si surface and vacuum,
computed at different levels of theory, are shown on the right panel.
We show results computed with the functional of Eq. (8), PBE and
the G0W0@PBE level of theory, obtained with the WEST code.
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FIG. 8. Dielectric function [ε(z), average of ε(r) in the (x, y)
plane] and band offsets of four interfaces computed using the DDH
functional of Eq. (8). The dielectric function ε(z) is computed using
the method outlined in Fig. 5; results are shown as a function of the
number of iterations. The direction z is perpendicular to the interface.
The electric field is applied along the x direction. The dashed lines for
the band offsets of aqueous interfaces are the results of G0W0@DDH
calculations of water from Ref. [67], with the conduction band
of H2O aligned with the minimum of the conduction band of the
corresponding interface.

the mixing fraction was taken equal to the electronic dielectric
constant of water. The band gap (10.5 eV) is also in good
agreement with that found in Ref. [67]. In the case of Si/Si3N4

(Table III), we compare our DDH results with experiment, and
we find good agreement (the band gap of silicon is again larger
than in experiment, due to finite size effects, i.e., to the small
slab chosen in our calculations).

VI. CONCLUSIONS

We introduced a general dielectric-dependent functional,
which is applicable to any semiconductor and insulator and
does not contain any adjustable parameter. The functional
is a generalization of the self-consistent hybrid functional
for homogeneous solids introduced in Ref. [53], and it is

TABLE III. Band offsets (eV) computed at different levels of
theory [using the PBE functional and the functional of Eq. (10),
with the procedure of Fig. 5] for the silicon-silicon nitride interface,
compared with experiment (from Ref. [101] and the references
therein)

Si/Si3N4 PBE DDH Exp.

Conduction band offset 1.2 1.9 1.83–2.83
Valence band offset 0.7 1.3 1.5–1.78

defined using a local, spatially dependent dielectric function.
We justified the definition of the functional and the spatial
variation of the dielectric function using the disentanglement
of the dielectric spectra of heterogeneous systems in terms
of the spectra of subsystems; such a disentanglement was
achieved using linear combinations of dielectric eigenvectors
localized in real space. The local dielectric function was then
computed self-consistently by carrying our density functional
calculations in finite electric fields.

We showed that the dielectric hybrid functional introduced
here predicts the band gaps and dielectric constants of three-
and two-dimensional solids, as well as band offsets of surfaces
and interfaces, with an accuracy comparable to that of GW
calculations, thus paving the way to efficient and accurate
calculations of the electronic properties of complex hetero-
geneous systems.

Finally we note that the formulation introduced in our work
provides a definition of the dielectric thickness of interfaces
and 2D systems, and a physical interpretation of the spatial
variations of single particle energy levels upon the formation
of interfaces.
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