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Diffusion-induced grain boundary migration is a phenomenon in which a grain boundary moves in response
to the driving forces generated by diffusing solute species. For example, diffusing solute species change the
atomic volume in the host material, either by filling a vacancy with a misfitting solute atom or by expanding host
lattices through interstitial diffusion. These volume changes are inhomogeneous and are stored as elastic energy
in the material that drives grain boundaries. In this paper, we introduce our previously developed Cahn-Hilliard—
phase-field-crystal model (CH-PFC) as a computational tool to investigate diffusion-induced grain boundary
migration in crystalline materials. This multiscale phase-field model couples the composition field of a diffusing
species with the crystallographic texture of a host material. We apply the CH-PFC model to battery electrodes
and investigate whether interstitial solute diffusion induces grain growth in FePO,/LiFePO, electrodes. To this
end, we compute grain growth in 60 FePO, electrodes by conducting two parallel trials: In the first trial, we cycle
the electrode and calculate diffusion-induced grain growth. In the second trial, we do not cycle the electrode and
calculate curvature-driven grain growth. We find a statistically significant grain growth in the cycled electrodes
and negligible grain growth in the noncycled electrodes. Overall, we show that the CH-PFC model not only
predicts electrode microstructures as a function of the Li composition, but also predicts the crystallographic

features of an electrode during battery operation.

DOI: 10.1103/PhysRevMaterials.3.065404

I. INTRODUCTION

Grain boundaries are two-dimensional (2D) crystallo-
graphic defects in a solid material that affect the material’s
mechanical, electrical, and thermal properties. For example,
grain boundaries typically disrupt dislocation motion and
make the material harder to deform [1]. Grain boundaries are
also preferential sites for precipitation and cavitation that lead
to intercrystalline fracture [2]. Furthermore, the grain size of
a material alters its properties, such as the fracture toughness
and hardness [3,4]. An approach, therefore, to engineering
material properties would be to control its microstructural
features, such as grain size and grain boundary migration,
during production processes and device operation.

A grain boundary moves in response to the driving forces
acting on the boundary. These driving forces include curvature
[5], temperature gradients [6], residual stresses, and/or phase
transformations [7]. In this paper, we focus on diffusion-
induced grain boundary migration (DIGM) in crystalline ma-
terials. In these phenomena the grain boundary moves in
response to the driving forces generated by a diffusing solute
species [8]. For example, in certain polycrystalline materials
lattice parameters vary as a function of the diffusing solute
composition.! This results in lattice parameter gradients that
contribute to coherency strains in the material [9]. However,
the material’s compliance constrains these coherency strains
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!The lattice parameter changes typically arise from misfitting so-
lute atoms and/or interstitial diffusion.
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and produces internal stresses. When these stresses act at grain
boundaries they may induce grain boundary migration, which
reduces the elastic energy of the material system [10].

We investigate the DIGM phenomenon using the lattice
parameters of FePO,/LiFePO, battery material as an exam-
ple. During charging/discharging of a battery, Li diffuses into
the interstitial lattice site of intercalation (insertion-type) elec-
trodes [11] and induces lattice volume changes of up to ~10%
[12]. These lattice volume changes are often anisotropic
and generate coherency strains between the lithiated and the
delithiated phases of the electrode [13,14] (see Fig. 1). We
hypothesize that these diffusion-induced coherency strains are
constrained by the electrode material’s compliance and act as
a driving force for grain boundary migration in polycrystalline
electrodes [9,10]. We test this hypothesis in a theoretical and
computational framework.

Current material models work at different length and time
scales [9,15-24]. Continuum methods (such as phase-field
models) typically describe the time evolution of microstruc-
tures by homogenizing the crystallographic texture of the
material [15,19,25-27]. A crystallographic phase-field model
builds on the classic phase-field model by introducing grain
orientation as an additional order paramenter [28], however,
these methods do not model individual lattice distortions.
Furthermore, the position and orientation of grain boundaries
and edge dislocations are typically predefined in the model
[28]. Atomistic models, such as first-principle methods and
molecular dynamics models [20,29,30], provide atomistic in-
sights into lattice distortions [23,31]. These approaches are
not currently applicable to the length scale and time scales for
microstructural evolution. Accelerated molecular dynamics
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FIG. 1. Schematic of interstitial solute diffusion into a poly-
crystalline material. Here, the lattice parameters of the material
vary with the solute concentration [i.e., a(cs) and a(cp) in the
presence/absence of an interstitial solute]. This gradient in the lattice
parameter produces stresses at the proximity of a grain boundary that
induces its movement.

methods use the transition-state theory to overcome the time-
scale limitation [32] and have been applied to simulate crystal
growth [33].

In our recent work [34], we combined a Cahn-Hilliard
model with a phase-field-crystal model (CH-PFC). In this
2D theoretical framework, the phase-field-crystal equation
models the crystallographic texture (coarse-grained lattice
arrangements) of a host material, and the Cahn-Hilliard equa-
tion models the composition field of an interstitially dif-
fusing solute species (continuum scale). The two equations
are combined to describe lattice parameter changes of the
host material as a function of the composition field. This
coupled approach enables us to investigate whether diffusion
induces grain boundary migration in the host material. We use
the physical parameters of FePO,/LiFePO, electrodes and
investigate whether interstitial diffusion induces grain growth
in electrodes.

The aim of the present work is to investigate diffusion-
induced grain boundary migration using the CH-PFC model
as a computational tool. We first provide an overview
of the CH-PFC framework using lattice parameters of
FePO,/LiFePO, as an example. Next, we apply the model
to compute diffusion-induced grain boundary migration in an
FePOy electrode during a typical charge/discharge cycle. We
then test the hypothesis that interstitial solute diffusion in-
duces grain growth in polycrystalline electrodes. We compute
grain growth in 60 FePO, electrode particles each having a
unique crystallographic texture in the initial state. We then
randomly select these electrodes to be either cycled or not
cycled. In the cycled case, we lithiate and delithiate electrodes
and compute the electrode’s mean grain size before and after
cycling. We use the noncycled electrodes as the control set. If
Li diffusion induces grain growth, then electrodes in the cy-
cled case should demonstrate increased grain growth relative
to electrodes in the noncycled case. Finally, we demonstrate
DIGM by showing that grain growth in cycled electrodes is
statistically greater than grain growth in noncycled electrodes.

II. CAHN-HILLIARD-PHASE-FIELD-CRYSTAL MODEL

The CH-PFC model couples the interaction between a
material’s crystallographic texture and a continuum solute-
composition field. This modeling approach combines two
order parameters: the first is the peak density field ¥ (X)
(described by the phase-field-crystal equation [35]), which

represents the crystallographic texture of a host material; the
second is the solute-composition field ¢(X) (described by the
Cahn-Hilliard equation). We use the physical parameters of
FePO,/LiFePO, to model lattices in the host material ¥ (X),
and the solute-composition field c¢(¥) represents the fraction
of interstitial sites in the FePO, electrode occupied by Li
per unit volume. These two order parameters are coupled to
model FePO,/LiFePOy, lattice transformations during battery
operation. Below we describe the free energy of the coupled
CH-PFC model. Further details of the CH-PFC model are
given in Ref. [34] and in the Appendix.
The free energy of the coupled CH-PFC model is

J—'z/{g(C)+IVc|2+y[f(r,1p)+%G(Vf)gﬁ“d}?
)]

In Eq. (1), the polynomial g(c) represents a regular so-
lution model [19,36] that describes a double-well poten-
tial. The two minima of this double well, ¢(X¥) =0 and
c(X) = 1, correspond to the delithiated (FePO,) and lithiated
(LiFePO,) phases, respectively.” The gradient term |Vc|? is
the penalty for the changing Li-composition field across the
FePO,/LiFePO, diffuse phase boundary.> The polynomial
fny)+ %G(Vf)w is the simplest approximation of the
phase-field-crystal equation that produces periodic structures.
For example, in an FePO, electrode the phase-field-crystal
equation produces its coarse-grained lattice arrangements.
The term %G(Vf)l/f is the energy penalty resulting from
the changing host-lattice structure across the diffuse phase
boundary. The difference in lattice geometries between the
FePO,/LiFePOy phases gives rise to a coherency strain across
the phase boundary. This is a natural outcome from the
simulation and is not modeled as an approximation from the
composition field [19,37-39]. Further details of the coeffi-
cients in Eq. (1) are given in the Appendix and in Ref. [34].
Next, we give an overview of the Laplace operator V2 and the
field »(X) and describe how the CH-PFC model is solved.
The Laplace operator V? introduces the coupling between
the electrode lattice geometry and the solute-composition
field [34]. The transformation coefficients of the anisotropic
Laplace operator comprise two independent variables, o
and B, which control the FePO,/LiFePO, lattice geome-
tries.* These variables are functions of the composition
field, a(c) = app + (aLpp — app)c and B(c) = Brp + (BLre —
Brp)c, and model the FePO,/LiFePO, lattice symmetries.
For example, with Li composition ¢(X¥) =0 and c(X) = 1,
the transformation coefficients correspond, respectively, to
the lattice geometries of FePO4 and LiFePO, in the a-c (or
ai-a3) plane (see Table I). Across a diffuse interface, where

>The X in LixFePO, and c(¥) are related by normalization coeffi-
cients that rescale the double-well potential described by g(c).

3The FePO,/LiFePO, phase transition is first order, however, an
interphase region LiyFePO, with 0 < X < 1 has been observed in
experiments [40,44]. This interphase region reduces lattice misfit at
FePO,/LiFePO, contact [44]. In the present work, we approximate
the interphase region to correspond to a diffuse phase boundary.

4Both FePO, and LiFePO, have orthorhombic symmetries and un-
dergo displacive transformations as a function of the Li composition.
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TABLE 1. List of lattice parameters (a;, az) for FePO, and
LiFePO, used in CH-PFC simulations [41]. The variables « and
are calculated using ay = az(gepo,) = 4.788 A as the reference. These
coefficients describe rectangular geometries of FePO, and LiFePO,
lattices at ¢ = 0 and ¢ = 1, respectively.

ar (A) a; (A) a=5  p=2
FePO, (FP) 9.821 ap = 4.788 2.0512 1
LiFePO, (LFP) 10.334 4.693 2.1583 0.9802

0 < c¢(X¥) < 1, the transformation coefficients are interpolated
as a(c(X)) and B(c(X)), and averaged lattice geometries inter-
mediate to FePO, and LiFePO, lattices are modeled.

Next, the value of the field r(X) controls the crystalline-to-
amorphous transition of the peak density field. For example,
with r(X) = —0.2, ¥(X) is a constant and Eq. (1) models
a disordered/amorphous state; for r(X) = 0.2, ¥ (X) has a
periodic waveform solution that describes a crystalline state.
In earlier PFC models, r(X) has been used as an approxima-
tion of the temperature gradient between ordered (solid) and
disordered (liquid) phases [42,43]. In this work, we use r(X)
as a proxy to model the crystalline (electrode) and amorphous
(Li-reservoir) system.

Finally, the evolution of the two order parameters follows,
respectively, the Cahn-Hilliard equation for interstitial solute
diffusion,

X ovil @)
ot éc
and the elastic-relaxation equation for the host lattice
structure,

o _SF 1 [6F
o= W+L2/wdx. 3)

We assume that the elastic relaxation [equilibrating the peak
density field in Eq. (3)] is infinitely faster than the evo-
Iution of the composition field. Consequently, we model
the equilibrium lattice arrangements by maintaining gi ~ 0
throughout the phase transition. The CH-PFC model is solved
using an Euler discretization scheme in a 2D finite-difference
framework. The computational grids have spacings of dx =
8y = qot]f/? and have periodic boundary conditions.’ At each
grid point, the values of the composition field c¢(¥), the peak
density field ¥ (¥), and the constant r(X) are represented in
discrete form as ¢;;, V;;, and r;;, respectively. Next, we present
a CH-PFC simulation of a representative electrode and discuss
its key features.

III. APPLICATION TO ELECTRODE MICROSTRUCTURES

We model a polycrystalline FePOy electrode® surrounded
by an amorphous Li reservoir using CH-PFC methods. We
first describe the electrode’s key features and highlight its
crystallographic defects. We then track the evolution of these

3The length scale of the CH-PFC model is %
®Diameter d = 2908,; periodic grid size, 3408x x 3408y.

crystallographic defects in two parallel studies: first, we cycle
the electrode by inserting and extracting Li; second, we do
not cycle the electrode and compute its peak density field
evolution [i.e., Eq. (3)]. Throughout this section, we apply
the CH-PFC model to a Li-storage electrode and discuss its
advantages and limiting conditions. We compare the CH-PFC
results with results in the existing literature on microstructures
in electrode materials.

A. Interpreting a CH-PFC simulation

A partially lithiated electrode particle is shown in Fig. 2(a).
The Li-composition field ¢;; (indicated by the color bar) high-
lights the FePO,4 and LiFePO, phases, which are separated by
a diffuse phase boundary. The peak density field ;; describes
the crystallographic texture of the host electrode. Individual
peaks in Fig. 2(a) have an ellipsoidal shape; this shape is an
artifact of the CH-PFC model and results from the anisotropic
transformation coefficients in the Laplace operator V2 [34].
The individual peaks correspond to the coarse-grained lattice
points of the host electrode and are free to undergo displacive
translations.”

Figure 2(b) shows the peak density field ;; with a periodic
waveform in the electrode region, which gradually changes to
a constant value in the amorphous Li reservoir. This change in
i; results from the abrupt change in r;; values modeled across
the electrode-reservoir interface. The electrode-reservoir in-
terface is associated with a surface energy contribution re-
sulting from the difference between the crystalline-electrode
and amorphous-reservoir regions. In this work, the CH-PFC
model does not account for the surface energy term. This
surface energy contribution is important for investigating the
wetting effects on phase transitions [45,46] and will be a
subject for future study.

The “peak marker image”® highlights the crystallographic
features of the FePO,/LiFePO, electrode [see Fig. 2(c)].
Label “A,” indicated by the magenta crystallographic planes,
marks a coherent interface. Label “B” marks three grain
boundaries that intersect to form a triple junction. The di-
hedral angle(s) between these grain boundaries influences
the migration of the grain boundary system. Label “C” in-
dicates a high-angle grain boundary with a misorientation
angle of > 15° and has a chain of edge dislocations, as
shown by green circles. Label “D” shows an edge disloca-
tion defect, highlighted by a pair of short blue lines. These
crystallographic features are an emergent phenomenon of the

"Note that these are not atomic sites of the electrode material
and correspond to the coarse-grained lattice points [34]. In the PFC
formalism, new peaks can emerge or disappear on the computation
grid. However, this nonconservation of peaks does not affect the
coarse-grained lattice geometry of the electrode. The width of the dif-
fuse phase boundary is numerically calibrated to span approximately
four lattice spacings, as described by ¥ (¥) [see box AA in Fig. 2(a)].
This phase boundary is analogous to the “staging structure” observed
in some intercalation compounds with a nonstoichiometric Li com-
position in the interface (i.e., LixFePO,, where 0 < X < 1) [44].

$Where the peak centroids are substituted with a 2D Gaussian
distribution.
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FIG. 2. (a) CH-PFC simulation of a partially lithiated FePO, electrode particle that is surrounded by an amorphous Li reservoir. The
color bar shows the Li composition in FePOy (blue; ¢;; = 0) and LiFePO, (red; ¢;; = 1) phases. The small black box shows a diffuse phase
boundary (yellow; 0 < ¢;; < 1) separating the two phases along AA. The width of this diffuse interface (highlighted by dashed vertical lines)
is numerically calibrated to span approximately four lattice points. (b) Enlarged image of the electrode lattice symmetry is shown in the box
labeled BB. In the electrode region, the peak density field ;; has a waveform where the coordination symmetry of ellipsoidal peaks represents a
LiFePOj lattice. In the Li-reservoir region, v;; is a constant and describes an amorphous state. At the electrode-reservoir interface, ¥;; changes
as a function of r;; according to Eq. (A1). (c) “Peak marker image” illustrating the crystallographic features in the polycrystalline electrode:
coherent interface, A; triple junction, B; chain of defects, enclosed in green circles, which forms a high-angle grain boundary (> 15°), C’, and

an edge-dislocation defect, D.

CH-PFC simulation [47], unlike in previous works, where
these features were empirical parameters in the model [28].
We next lithiate and delithiate this electrode to investigate how
its crystallographic features evolve during battery operation.

B. Cycled electrode

To lithiate/delithiate the electrode, we specify a chemical
potential to the Li reservoir that is held fixed during the
computation. This boundary condition is a proxy for our as-
sumption that the Li intercalation rate is higher in the reservoir
than in the electrode particle. For example, we specify the Li
reservoir with ¢;; = 1, which is fixed during lithiation. The
composition gradient between the FePOy electrode (c;; = 0)
and the Li reservoir creates a boundary condition, which
causes Li to diffuse into the electrode.’

Two features of this work limit the strength of the conclu-
sions we can draw about Li-diffusion-induced grain growth.
The first limitation is the “artificial boundary condition” ap-
plied to the electrode-reservoir interface (see Fig. 3). The
electrode volume (or area) is held constant during the com-
putation, though the number density of peaks in this electrode
is not conserved. Peaks move in/out at the electrode-reservoir
interface to accommodate the lattice-area change during
FePO,/LiFePO, phase transition.'? This artificial boundary
condition does not impose volume-confinement stresses on

9During delithiation the Li reservoir is held fixed at ¢;; = 0 and Li
diffuses out of the LiFePO, electrode.

10Please note that the addition/removal of peaks does not affect the
coarse-grained lattice structure described by ¥;; [34].

the electrode, which could affect grain growth in electrode
particles. The second limitation is that Li diffusion is modeled
as a boundary-condition-driven diffusion, and electromigra-
tion is currently not incorporated in the CH-PFC model.
A possible refinement to this model would be to solve the
Poisson-Nernst-Planck equation to investigate whether treat-
ing Li as a charged particle will yield comparable results
on diffusion-induced grain growth. At present, we investigate
whether diffusion-induced lattice volume changes (elastic en-
ergy changes) in the electrode alone induce grain growth.
Figure 3 shows the temporal evolution of the electrode’s
microstructure during battery operation. The top row shows
the electrode’s lattice arrangements as a function of the Li
composition. The middle row shows the approximate posi-
tions of representative grain boundaries A—D. The bottom row
shows the distortion maps, which illustrate FePO,4/LiFePO4
coarse-grained lattice transformations during battery opera-
tion. In these maps, a voronoi mesh for the lattice points
is generated, and the centroid of each voronoi cell is cal-
culated.!' The distortion is calculated as the absolute dif-
ference in the centroid positions with a reference state
8ij = w . The numerator represents the euclidean
distance between a centroid position x;; at time T and its

"'Tn the PFC formalism, calculating individual lattice distortions
would be prone to artifacts arising from the nonconservation of
peaks. We have addressed this challenge by plotting voronoi mesh,
which describes the coarse-grained lattices in a polycrystalline elec-
trode. The centroids of individual voronoi cells are then used to
compute coarse-grained lattice distortions as shown in Fig. 4.
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FIG. 3. Lithiation of the polycrystalline FePO, electrode particle. Starting from an initial FePO, phase (a), Li ions intercalate into the
electrode particle (b, c). A LiFePO, phase is formed at the end of lithiation (d). The plots in the top row show the temporal evolution
of the Li composition ¢;; in the electrode particle. The plots in the middle row show the structural transformation of lattices in the host-electrode
during lithiation. Labels A-D highlight representative crystallographic features in the electrode particle. The plots in the bottom row illustrate
the distortion maps §;; corresponding to each stage of lithiation. We interpret §;; to show coarse-grained lattice distortions induced from Li

intercalation.

initial position at T = 0 in Fig. 3(a). The normalizing constant,
8o = Brp = 44—%, is the equilibrium separation between two
0

adjacent Gaussian peaks.

The CH-PFC simulations provide insights into atomistic
features of electrode microstructures during battery operation.
For example, grains a; and B shrink until they disappear
at the end of the lithiation/delithiation cycle (see middle
row in Fig. 3). Although grains a; and B are of comparable
sizes, Fig. 3 qualitatively illustrates that grain a; shrinks
more rapidly than grain B. We interpret this slow migra-
tion of the grain boundary system B as resulting from the
triple-junction drag effect. Another feature captured by these
simulations is that grain boundaries such as C tend to move
towards their center of curvature. This is consistent with
motion by curvature observed in material microstructures
[5,48,49]. The edge dislocation D is also observed to move
towards the electrode particle’s surface during delithiation. In
these simulations we refer to the grain boundary motion with a
local change in orientation that requires no long-range diffu-
sion. The activation energy for the displacements to achieve
this grain boundary motion could be related to the solute
atmosphere, and therefore separation of time scales between
crystallographic texture evolution and Li diffusion would be
possible [48]. In our computations, we solve crystallographic
texture evolution using Eq. (3), which is instantaneous in
comparison to Li diffusion [Eq. (2)].

The distortion maps indicate lattice distortions §;; ~ 0.12
in the lithiated/delithiated phases of the electrode parti-
cle (see bottom row in Fig. 3). We interpret these distor-
tions as corresponding to the lattice strains that accompany
the FePO,/LiFePO, phase transition. We observe relatively

greater distortions §;; > 0.5 along grain boundaries in the
electrode. We interpret these greater distortions as corre-
sponding to the grain boundary migration. The distortion
maps highlight a couple of advantages of the CH-PFC model.
The first is that lattices deform independently as a func-
tion of the interstitial solute composition. This generates an
inhomogeneous strain field in the electrode because lattice
geometries differ across phases. The second is that crystal-
lographic defects in the polycrystalline electrodes, such as
grain boundaries and edge dislocations, also contribute to the
inhomogeneous strain field in electrode particle.

Figure 3 shows the isotropic Li diffusion in electrodes,
however, in olivine materials, such as FePOy, Li preferen-
tially diffuses through the host’s one-dimensional channels
[50]. This preferential Li intercalation is not observed in
the polycrystalline electrode in Fig. 3. In previous contin-
uum models [13,14,16,26], where the crystallographic planes
of FePO, are fixed, researchers have modeled anisotropic
Li intercalation with reference to a Cartesian plane. In the
CH-PFC model, however, the crystallographic planes of
FePO,/LiFePO, emerge from simulations, and we assume
an isotropic bulk-diffusion coefficient D in Eq. (2). We
do, however, see anisotropy in Li diffusion because of the
coordinate transformation coefficients in the coupled term
sz%a%cvf)w in Egs. (1) and (2). This anisotropic effect is
negligible in Fig. 3 because the diffuse phase boundary spans
approximately four lattice spacings. We discuss details of this
anisotropic effect further in the Appendix.

Another feature to note is that, despite the thermodynamic
transition modeled by the CH-PFC model Eq. (1), none
of the lamellar phase separation morphologies observed in
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FePO,/LiFePO, electrodes appear in the computations in
Fig. 3. Such lamellar structures are typically derived from
stored elastic energy in the system. For larger systems, the
conditions for lamellar structure can be treated with contin-
uum treatments [S1]. We hypothesize that, for the smaller
particles treated in this paper, the stored elastic energy is
not high enough to create lamellar structures or that the
external surface affects the internal morphology. We propose
to explore the interaction between crystallographic features
and phase separation morphologies in electrodes at larger
length scales in a future study.

Overall, several features of CH-PFC simulations in Fig. 3
are consistent with the microstructural evolution observed
in experiments. For example, the triple-junction drag effect
has been observed by Shvindlerman ef al. [52,53] and has
also been reported for electrode microstructures [54]. Dislo-
cation dynamics under an external load have been observed
in experiments [55,56], when an applied current induced
dislocation movement in an intercalation cathode particle
(LiNigsMn; 504). The dislocation was stable at room tem-
perature and migrated to the particle surface under an elec-
trical load [55]. Similarly, in hydrogen-palladium nanocubes
hydrogen diffusion into palladium particles mobilized edge
dislocations in the particle [56]. These past experimental
observations are consistent with the CH-PFC computations;
Fig. 3 suggests that Li intercalation affects grain boundary and
edge-dislocation migration. We next explore whether grain
boundaries in the electrode particle are equally mobile without
Li intercalation (i.e., no additional driving force).

C. Noncycled electrode

Starting from the same electrode as in Fig. 3(a), we model
a homogeneous Li-composition field ¢;; = 0 on the computa-
tion grid. The peak density field is evolved by iterating Eq. (3)
for the same time Ty as required to cycle the electrode in
Fig. 3. We refer to this computation as the “noncycled grain
growth” of the electrode.

Figures 4(a) and 4(b) illustrate, respectively, the lattice
arrangements in the electrode before and after the computa-
tion. The lattice distortion map in Fig. 4(c) shows structural
rearrangements in the electrode. Lattice distortions §;; ~ 1
are primarily observed along grain boundaries with a nonzero

(b) (0)

FIG. 4. Lattice rearrangements in the noncycled polycrystalline
electrode particle. The electrode-reservoir system is modeled with
a homogeneous Li composition c¢;; =0 and computed for the
same time (7o) and temperature as in Fig. 3. Host-electrode
lattice arrangements (a) before, 7 /7o = 0, and (b) after, t/Tiowm =
1, the noncycled grain growth. (c) The lattice distortion map &;;
calculated as the absolute difference in centroid positions between
the before and the after stages of the noncycled electrode. The
distortion map illustrates coarse-grained lattice rearrangements near
grain boundaries.

radius of curvature. This suggests that curvature drives grain
boundary migration in Figs. 4(b) and 4(c). These migra-
tions are, however, small in comparison to those in Fig. 3.
For example, in Fig. 3 grain B shrinks at the end of the
lithiation/delithiation cycle. In Fig. 4, however, with no inter-
stitial solute diffusion, grain B decreases in size only slightly.
Similarly, grains A and C show a small variation in their
shape and size. Figures 3 and 4 suggest that interstitial solute
diffusion assists (or accelerates) grain boundary migration.
We next test the statistical significance of this comparison by
computing grain growth across 60 FePO, electrodes of two
sizes.

IV. DOES Li DIFFUSION INDUCE GRAIN GROWTH IN
INTERCALATION ELECTRODES?

We compute grain growth in 60 polycrystalline FePOy
electrodes of sizes d = 508y and d = 1004,. First, we choose
one half of the electrodes (at random) to compute a pairwise
comparison of grain growth. That is, we compute the grain
size in the same electrodes both before and after electrochem-
ical cycling (intervention-cycled set) and before and after an
equivalent time of noncycling (paired-noncycled set). Second,
we compute the grain size before and after an equivalent
time of noncycling in the remaining half of the electrodes

TABLE II. Description of notations used in grain growth calculations.

Notation Description

d Electrode size

&/d Grain size of the ith electrode before CH-PFC computation normalized by electrode size (at 7 = 0)

gi/d Grain size of the ith electrode after CH-PFC computation normalized by electrode size (at T = Tyoa1)
G; Grain growth in the ith electrode at the end of CH-PFC computation (g¢ — g%)/d

G, GIN, GWN Grain growth in the ith electrode of the intervention-cycled (IC) set, paired-noncycled (PN) set, and

unpaired-noncycled (UN) set, respectively

A7(;IC-PN s A7c;IC-UN > A7(;PN-UN

1

Mean difference in grain growth between IC and PN sets 1 Y7 (GI€ — GIN), where n is the total number

n

of electrodes in each set. Likewise, AGjc.yn and AGpn.yn are the mean differences in grain growth
between intervention and unpaired sets and between paired and unpaired sets, respectively.
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Intervention-cycled

Paired-noncycled

Unpaired-noncycled

12 12 12

Grain size after 9 9 9
cycling/noncycling 4 L o 7L7
(g°/d) o 9 12 9 12 9 12

p <0.001 p=0.02 A p=0.01

Gic = 0.459 Gpn=0.121 || 7 Gun=0.131

3 4 5 3 4 5 3 4 5
Grain size before cycling/noncycling (g°/d)
(a) (b) (©)

FIG. 5. Grain sizes in electrode particles d = 508, (inset: d = 1003) in the (a) intervention-cycled, (b) paired-noncycled, and (c) unpaired-
noncycled sets. Axes indicate the grain size in electrodes before (g°) and after (g°) CH-PFC computations. The dotted line is a reference line
along which there is zero grain growth in electrodes. Solid lines show the linear model fit to the data points, and gray-shaded areas correspond
to the 95% confidence interval. There is statistically significant grain growth in all three sets (p < 0.05), however, the estimated mean grain
growth in the intervention-cycled (Gjc = 0.459) set is greater than the estimated mean grain growth in the paired-noncycled (Gic = 0.121)

and unpaired-noncycled (Gic = 0.131) sets.

(unpaired-noncycled set). In all sets, we measure grain growth
after a computational time of tyy,. Furthermore, we esti-
mate the size of the differences in grain growth between
the three sets using a linear parametric model. Compar-
ing the intervention-cycled set to both the paired- and the
unpaired-noncycled sets shows to what extent any observed
effects are dependent on the specific microstructures in the
paired sets. In this section, we test our hypothesis that the
grain growth in intervention-cycled electrodes is greater than
grain growth in both the paired-noncycled and the unpaired-
noncycled electrodes. To support our hypothesis we need to
satisfy two conditions: (a) the mean difference in grain growth
between the cycled and the noncycled sets is statistically
significant (p < 0.05) in both the intervention-paired and the
intervention-unpaired comparisons; and (b) the mean differ-
ence in grain growth between the two noncycled sets (i.e.,
paired-unpaired comparison) is not statistically significant
(p > 0.05).

Before we present the results we first introduce sev-
eral notations that are used in the grain growth calcula-
tions listed in Table II. The average grain sizes of an elec-
trode before and after the CH-PFC computation are given
by g°/d and g¥/d, respectively. We compute grain growth
in individual electrodes as G; = (g* — g°)/d. We compute
the mean differences in grain growth (for example, be-
tween the intervention-cycled and the paired-noncycled set)
by subtracting the mean grain growth in the intervention-
cycled set from the mean grain growth in the paired-noncycled
set [AGicpN = (E,I-C - EfN)]. We compute these mean dif-
ferences between the intervention-paired, the intervention-
unpaired, and the paired-unpaired sets for electrodes of both
sizes, d = 508 and d = 1005.

To test our first condition we compute the grain size in
electrodes before (go) and after (g) electrochemical cycling
(or noncycling). Figures 5(a)-5(c) show the grain sizes in
electrodes from the three sets, namely, the intervention-cycled
set, paired-noncycled set, and unpaired-noncycled set. The
dashed line is a reference line that indicates no grain
growth in electrodes [G = (g° — g°)/d = 0]. Points above

this reference line indicate electrodes with positive grain
growth (G > 0), while electrodes below the reference line
indicate negative grain growth (G < 0). Figure 5 shows
that there is statistically significant grain growth in all
the sets (p < 0.05)."” As hypothesized, we find a greater
estimated mean of grain growth in the intervention-cycled
set (Gic = 0.459) than in either the paired-noncycled set
(Gpn = 0.121, AGic.px = 0.337) or the unpaired-noncycled
set (Gun = 0.131, AGic.uny = 0.328) in electrodes of size
d = 506,. Likewise, in electrodes of size d = 1005, we find
greater grain growth in the intervention set than in either of
the paired/unpaired noncycled sets (Gic = 1.111, Gpn =
0.506, Guxn=0.504, AGic.px = 0.605, AGic.uxy = 0.607).
Table IIT lists the mean differences in grain growth for
each of the six comparisons with 95% confidence intervals
and p values. All of the mean differences in grain growth
involving the intervention set are statistically significant as
shown in Table III. We interpret these results as follows:
in the paired-noncycled and unpaired-noncycled sets,
the nonzero curvature of grain boundaries induces grain
growth in electrodes. However, in the intervention-cycled
set, Li diffusion induces grain growth in electrodes in
addition to the nonzero grain boundary curvature. This
additional driving force contributes to greater grain
growth in the intervention-cycled set, in comparison to
the paired-noncycled/unpaired-noncycled sets.

We next test our second condition, that the mean dif-
ferences in grain growth between the two noncycled sets
(paired and unpaired) is statistically nonsignificant. Table III
reports a negligible mean difference in grain growth be-
tween the paired-noncycled and the unpaired-noncycled sets
(AGpn.ux = —0.009 for d = 508y and AGpn.ux = 0.001 for
d = 10048y). As hypothesized we find that the mean difference

12Note that there are two sets of p values reported in Fig. 5 and
Table III, respectively. The p values shown in Fig. 5 correspond to
grain growth in individual sets, and the p values listed in Table III
correspond to mean differences in grain growth between sets.

065404-7



RENUKA BALAKRISHNA, CHIANG, AND CARTER

PHYSICAL REVIEW MATERIALS 3, 065404 (2019)

TABLE III. Confidence intervals for the mean differences in grain growth across conditions. The estimates for the intervention-paired
and the intervention-unpaired sets are positive, AG > 0, suggesting that a statistically significant difference in grain growth between the
cycled (intervention) and the noncycled (paired /unpaired) sets is observed (p < 0.05). The estimates for the paired-unpaired sets are AG = 0,
indicating a negligible difference in grain growth between the two noncycled (paired-unpaired) sets of electrodes (p ~ 0.89).

Comparison between electrode sets A and B

95% confidence interval
around estimated mean

Electrode Estimated Standard Lower Upper
A B size (d) mean (AGag) error bound bound p value
Intervention-cycled Paired-noncycled 5068 0.337 0.0731 0.195 0.481 <0.001
Intervention-cycled Unpaired-noncycled 5080 0.328 0.0731 0.185 0.472 <0.001
Paired-noncycled Unpaired-noncycled 508 —0.009 0.0731 —0.153 0.133 0.893
Intervention-cycled Paired-noncycled 10060 0.605 0.238 0.138 1.07 <0.01
Intervention-cycled Unpaired-noncycled 10068 0.607 0.238 0.140 1.07 <0.01
Paired-noncycled Unpaired-noncycled 1008, 0.001 0.231 —0.464 0.467 0.893

between the paired and the unpaired noncycled set is not
significant (p = 0.893 for both electrode sizes).

Our findings support the diffusion-induced grain bound-
ary migration discussed in the works by Handwerker et al.
[9,10]. Li diffusion induces volume changes in the host
electrode. These volume changes generate coherency strains
that are constrained by the compliance of the electrode ma-
terial. This results in a stored elastic energy in the system
that mobilizes grain boundaries and edge-dislocation defects.
These results suggest that repeatedly charging/discharging
a battery increases the mean grain size in electrodes. Fur-
thermore, electrodes with a large grain size have a reduced
fracture toughness in comparison to electrodes with smaller
grains [57,58]. Figure 5 suggests that Li diffusion is an
additional process that affects the mechanical reliability of
electrodes.

We find the work of Bates et al. [59] on sputter-deposited
thin-film cathodes to be the closest experimental comparison
to the diffusion-induced grain growth effect suggested by
our present work. Bates et al. [59] described the cathodes
as undergoing grain growth during electrochemical cycling
at near-ambient temperature [59]. Other related phenomena
are the observations of accelerated grain growth in fluorite-
structure solid electrolytes at elevated temperatures. In these
solid electrolytes the electrical load has been observed to
accelerate grain growth kinetics [60,61]. We suggest that sys-
tematic experimental investigation of battery electrodes after
extensive cycling will reveal diffusion-induced grain growth
as observed in this paper.

More generally, our study is an application of the CH-
PFC methods to investigate the coupled interaction between
a solute-composition field and a material’s crystallographic
texture. Specifically, this modeling approach has three key
advantages: First, the crystallographic texture of the elec-
trode particle is an emergent phenomenon of the CH-PFC
simulations, and grain boundaries and edge-dislocation de-
fects are not empirical parameters in the model [47]. Sec-
ond, electrode lattices distort independently as a function of
the Li-composition field. This generates a coherency strain
across grain boundaries and phase boundaries in polycrys-
talline electrodes [19,37-39]. Finally, the CH-PFC method
provides qualitative insights into atomistic features of elec-

trode microstructures, in situ, during battery operation. These
features of the CH-PFC model could help us to crystallo-
graphically engineer electrodes and to enhance their physical
properties.

V. CONCLUSION

Overall, the results demonstrate that interstitial solute dif-
fusion induces grain growth in polycrystalline materials. We
demonstrated this phenomenon using the physical parameters
of FePO,/LiFePOy electrodes as a model system. While grain
growth from cyclic intercalation has not been experimentally
confirmed, our study suggests that volume changes in elec-
trodes upon Li diffusion drives grain boundary migration.
Furthermore, the results provide insights into edge-dislocation
movement and the triple-junction drag effect in insertion
electrodes, which are consistent with microstructural evolu-
tion observed in experiments. More generally, the present
work demonstrates a potential use of the Cahn-Hilliard—
phase-field-crystal model to probe diffusion-induced grain
boundary migration in crystalline materials. This modeling
framework could be applied to investigate crystallographic
features in other chemomechanically coupled problems that
involve diffusion-induced phase transitions.
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APPENDIX
1. CH-PFC model details

In this section we provide a brief explanation of the CH-
PFC model. For the derivation of the CH-PFC model please
refer to Ref. [34]. The CH-PFC model describes the total free
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energy F as a function of the composition field ¢ and the peak
density field ¢:

F =/{g(€)+K|VE|2+f(¢)+%G(Vf)qj}di‘
= / {RT[E]n(E)—i— (1 =0o)ln(l —¢)] + Qc(1 — )

4
+ K| Vel + %(aATo @+ V) + u%}dr

(A1)
Equation (A1) in its normalized form is

r_F_ / {g(c) Ve + F() + KG(VEW}LH
F 2

= / {cln(c) + (1 =o)n(l —¢)+ Qc(l —¢) + |Vel?

(A2)

+y<%(r+(l+v ) )I//+w—4>}d5f,

where ¢ = £=5 and ¢ = c/)«/_ The gradient energy co-
F 167r§ )2

(€a—Cp)*

that the width of the dlffuse composition interface spans
approximately four lattice spacings described by the peak
density field, ¥. Note that qio is the length scale of the CH-PFC
model and & is the scale factor that coarse-grains lattice units.
The form of Eqs. (A1) and (A2) is similar to that in the work
of Renuka-Balakrishna and Carter [34], where detailed expla-
nations of the specific terms, constants (¢,, ¢p, A, qo, U, &),
and normalizations are provided. Note that the coefficients in
the regular solution model are the same as in Ref. [38]. In
Eq. (A2), g(c) and f(y) describe the homogeneous energy
contributions from the Cahn-Hilliard and phase-field-crystal
equations, respectively. The composition gradient energy is
given by |Vc|?. The parameter r controls the second-order
phase transition of the PFC model. The constant y = u;’g
relates the free-energy normalizations of the Cahn- Hilliard
and the PFC model. In this paper we set y = 1 and & = 1 for
computational expediency. The Cahn-Hilliard and the phase-
field-crystal models are coupled via the operator G(Vf) =
(14 V2)2. The composition field is coupled to the lattice
symmetry via the Laplace operator:

efficient, k =

is numerrcally calibrated such

) 9 9
) 2
=¢ <(A” TAL) g2 +A2za 7 +2AnAn g ay)'

(A3)

Here, Ay, are the elements of the transformation matrix and
are described as functions of the composition field:

alc) =9
A(C) = |: 0 2/;/2') i| .
R

The transformation matrix A(c) describes affine lattice
transformations using the rectangular symmetry of FePO, as
reference. The transformation coefficients are given by «(c) =

arp + (aLrp — arp)c and B(c) = Brp + (BLrp — Brp)c. The
values of (app, Brp) and (orLpp, Prrp) correspond to FePOy

(A4)

' - . - l
1 [
1 [
1 [
1 [
1 [
1 [
1 [
1 [
L - . -I
FePO, LiyFePO;  LiFePO,
A(c=0) A0<c<l1) Alc=1)

FIG. 6. Schematic of the coupling between lattice symmetry and
composition field in the CH-PFC model. The transformation matrix
A(c) is described as a function of the composition field c. For ¢ =
0, A(c) describes a rectangular FePOy lattice (blue box). For ¢ = 1,
A(c) describes the lattice motif of LiFePO, (red box). For0 < ¢ < 1,
intermediate lattice geometries of the interphase LiyFePO, (dashed
black box) are modeled.

and LiFePO, lattices and are obtained from Table I .
At ¢ =0, the transformation coefficients in A(c = 0),
Eq. (A4), represent the rectangular geometry of FePO, in two
dimensions [41] (see Fig. 6). For ¢ = 1 the transformation
coefficients in A(c = 1), Eq. (A4), represent the rectangular
geometry of LiFePO,. Across the diffuse phase boundary,
0 < ¢ < 1, the transformation coefficients in A(c(X)) are
linearly interpolated and describe intermediate lattice
geometries (see Fig. 6). This diffuse interface represents
the coarse-grained lattice symmetry of the staging structure
observed in LiFePO,4 experiments [44].

We assume an isotropic bulk-diffusion coefficient D in
Eqg. (2) to model the evolution of the composition field as

% - v28‘_7:
0T éc¢
9 A(VH4+2v?
— V2 —g(c)—Vzc+y£—( ‘ L)I/f . (A5)
ac 2 oc

Here, 7 is the dimensionless time variable T = tL% and L is
the size of the computation grid. Equation (8) introduces two
Laplace operators V2 and V2, respectively. The Laplacian
V2= ;’; + > describes an isotropic Li intercalation. We
do, however see anisotropy in Li intercalation arising from
the coordinate-transformation coefficients in V2 and from the
presence of grain boundaries in the electrode. The coupled

term V2y % %w is anisotropic and influences Li intercala-
tion. This anisotropic contribution is negligible because of the
diffuse width (approximately four coarse-grained lattices) of
the phase boundary. Furthermore, the value of the constant y
also influences the anisotropy contribution from this coupled

term. In this paper we set y = g‘) = 1 for computational

expediency. That is, the energy contribution from the PFC
equation is negligible (i.e., ~107'°F)). Consequently, Li
intercalation into electrodes is relatively unaffected by the
anisotropy in v;;. However, if y is large, the effects from
material crystallography and lattice defects are expected to
appear in the simulation.
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The lattice arrangement at each composition evolution step
is computed as

o _ F L [T
T +L2/81pdx
= —y[(r+ (V2w + 9]
+ é y[(r+ (1+V2)")y + vz (A6)

Here, we assume that the elastic relaxation (equilibrating the
peak density field) is infinitely faster than the evolution of the
composition field. Consequently, we model the equilibrium
lattice arrangements by maintaining % ~ ( throughout the
phase transition. In Eq. (A6), n is a fictive timelike variable

that is rapidly changing in comparison to the dimensionless
time, 7. Further details on Egs. (A1) and (A2) can be found in
Ref. [34].

2. Modeling lattice symmetries using PFC methods

The coordinate transformation coefficients introduced in
the CH-PFC model [34] resemble the lattice stretch and shear
factors used in the anisotropic PFC methods [62,63]. The
stretch/shear factors deform a lattice symmetry and are used
to calculate the anisotropic model coefficients. The transfor-
mation coefficients in the CH-PFC model, however, differ
from the anisotropic coefficients in that they are coupled to
a composition field, which influences the underlying lattice
symmetry of the host material.
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