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Effective impedance of a locally resonant metasurface
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We study here a mesoscopic metasurface made of a randomly distributed set of long vertical metallic rods
attached to a thin elastic plate. The A0 Lamb wave propagation is strongly affected by the local change in
apparent stiffness of the plate induced by the low-quality factor resonance of the rods. At the resonance, the
plate-plus-rods system is allowed to move freely, and plate waves can penetrate into the metamaterial. At the
antiresonance, the plate behaves in terms of waves as if it was clamped by the rods in the metamaterial region,
which induces large-frequency band gaps. Between the resonant and antiresonant frequencies, the continuous
change in effective rigidity results in a continuous change in reflectivity. In the present paper, we aim at measuring
the corresponding complex impedance of the metasurface in terms of amplitude and phase. Experimental data
are presented to estimate the effective impedance of a locally resonant metasurface, in agreement with theoretical
prediction and numerical simulation.
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I. INTRODUCTION

Over the last two decades, metamaterials have shown huge
potential for manipulating waves in many areas of physics
[1–4]. These applications relate to electromagnetic, mechan-
ical, and acoustic waves [5–7]. In general, the properties of
these metamaterials derive from the spatial arrangement of
their unitary components, whether they are ordered or not,
and the nature of these components, in terms of whether
they are resonant or not [8,9]. For acoustic waves, two main
categories of metamaterials are classically discussed. On the
one hand, the physical properties of phononic crystals can be
well described by Bragg scattering. Band gaps are observed
due to their periodic structure and the appropriate relationship
between the wavelength and the distance between neighboring
scatterers. On the other hand, disordered and locally reso-
nant metamaterials [10–20] also show band-gap structures.
However, they no longer depend on the spatial arrangement
of their resonators, but on the local coupling between these
resonators that leads to hybridization effects around their
resonance frequency [21,22].

In acoustics, locally resonant metamaterials usually show
considerable absorption loss [12], which limits their practical
realization in three-dimensional (3D) systems. Moving from
3D to 2D configurations, elongated resonators can be used
in one dimension with propagating waves in the orthogonal
plane to the resonator axis. This can help to confine the
energy, and thus to overcome part of the attenuation due to
wave diffraction. These metamaterials are also defined as a
metasurface in optics [23], acoustics [24], and mechanics [25].
When the 2D support medium is a thin plate, these elastic
metasurfaces [26] raise new questions in terms of elastic wave
interactions in a 2D + 1D physical system, where the two
dimensions refer to wave propagation along the plate surface,

*martin.lott@univ-grenoble-alpes.fr

and the one dimension corresponds to the vibration of the
elongated resonators attached to it.

The main feature of a locally resonant elastic metasurface
is the emergence of wide band gaps at frequencies that are
much lower than for equivalent phononic crystals. Some
anisotropy properties have also been reported for such meta-
surfaces: the design of gradient index lenses might open the
route to practical cloaking applications, as they allow for the
control of wave bending [27,28].

Another need for cloaking and lensing applications is a per-
fect match between the plate and the metasurface impedances.
In practice, the impedance of a mechanical system describes
the way it can transmit, radiate, or absorb elastic waves.
Therefore, the measurement of the metasurface impedance
requires more effort than the classical extraction of its dis-
persion curve [29–31]. In particular, the measurement of both
the propagating and attenuating parts of the effective wave
number are mandatory for the impedance calculation. The
metasurface impedance is controlled by both the local rigidity
and the mass of the plate, which can be affected by adding or
removing some of the resonators attached to it.

The goal of the present paper is to determine the effective
impedance from both the mass and stiffness variations asso-
ciated to the coupled resonators in the metamaterial region.
Throughout this paper, we mainly focus on two different ex-
perimental methods to extract the effective impedance of the
metasurface, with consideration also of the use of numerical
simulations and theoretical predictions.

To create a locally resonant metasurface, Rupin et al.
(2014) used thin long metallic rods that were glued to an
aluminum plate at the subwavelength scale with a random
spatial distribution [9]. The use of rods glued to a thin
plate has highlighted the symmetric and antisymmetric modal
contributions of the guided waves in the plate. As will be
shown later, this induces different kinds of coupling with the
resonators that depend on the wave polarization [21].
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In the specific case of thin metallic plates excited at low
frequency (i.e., below 10 kHz), the length of the resonators
needs to be adjusted to obtain resonances in this frequency
range. The present study is developed with a similar plate-
plus-rods mechanical system that is excited by low-frequency
Lamb waves.

This paper is organized as follows. In the following section,
the experimental setup is described, along with the metasur-
face design and the measurement protocol. The next section
deals with two experimental methods to extract the effective
impedance of the metasurface. Finally, a frequency domain
simulation is presented to confirm the impedance measure-
ments, which provides further insight into the physics of such
locally resonant metamaterials.

II. EXPERIMENTAL CONFIGURATION OF THE
PLATE-PLUS-RODS METAMATERIAL

One hundred 61-cm-long, 6.35-mm-diameter, cylindrical
aluminum rods are randomly glued over a 20 cm × 20 cm
square area (which defines the metasurface) on a 6-mm-thick,
1.5 m × 2 m aluminum plate. The typical area occupied by
each single rod is a 2 cm × 2 cm square. Five piezoelectric
sources are used for wave generation, which are located far
from the cluster of beams. The sequential transmission of an
8-s-long broadband chirp (from 1-8 kHz) from each source
converts a normal force into elastic waves in the plate. The
signals are then recorded at different points of the plate surface
using an out-of-plane laser vibrometer that is attached to a
rotating/ translating robot arm. This provides a wide (a half-
disk of 60 cm) and accurate scanning area, with a spatial grid
size of 4 mm. After pulse compression, the recorded signals
give access to a broadband impulse response with more than
250 ms of reverberating coda due to the boundary reflections.
This corresponds to an average of 125 m of propagation inside
the plate.

The experimental configuration is depicted in Fig. 1. As
detailed previously [9], only two modes propagate in the free
plate in the frequency band of interest. With an out-of-plane
displacement, the A0 mode is vertically polarized, whereas the
S0 mode is horizontally polarized with an in-plane displace-
ment [32]. For symmetry reasons associated to the source
excitation, the dominant waves involved in this experiment are
the A0 Lamb mode. At 4 kHz, the wavelength is 12.5 cm for
the free plate, and the wave speed is around 500 m/s.

III. EXTRACTING THE EFFECTIVE IMPEDANCE
OF THE BEAM CLUSTER

In recent years, an analytical approach was developed to
describe the physical properties of locally resonant metama-
terials for Lamb waves in a plate-plus-rods system [33]. The
metasurface consists of a linear periodic array of long rods
that are attached to the plate that forms the substrate in which
A0 Lamb waves are excited. Using a 1D formulation, the wave
propagation problem is rigorously solved by the introduction
of a scattering matrix for a single rod attached to the plate,
with rigorous boundary conditions at the rod/plate interface,
and including both evanescent and propagating waves in the
plate. Note, however, that the scattering matrix neglects the in-

FIG. 1. Experimental setup at the laboratory scale. The metama-
terial (a) is made of 100 vertical aluminum rods that are glued to the
underside of a plate of the same material [(b), black square]. The
particle velocity is measured using an out-of-plane laser Doppler
velocimeter (c) that is connected to a PC-controlled (e) motorized
robot arm (d). The recorded signal (f) is strongly dispersed due to
the weak intrinsic attenuation of the plate. Using the late part of the
reverberated coda (g) and a set of a few sources (h), homogeneous
focal spots are reconstructed from correlations inside (i) and outside
(j) the beam cluster.

plane wave-field component that is associated to the flexural
resonances of the rods. To predict the transmission through
the linear array of rods, the scattering matrix is used to set up
an eigenvalue problem, along with the boundary conditions
between the adjacent unit cells. The eigenvalues are deter-
mined precisely, and an analytical formulation can be found
for the effective wave number keff within the long-wavelength
approximation,

keff = kp

[
Mb

M

tan(kbLb)

kbLb
+ 1

]1/4

= k�(ω) + ik�(ω), (1)

where kp is the free-plate wave number, Mb is the total beam
mass, Lb is the beam length, kb is the wave number associated
with the compressional motion of the beam, and M is the mass
of the plate area below the beam.

Here, we are interested in the effective impedance of the
metasurface, rather than its band structure. In practice, the
impedance of a mechanical system describes the amplitude
and phase of the local stress due to a given particle velocity
value for a homogeneous medium, and it includes both elastic
and viscous effects. As the experiment involves a piezoelectric
disk that generates a normal force on the plate and a laser
Doppler vibrometer that is sensitive to the normal particle
velocity of the plate, we are looking at the following quantity:

Z = Fz

vz
. (2)

The out-of-plane velocity generated by a normal force Fz

and measured at any point distant r from the source on an
infinite plate is given by [34–36]

vp
z (r, ω) = ωFz

8Dk2
p

{
H (2)

0 (kpr) − i
2

π
K0(kpr)

}
, (3)
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FIG. 2. (a) Real part of the averaged two-point correlation func-
tion (normalized) measured at 5 kHz for all of the receiver pairs
located inside the metamaterial region (blue). The modeled plate
Green’s function [Eq. (3)] is in red. (b), (c) Averaged two-point cor-
relation versus frequency measured inside the metamaterial (b) and
outside the metamaterial (c). The black line in (b) corresponds
to the averaged intensity versus frequency measured inside the
metamaterial.

where H (2)
0 is the Hankel function of the second kind and K0

is the hyperbolic Bessel function. From Eqs. (2) and (3), the
impedance is obtained by setting r to zero,

Z = 8
√

Dm = 8Dk2
p

ω
, (4)

where D is the plate rigidity, ω is the pulsation, m is the
mass per unit area, and kp are the A0 wave numbers. In
the metamaterial region, far from the flexural resonances,
the polarization of the A0 Lamb wave is conserved, and so
the same impedance definition can be applied with effective
parameters rather than the free-plate parameters:

Zeff

Zp
= k2

eff

k2
p

. (5)

The measurement of both the effective wave number keff

and the free-plate wave number kp is then sufficient for
impedance estimation of the metasurface. To do so, we cal-
culate the ensemble-averaged two-point correlation function
C(ω, dr) at the pulsation ω, and for all of the possible re-
ceiving points separated by an absolute distance dr inside and
outside the metamaterial region,

C(ω, dr) = 〈�T (ω, r)�∗
T (ω, r + dr)〉

〈| �T (ω, r) |2〉 , (6)

where �T (ω, r) is the field measured from the laser vibrom-
eter in r and at frequency ω for a finite-duration recorded
window of duration �T , starting at time T . We then take
advantage of the equipartition of the spatial wave field inside
the plate, which was designed with an ergodic shape [20]
by averaging the two-point correlation over all of the piezo

FIG. 3. (a) Metamaterial band structure. The blue and red curves
(yellow and purple) are computed from the averaged two-point
correlation function using Eq. (3) for the real and imaginary parts
of the effective wave number, respectively, inside (outside) the
metamaterial region. The black solid line shows the real part of
the analytical effective wave number from Williams et al. (2015).
The A0 dispersion curve is plotted as a dashed line. (b) Impedance
ratio obtained through different methods. Purple and yellow, from
the time reversal focal spot amplitude (in the passband only); blue
and red, from the two-point correlation method and using Eq. (3);
black and grey, theoretical values from Williams et al. (2015), as
the effective medium formulation and using Eq. (9). The impedance
value of the free plate is plotted as the dashed line. The background
colors highlight the bandwidth of the stop band (red) and passband
(blue).

sources, time windows T , and vector positions r and r+dr. In
practice, we choose �T = 10 ms, which is small compared
to the total reverberation time of the cavity, and T expands
from 10 ms (for the wave mixing to be sufficient) to 250
ms (where ambient noise starts to dominate). The real part
of the two-point correlation function C(ω, dr) is shown in
Fig. 2(a) at frequency f = 5000 Hz, and in Figs. 2(b) and 2(c)
for all of the frequencies inside and outside the metamaterial.
In Fig. 2(a), the normalization coefficient calculated at the
denominator of Eq. (6) corresponds to the averaged intensity
measured from all of the receiving points inside the metamate-
rial (black line). As expected, passbands (where the wave field
propagates inside the metamaterial) and stop bands (where
almost no energy penetrates into the metamaterial) correspond
to frequency bands with higher and lower averaged intensities.
In the passband, the two-point correlation function is mod-
eled as the frequency-normalized 2D Green’s function for an
infinite plate v

p
z (r, ω), with kp −→ keff, defined as a complex

number [37]. The modeled results are shown in Fig. 3(a), with
the real and imaginary parts of the wave number in blue and
red, respectively. In the stop band, the two-point correlation
function is modeled with an effective wave number with equal
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FIG. 4. Metamaterial simulation in two dimensions. (a) Simulation box: A random set of 100 beams attached to a shell component with
absorbing boundaries. (b) Response at 6400 Hz, inside the stop band. (c) Response at 4200 Hz, inside the passband. The black square represents
the metamaterial region. In the two left panels, the arrows indicate the incident-wave direction.

real and imaginary parts, as in Williams et al. (2015) [33]:

keff = (±1 + i)
kp√

2

∣∣∣∣Mb

M

tan(kbLb)

kbLb
+ 1

∣∣∣∣
1/4

. (7)

In both the passband and the stop band, the theory is well
retrieved. Note, however, an increase in the attenuation at the
end of the passband. As the effective wave number strongly
increases here, the wavelength becomes of the order of the
average distance between neighboring rods, which results in
scattering attenuation that can no longer be neglected. This
scattering attenuation is not taken into account in the effective
medium approximation.

The real and imaginary parts of keff are then used to calcu-
late the impedance of the metasurface through the impedance
ratio computed inside and outside the metamaterial, as shown
in Fig. 3(b). The experimental results are in agreement with
the theory, which is plotted as a solid line, that predicts purely
imaginary impedance (equivalent to a mass) inside the band
gap, and purely real impedance (equivalent to a spring) in the
passband.

We use a second approach to test the theoretical prediction
of the metasurface impedance only in the passband. In a

shorter time than the reverberating time of the plate, and
far away from the plate boundary, the average elastic strain
energy (U0) is equally distributed, because of the equipartition
of the wave field [38,39]. We also assume that at the source
location a normal force generates only normal velocity motion
(i.e., no angular velocity) [34–36]. This means that the strain
energy U0 at the source location is only proportional to the
product of the normal force Fz with the induced normal
displacement uz (also equal to −v∗

z /iω).
Then, starting from the definition of the mechanical

impedance [Eq. (2)], the relative impedance between the free
plate and the metasurface is accessible through the particle
velocity amplitude only, and is thus directly measurable with
the laser velocimeter,

Z (ω, r) = Fz(ω)

vz(ω)
= Fzv

∗
z

vzv∗
z

= −2iωU0

|vz|2 , (8)

and so

Zeff

Zp
=

∣∣v(m)
z

∣∣2

∣∣v(p)
z

∣∣2 . (9)
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For averaging purposes, an ensemble of 100 points is
considered, with 50 points outside the metasurface, and 50
inside. For each point, a time-reversal focal spot is computed
[Figs. 1(i) and 1(j)] by considering the long-term averaged
cross-correlation of the ambient reverberating signal in the
plate with neighboring points, and so simulating the virtual
sources with amplitude v2

z . We also use the five different
sources in the averaging process. Then, the averaged focal
spot amplitudes inside and outside the metasurface are com-
pared. The amplitude ratio corresponds to the impedance
ratio, which is plotted in purple and yellow in Fig. 3(b).
The theoretical trend for the metamaterial impedance is well
retrieved in the passband. In the stop band, however, the
equipartition condition is no longer verified due to strong at-
tenuation, which means that the focal spot amplitude depends
on each point position within the metamaterial.

The two approaches to compute the impedance ratio are
different in nature: The first is based on the wave-number
extraction from the two-point correlation function, and the
second is related to the amplitude of the time-reversal fo-
cal spot. In both cases, the averaging process is performed
on the long-duration reverberation inside the plate and the
discrete number of piezo sources. Of course, time-reversal
and cross-correlation are equivalent processes. However, the
wave-number extraction depends on the phase measurement
between distant sensors when the time-reversal focal spot is
a local measurement of the wave-field intensity. The agree-
ment between the two approaches in the computation of the
impedance shows that both amplitude and phase carry the
signature of the radiated wave field from the metamaterial
when equipartition is reached in the free plate.

The impedance mismatch at the interface between the
free plate and the metasurface should generate transmitted
and reflected waves. In a highly reverberant system, such as
in the present experimental configuration, it is challenging
to separate scattered waves at the metamaterial/ free-plate
interface from reflected waves due to the plate boundaries. In
the next section, a simulation box is designed with absorbing
boundaries solely to focus on the transmitted/ reflected waves
from the metasurface, as if the free plate was infinite.

IV. REFLECTION AND TRANSMISSION COEFFICIENTS:
A NUMERICAL APPROACH

We use a frequency domain simulation with the COMSOL
software for modeling the metamaterial components, which
are based on the actual laboratory geometry. Using an incident
plane wave as a source excitation [black arrows in Figs. 4(b)
and 4(c), left panels], the simulation results are shown in
Fig. 4 at the two frequencies, inside the stop band (6400 Hz)
and the passband (4200 Hz). The wave field is filtered be-
tween the incident and reflected waves with a spatial Fourier
transform. The total reflection inside the stop band and the
transparency of the medium for this specific frequency inside
the passband are clearly visible. This simulation provides
appreciation of some of the wave-propagation effects, but it
cannot be quantitative in terms of the reflection coefficient
measurements. Indeed, the finite size of the metamaterial adds
undesired diffracted waves at the edges of the metamaterial

FIG. 5. Metamaterial simulation in one dimension. (a) Fre-
quency domain simulation with lateral periodic conditions and ab-
sorbing layers at the boundaries of the medium. Inset: Metamaterial
dimensions. (b) Simulation result. Blue, reflection coefficient at the
beam interface calculated from the spatial Fourier transform in the
free plate region; red, theoretical results obtained with Eqs. (9) and
(1); green, lateral motion recorded at the top of the first beam.
(c) Band structure derived from the spatial Fourier analysis of the
wave field inside the metamaterial region.

region. Moreover, the randomness of the rod distribution adds
some roughness effects at the metasurface interface.

To obtain a quantitative estimation of the reflection coef-
ficient over the whole bandwidth, we choose a different ap-
proach. For plane-wave propagation, the reflection coefficient
at any interface is the complex amplitude ratio between a
reflected and an incident plane wave, which is also defined
from the effective impedance of the two media for waves
traveling from outside to inside the metasurface,

r = Ar

Ai
= Zeff − Zp

Zeff + Zp
= Zr − 1

Zr + 1
, (10)

where Zr is the relative value (Zeff/Zp) obtained earlier, and
Ar and Ai are the complex amplitudes of the reflected and
incident waves, respectively. Based on the Williams et al.
(2015) theoretical approach, the computation of the theoret-
ical reflection coefficient is straightforward, starting with the
analytical expression of Zr [Eq. (9)].

The plate is now modeled by exploiting a 1D symme-
try with a 2-m-long (x direction), 6-mm-thick (z direction),
and 2-cm-wide (y direction) beam with periodic boundary
conditions along the y direction. The periodic conditions
help to simulate an infinite plane wave and to reduce the
computational cost by limiting the metamaterial to only one
line of beams. At the extremities of the plate along the x di-
rection, two absorbing regions are added, to remove backward
reflections. Within the simulation box, the only impedance
mismatch is the interface between the free plate and the
metamaterial region. The scheme of the simulation is shown in
Fig. 5(a). Note that on the metamaterial side of the simulation
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box (large x), the absorbing region is also covered with the
periodic metamaterial. Indeed, without this, an impedance
mismatch between the metamaterial region and the absorbing
layer would be created.

The simulated wave field is analyzed through spatial
Fourier transform. In the metamaterial region, the typi-
cal propagative branches and band gaps can be retrieved
[Fig. 5(c)]. In the “free-plate” region, the spatial Fourier trans-
form reveals two main peaks, one for the incident waves (pos-
itive wave number) and one for the reflected waves (negative
wave number). The amplitude ratio of these two peaks pro-
vides an estimation of the modulus of the reflection coefficient
R. The simulation results and the theoretical values of R are
reported in Fig. 5(b) (blue and red, respectively). Once again,
the Williams et al. (2015) theory for the effective wave num-
ber provides a good description of the metamaterial mechan-
ical behavior. Inside the passband, the modulus of R varies
from 0 to 1. Inside the band gap, however, the modulus is con-
stant and equal to 1; this corresponds to total reflection of the
wave field, which only allows evanescent waves to penetrate
into the metasurface. Moreover, the reflected waves come with
a frequency-dependent phase shift (not analyzed here).

As previously observed with experimental impedance mea-
surements, simulation results show sharp perturbations at
flexural resonances, compared to the Williams et al. (2015)

theoretical approach where in-plane wave-field components
are not considered. Each flexural resonance creates a hybrid
branch in the passband and wave leakage inside the stopband.
In Fig. 5(b), the motion of the first beam along the x direction
is shown in green. As the boundary condition at the base of
each resonator evolves from “clamped” to “free” depending
on frequency, we highlight here a multimodal interaction for
plate waves with different polarization.

V. CONCLUSIONS

We have studied wave propagation inside a metasurface
made of 100 vertical rods glued onto a thin elastic plate. Our
goal was to measure the effective impedance for the beam
cluster, considering both the free-plate analytical description
and a recent homogenized theory for dense locally resonant
metasurfaces. This theoretical approach was compared with
two experimental estimations of the impedance, based on the
phase and amplitude characteristics of the wave field inside
and outside the metasurface. Finally, through numerical sim-
ulations performed with the same experimental configuration,
the reflection coefficient is obtain for A0 Lamb waves traveling
from a free-plate region into the metasurface. These results
also highlight the coupling between the orthogonal polariza-
tions of the rod flexural resonances and the A0 Lamb waves.
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