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Stacking, strain, and twist in 2D materials quantified by 3D electron diffraction
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The field of two-dimensional (2D) materials has expanded to multilayered systems in which electronic,
optical, and mechanical properties change—often dramatically—with stacking order, thickness, twist, and
interlayer spacing. For transition metal dichalcogenides (TMDs), bond coordination within a single van der
Waals layer changes the out-of-plane symmetry that can cause metal-insulator transitions or emergent quantum
behavior. Discerning these structural order parameters is often difficult using real-space measurements; however,
we show that 2D materials have distinct, conspicuous three-dimensional (3D) structure in reciprocal space
described by nearly infinite oscillating Bragg rods. Combining electron diffraction and specimen tilt we probe
Bragg rods in all three dimensions to identify multilayer structure with subangstrom precision across several
2D materials—including TMDs (MoS2, TaSe2, TaS2) and multilayer graphene. We demonstrate quantitative
determination of key structural parameters such as surface roughness, inter- and intralayer spacings, stacking
order, and interlayer twist using a rudimentary transmission electron microscope. We accurately characterize
the full interlayer stacking order of multilayer graphene (1, 2, 6, 12 layers) as well the intralayer structure of
MoS2 and extract a chalcogen-chalcogen layer spacing of 3.07 ± 0.11 Å. Furthermore, we demonstrate quick
identification of multilayer rhombohedral graphene.
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I. INTRODUCTION

The characteristics of layered two-dimensional (2D) ma-
terials and heterostructures are intimately linked with stack-
ing order, as thickness and interlayer registry dramatically
alter the confinement and symmetry of the system. For in-
stance, inversion-symmetric monolayer 1T-MoS2 is metal-
lic [1] while mirror-symmetric monolayer 2H-MoS2 is a direct
band gap semiconductor [2]. In several 2D systems, the intrin-
sic inversion asymmetry or symmetry breaking via external
perturbation bear possibilities for electronic switching [3,4]
or valleytronic devices [5]. Recently, superconductivity was
observed in bilayer graphene when the interlayer twist is tuned
to a “magic angle” [6].

High-precision characterization of stacking order, inter-
layer spacing, twist, and roughness is paramount to har-
nessing the diversity of 2D phenomena. The field of 2D
materials erupted with facile identification of single-layer
graphene when exfoliated onto ∼300-nm-thick SiO2 sub-
strates [7]. Since then, thickness characterization techniques
have expanded to Raman spectroscopy [8], atomic force
microscopy [9], and electron microscopy [10]. Thickness
alone, however, provides an incomplete picture of the atomic
structure and stacking order. Scanning transmission elec-
tron microscopy (STEM) can image thickness with atomic
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resolution [11,12], yet, this real-space projection of the spec-
imen loses out-of-plane information, poorly discerns light
elements bonded to heavy elements, and requires high radi-
ation doses. Furthermore, a fundamental trade-off between
resolution and field of view limits atomic-resolution imaging
to small regions of interest, typically (20 nm)2. In contrast,
electron diffraction remains a longstanding powerful tool for
obtaining a representative average of the atomic structure
across large areas, at lower doses, with high-throughput and
high precision.

We demonstrate that electron diffraction is particularly
apt for probing the three-dimensional (3D) structure of
2D materials. Contrary to the confined real-space struc-
ture, we show that 2D materials have striking, measur-
able features in the third dimension of reciprocal space
that describe key structural parameters such as stack-
ing order, twist, strain, chemistry, and inter- or intralayer
spacing. In 2D materials, Bragg peaks extend into nearly
infinite rods running perpendicular to the specimen surface.
Each Bragg rod oscillates with intensity and phase described
by the atomic arrangement within and between each 2D layer.

Prominent distinctions arise in the reciprocal (k) space
structure of 2D materials: (a) In-plane lattice strain moves
the position of Bragg rods. (b) Rod oscillation frequencies are
inversely proportional to inter- and intralayer spacing. (c) Out-
of-plane strain changes the oscillation frequency. (d) Symme-
try and structure of first-order rods (�1) reveal stacking order.
(d) Second-order rods (�2) facilitate thickness determina-
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FIG. 1. 3D reciprocal structure of single and bilayer graphene. 3D reciprocal-space structure of (a), (b) single-layer graphene (SLG).
Width and color of Bragg rods indicate magnitude and phase (magenta = 0, teal = π ); the hexagon marks kz = 0 plane. (c) Bilayer graphene
(BLG) illustrated for AA, AB, and BA registry along ẑ. (d) 3D k-space structure of AB-BLG. Sinusoidal magnitude—signature of multilayer
systems—is apparent. The structures of (e) AA, (f) AB, and (g) BA from side view are shown for both first (�1) and second (�2) order Bragg
rods along with atomic stacking along 〈100〉 direction in real space. The barely visible decay in rod magnitude seen in SLG is due to the
finite size of carbon atoms. The rod structures of BLGs are sinusoidal with symmetry identical to the real space. Sixfold symmetry of SLG
and inversion symmetry of Bernal BLG are clearly shown in k space. All structures are centered around the inversion center in real space to
maximize interpretability.

tion. (e) Chemistry changes the amplitude of oscillations. (f)
Twisted layers are described by a superposition of diffraction
patterns for nonoverlapping (incommensurate) Bragg rods. (g)
Progressive broadening of rods is associated with out-of-plane
microcorrugation and stiffness. (h) Curvature of the Ewald
sphere results in a small, measurable excitation error in the
diffraction pattern that breaks expected Friedel symmetry.

Combining specimen tilt and diffraction, we construct
“diffraction tilt patterns” that measure the 3D structural details
of single and multilayer 2D materials. This work substantially
extends previous work for few-layer graphene [13,14] and
boron nitride [15] to transition metal dichalcogenides (TMDs)
and multilayer materials. Furthermore, we expound the foun-
dational details required to enable a wide-range 3D diffraction
analysis across all 2D materials.

II. BACKGROUND TO DIFFRACTION OF 2D MATERIALS

The wave behavior of matter was first hypothesized by
de Broglie in 1924 [16], and three years later validated
by Thomson, Davisson, and Germer with the experimental
demonstration of electron diffraction [17,18]. In the far field,
diffracted high-energy electrons are described by a near planar
slice through the specimen’s 3D reciprocal structure: V (kz =
0), i.e., a Fourier transform of the projected specimen poten-
tial. This kinematic approximation [19] accurately describes
diffraction of 2D materials much thinner than the mean-free
path (e.g., �150 nm for 200 keV electrons in Si [20]),
where multiple scattering is negligible. Tilting the specimen
changes the electron beam’s angle of incidence, rotating the
planar slice through the reciprocal lattice to probe the 3D

structure. In diffraction, only squared magnitude, |V (k)|2,
without complex phase is measured.

We are challenged to discern the third dimension of 2D ma-
terials in real and reciprocal space. Graphene is an archetypal
2D crystal in which sp2 bonding forms a hexagonal lattice
lying within a single plane. Graphene’s real-space lattice,
Vg(r) = IIIa1,a2 (r)δ(z) �

∑
j f (r − r j ), is described by two

lattice vectors, a1, a2, with magnitude ag = 2.46 Å, and a two-
atom sublattice at r j ( j ∈ 0, 1) that mimics a honeycomb. The
corresponding reciprocal lattice of graphene defines Bragg

rods spaced bg = 4π

ag

√
3

= 2.949 Å
−1

apart and is described by

Vg(k) = IIIb1,b2 (k) · Sg(k), (1)

where the complex magnitude is determined by structure fac-
tor Sg(k) = ∑

j f (k)e−ik·r j . For graphene, the single atomic
plane, with nearly infinite confinement along ẑ [Fig. 1(a), top],
has a reciprocal structure with near infinite extent out-of-plane
along k̂z [Fig. 1(a), bottom]. Similar elongated rel-rods arise
from planar shape factors [21,22] that have been studied in
surface layer diffraction experiments on bulk materials and
thin films [23–25]. Section II of the Supplemental Mate-
rial [26] discusses III(k) formulation and the normalization
prefactor.

Therefore, 2D materials have Bragg peaks that stretch
into rods. Figures 1(a) and 1(b) show single-layer graphene
(SLG) in reciprocal space. Its k lattice has sixfold rotational
symmetry [Fig. 1(b)], reflecting the real-space symmetry at
the inversion center. The rod intensity decays slowly from the
origin due to the small but finite size of each atom [described
by atomic scattering factor f (k)]. The attenuating magnitude
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FIG. 2. Diffraction tilt patterns of BLG. (a) 3D reciprocal rod structure of Bernal-stacked bilayer graphene. The magnitude varies
sinusoidally with a periodicity inversely proportional to real-space interlayer spacing (kL = 4π

λL
). At typical TEM operation energy (blue,

200 keV), SAED is a nearly planar slice through the k-space origin; red surface exaggerates the curvature of Ewald sphere with slow electron
(0.3 keV). Tilting the specimen in TEM column changes the beam’s incident angle and effectively rocks the diffraction plane with respect to
the Bragg rods, accessing out-of-plane information hidden in conventional TEM. The excitation error (s)—due to the curvature—are small but
not negligible at low tilt angles close to the k-space origin. (b) Kinematic (solid curves) and experimental (◦, ♦) tilt patterns of BLG. The tilt
patterns oscillate with frequency kL . Nontrivial Ewald sphere curvature separates analogous second-order Friedel pair tilt patterns [magenta
(�2) and blue (�′

2)] with phase difference associated with s.

reaches 80% by 0.038 Å
−1

. Both first- (�1) and second-
order (�2) rods are shown in Fig. 1(a). For SLG, the more
distant second-order Bragg rods have ∼94% of the squared
magnitude of the first-order rods.

Combining specimen tilt and diffraction allows quantifica-
tion of each Bragg rod’s 3D structure. In a “diffraction tilt
pattern,” diffraction peaks are quantified across specimen tilt
angles. As the specimen is tilted about an axis perpendicular
to the beam direction, the diffraction plane rotates through the
reciprocal rods of the material as shown in Fig. 2(a) for the
first-order rods of bilayer graphene. Figure 2(b) illustrates the
resulting tilt pattern, and the inset notes the specimen tilt axis.

Diffraction peaks both move and broaden when a 2D
crystal is tilted and must be handled during quantification.
Approaching higher tilts, peaks move outward from the axis
of rotation—giving the illusion of unidirectional strain. The
increasing distance between Bragg peaks reflects the apparent
contraction in real space when a tilted 2D crystal is viewed
in projection. Thus, diffraction peaks are minimally spaced
apart when the 2D crystal is perpendicular to the beam (i.e.,
“on-axis”). Also, the effective selected area increases as tilt
increases and a geometric factor of cos(θ )−2 must be incorpo-
rated into the kinematic model of diffraction of large crystals.

Bragg peaks also broaden at higher tilts due to out-of-
plane rippling of the material. Meyer et al. quantified intrinsic
microscopic roughing of graphene by measuring the Bragg
rod precession [27]. Any microcorrugation in a 2D sheet has
local orientation changes that tilt the Bragg rods. Because
selected-area electron diffraction (SAED) measures an aver-
age of the crystal region, the superposition of tilted Bragg
rods results in broadening along k̂z. Meyer et al. measured
Bragg rod broadening to quantify roughness of graphene and
showed that suspended single-layer graphene had a surface
normal that varied by ±5 degrees while bilayer graphene
was smoother with a ±1 degree variation. Their work also
highlights the importance of quantifying Bragg peaks from
integrated intensities—not peak maxima.

III. BILAYER GRAPHENE

Atomically registered bilayer materials have Bragg rods
that sinusoidally oscillate in complex magnitude [Fig. 1(d)]
with periodicity (4π/λL) inversely proportional to the inter-
layer spacing, λL. The period of rod oscillation is independent
of stacking order and depends only on interlayer spacing.
Bilayer graphene (BLG) has reciprocal structure described by

Vbg(r) = [IIIa1,a2 (r − �/2)δ(z − λL/2)

+IIIa1,a2 (r + �/2)δ(z + λL/2)]

�
∑

i f (r − ri ), (2)

Vbg(k) = IIIb1,b2 (k)

[
2 cos

(
λL

2
kz + �

2
· k

)]
· Sg(k), (3)

where � is the order parameter representing in-plane transla-
tion.

Changes to stacking order move Bragg rods up and down
along k̂z. More specifically, in-plane displacement of a layer,
�, adds a phase shift 1

2� · k to the sinusoidal intensity of each
Bragg rod. There are three high-symmetry stacking configura-
tions for BLG: energetically stable AB or BA (called Bernal or
graphitic) and unstable AA [Fig. 1(c)] [28]. The arrangement
of the sinusoidal rods reflects the real-space symmetry. AA-
BLG is defined by two aligned layers (� = 0) with a mirror
plane in between [Fig. 1(e)]. The reciprocal-space structure
matches the real-space sixfold symmetry with a mirror plane
at kz = 0. In AB/BA-BLG, one layer is bond-length shifted
with respect to the other along an in-plane bond direction
(� = a1+a2

3 ) [29]. This translation breaks out-of-plane mirror
symmetry and reduces the sixfold symmetry to threefold.

Figures 1(e), 1(f), and 1(g) depict the rod structure of AA,
AB, and BA-BLG. The magnitude of each rod is described
by its width and complex phase with color; magenta and teal
represent 0 and π , respectively. Mirror-symmetric AA-BLG
has first-order diffraction rods (�1) centered about kz = 0
[Fig. 1(c)]. For AB-BLG, the in-plane translation between
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atomic layers displaces �1 and �′
1 Bragg rods in opposite out-

of-plane directions (±k̂z) with a π/3 phase shift [Figs. 1(f)
and 1(g)].

�1 rods reveal stacking order in 2D materials. For Bernal
BLG the maximum intensity of odd-order Bragg rods can
only be measured by tilting the specimen [Fig. 2(a)]. In the
experimental tilt pattern of AB-BLG [Fig. 2(b)], the non-
symmetric first-order Bragg rods are obvious. The blue �1

curve decreases to zero intensity at 6 degrees tilt but reaches a
maximum at −12 degrees (also expected at 23 degrees). The
brown �1 rod on the other side of the rotation axis follows
a similar opposite trend. Bragg rods more distant from the
axis of rotation oscillate more rapidly in the tilt pattern. Here
the axis of rotation passes through �2 as shown in Fig. 2(b),
inset. In real space, the maximum intensity of �1 occurs when
Bernal bilayer graphene is tilted so all atoms between layers
lie atop one another when viewed along the beam direction.
For AB and BA the patterns are mirrored and maximum in-
tensity occurs when tilting in opposite directions. Brown et al.
exploited this broken symmetry using specimen tilt to quickly
distinguish AB and BA domains in bilayer graphene [13]. For
AA-BLG the maximum diffraction intensity trivially occurs
at 0 degrees tilt.

�2 rods reveal the number of layers in multilayer graphene,
but not stacking order. For untilted specimens (kz ≈ 0), the
intensity of the �2 rods in the bilayer is four times that of
monolayer graphene and will continue to scale with number
of layers squared, N2, as discussed in Sec. VII. Shown in
Figs. 1(e)–1(g), the �2 rods are identical and indiscernible
for all three BLG stacking orders. �2 rod intensity has a
mirror-symmetric maximum at kz = 0 that is clearly seen
in the experimentally measured tilt pattern [Fig. 2(b)]. The
slight deviation of �2 maximum from zero tilt is due to finite
curvature of the Ewald sphere.

IV. BEAM ENERGY AND THE EWALD SPHERE

Elastic scattering preserves kinetic energy on the prover-
bial Ewald sphere in reciprocal space [30]. At finite beam
energies, the diffraction pattern is described by a spherical
surface cutting through the reciprocal lattice. At typical TEM
energies (60–300 keV), the curvature of the Ewald sphere is
small but not negligible. As shown in Fig. 2(a), the Ewald
sphere passes through Bragg rods slightly above the kz = 0
plane (historically referred to as excitation error, s). Tilting
the specimen is equivalent to tilting the Ewald sphere.

Diffraction tilt patterns come in Friedel pairs [31] com-
posed of a Bragg rod (at k) and its centrosymmetric pair (at
−k). For a flat Ewald sphere (infinite beam energy) the Friedel
pairs have equivalent tilt patterns. However, with the Ewald
sphere curvature the tilt patterns for each Friedel pair bifurcate
with increasing separation at lower beam voltages (higher
curvature). Figure 2(b) shows the measurable curvature of
the Ewald sphere in an experimental diffraction tilt pattern of
bilayer graphene. Here, curves appear in pairs offset by a few
degrees. This is most clearly seen in �2 diffraction [Fig. 2(b)
(pink, purple)], where the maximum intensity occurs at ±1.1
degrees. This angular distance in the split of paired tilt patterns
directly measures the Ewald sphere curvature and excitation

FIG. 3. Twisted bilayer graphene. (a) Twisted bilayer graphene
with an incommensurate intralayer twist angle (θ = 8 deg). (b) Re-
ciprocal structure of incommensurate twisted BLG is a simple super-
position of layers.

error s: s = k0 −
√

k2
0 − k2

ρ , where k0 is the wave number of
the incident electron and kρ is the in-plane radial distance to
k-space origin. For small tilt angles and Bragg peaks close
to the k-space origin this will scale approximately linearly,
while for larger angles at larger radial distances a conversion
from specimen tilt to a Cartesian basis is detailed in Sec. III
of the Supplemental Material [26]. Bragg rod intensity plots
in kz corresponding to Figs. 2, 5, and 6 are featured in
Fig. S7 of the Supplemental Material [26]. Here, the ±1.1
degrees split in the low-angle tilt patterns corresponds to an

excitation error of 0.085 Å
−1

at 80 keV.

V. TWISTED, MOIRÉ LAYERS

Significant interest in twisted multilayer materials has
followed the micromechanical exfoliation of 2D heterojunc-
tions [32] and discovery of superconductivity in low-twist-
angle bilayer graphene [6]. The reciprocal lattice of twisted bi-
layers is described by |F[IIIα (r) + IIIβ (r)]|2 = |IIIα (k)|2 +
|IIIβ (k)|2 + III∗α (k)IIIβ (k) + IIIα (k)III∗β (k), for layers α and
β. For incommensurate stacking, the cross term is zero and
the diffraction pattern is a trivial superposition of each in-
dividual layer (Fig. 3). This allows independent characteri-
zation of each incommensurate layer; however, we lose the
ability to characterize interlayer spacing. If α and β are
commensurate [33], the cross term is zero where the Bragg
rods from each layer do not overlap. Only overlapping rods
may interfere and sinusoidally oscillate. As shown by Brown
et al., each twisted layer can be independently mapped in
real space with dark-field TEM by placing an aperture around
each distinct Bragg peak in the diffraction plane of the
TEM [13].

Yoo et al. recently reported that at low twist angles (<3
deg) in bilayer graphene periodic restructuring occurs and
superlattice peaks emerge [34]. Systems with periodic lat-
tice distortions, either from interlayer interaction or charge
order, are not so simply described as a superposition of
layers [35].

VI. 2D TRANSITION METAL DICHALCOGENIDES

Transition metal dichalcogenides (TMDs) are composed
of three atomic planes and two chemical species within
each van der Waals (vdW) layer that add complexity to the
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FIG. 4. 3D reciprocal structure of 2D transition metal dichalcogenides and polytypes. For each TMD, the Bragg rods (�0, �1) are shown
in 3D alongside a real-space 〈100〉 projection of the crystal stacking order. Below, a side view of the Bragg rods (�0, �1, �2) quantitatively
illustrates the structure in k space. Bragg rods have thickness and color indicating the complex magnitude and phase, respectively. For single-
layer TMDs [(a), (c), (e)], two sinusoidal oscillations are determined by the interlayer spacing of the three atomic planes. The complexity
increases noticeably for two vdW layers [(b), (d), (f)], which includes a beating frequency from interlayer spacing. Noticeably, H-phase MoS2

and TaSe2 have different stable multilayer stacking, denoted 2H(b) and 2H(a), leading to drastically different Bragg rod contours.

Bragg rod structure [Figs. 4(a), 4(c), and 4(e) (top)]. Six
chalcogens encapsulate each metal atom geometrically with
two tetrahedrons. Single-layer TMDs are categorized into
hexagonal H or trigonal T polytype phases by this local metal-
chalcogen coordination complex [36]. In the H phase, the two
tetrahedrons align along ẑ [Fig. 4(a)], and in the T phase,
the two are displaced by 30 degrees giving rise to inversion
symmetry [Fig. 4(e)]. Although isomeric to the 1T, the 2H
phase notably breaks this inversion symmetry within a single
layer but regains it in the bilayer. Broken inversion symmetry
can significantly change electronic structure and has been
associated with a metal-insulator transition in the 1T → 2H
transformation [1,2] and the indirect to direct band gap transi-
tion in 2H TMDs reduced to a single layer (1H) [2]. In several
TMDs, such as TaS2 and TaSe2, the 1T phase permits room
temperature charge ordering and even superconductivity at
higher pressures [37].

Diffraction combined with specimen tilt can precisely de-
termine metal-chalcogen coordination within a single vdW
layer due to its sensitivity to crystal symmetry. The three
atomic planes composing a vdW layer are described by Bragg
rods oscillating with a periodicity inversely proportional
to λ
, the intralayer spacing between chalcogen-chalcogen

atomic planes:

V1H (k) = IIIb1,b2 (k)

[
fm(k) + 2 fc(k)e−ik·r0 cos

(
kz

λ


2

)]
,

(4)

V1T (k) = IIIb1,b2 (k)

[
fm(k) + 2 fc(k) cos

(
k · r0 + kz

λ


2

)]
,

(5)

where fm and fc are the atomic scattering factors of the
metal and chalcogen atoms, respectively, and r0 is the in-
plane metal-chalcogen bond direction (r0 = a1+a2

3 ). 1H de-
notes monolayer 2H.

Figure 4 (top) highlights the 3D reciprocal-space struc-
ture of several monolayer TMDs. The change in metal-
chalcogen coordination drastically changes the Bragg rod
structure [Figs. 4(a), 4(c) vs 4(e)], whereas the change in
chemical composition alters the contour of the rod intensities
[Figs. 4(a) vs 4(c)]. The broken inversion symmetry of the 1H
structure is represented in the complex phase of Eq. (4) that
continuously changes on the �1 Bragg rod along k̂z [Figs. 4(a)
and 4(c)]—this phase is not measurable from the diffraction
amplitude. The 1T �1 rods are markedly distinct with strong
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FIG. 5. The k structure of monolayer 2H -MoS2. The real- and
k-space structure of monolayer (a) 2H-MoS2 polytype shows mirror
symmetry distinct from 1T. However, (b) real-space schematic and
ADF-STEM image along ẑ shows classification of 2H and 1T phase
is extremely difficult because Mo atom intensities overwhelm S
atoms. (c) Directly probing the rod structure, the experimental tilt
pattern shows clear mirror symmetry and shows good agreement with
the 2H analytic model. Rod intensity is plotted against kz in Fig. S7
of the Supplemental Material [26].

asymmetric oscillation of amplitude. We see that similarly to
graphene, TMDs possess �2 rods symmetric about kz = 0 and
insensitive to chalcogen coordination.

The experimental tilt pattern of an exfoliated MoS2 flake
shown in Fig. 5 reveals a single-layer H phase. The �1 and �3

curves [Fig. 5(c) (purple, blue)] are symmetric about θ = 0
degrees, which indicates a mirror plane at kz = 0. This feature
clearly discerns monolayers of the 2H and 1T polytypes (see
also Figs. S3 and S5 of the Supplemental Material [26]). The
kinematic model of monolayer 2H-MoS2 closely matches the
experimental result [Fig. 5(c)]. Although monolayer 2H and
1T phases have different projected structure in real space,
the light sulfur atoms are virtually invisible in high-angle
annular dark field (HAADF) STEM, making this distinction
challenging to characterize in real space [Fig. 5(b)].

The intralayer spacing in a 2D TMD is precisely quanti-
fied by diffraction tilt patterns for the first time. Nonlinear
regression analysis of the experimental monolayer 2H-MoS2

data reveals an intralayer chalcogen-chalcogen spacing (λ
)
of 3.07 Å with a 95% confidence interval of ±0.11 Å based
on a kinematic model. Multiple scattering may further reduce
precision, especially in thicker systems containing strong scat-
terers. Our single-layer value is comparable to the previously
reported 3.01 Å for bulk 2H-MoS2 [38].

The addition of a second vdW layer opens a wider range of
stacking configurations and the Bragg rod complexity expands
quickly—with three Fourier coefficients per vdW layer. Most
notably, the bilayer gains a beat frequency described by the
interlayer spacing, λL. The interlayer beating is concisely
expressed for bilayer 1T: V2T (k) = V1T (k) · 2 cos (kz

λL
2 ). The

FIG. 6. Diffraction tilt patterns of multilayer Bernal and rhom-
bohedral graphene. (a) Real-space stacking of Bernal (AB) and
rhombohedral (ABC) graphene layers. (b) Experimental diffraction
tilt patterns are plotted along with matched kinematically modeled
patterns. Top right inset labels the plotted Bragg rods and specimen
tilt axis. Rod intensity is plotted against kz in Fig. S7 of the Supple-
mental Material [26].

rapid rod oscillation from the larger vdW gap (λL > λ
) beats
with intralayer oscillations to create a nonuniform spacing
between amplitude minima and maxima.

Additionally, multilayer TMDs have several stacking ge-
ometries both within and between their vdW layers. For
instance, 2H-MoS2 and 2H-TaSe2 have distinct structures,
typically denoted as 2H(b) and 2H(a), respectively [Figs. 4(b)
and 4(d)]. The Bragg rod structures for single-layer and
bilayer T and H phases are shown in Fig. 4. Figure S3 of
the Supplemental Material [26] provides an atlas of TMD
stacking geometries and illustrates the distinct structures in
k space that allow unique identification and quantification.

VII. MULTILAYER 2D MATERIALS

Here we use multilayer graphene to illustrate how diffrac-
tion tilt patterns can characterize thicker 2D materials. In
atomically registered multilayer graphene, there are three
possible sublattice positions—A, B, C—each one bond
length apart from the others [Fig. 6(a)]. The two or-
dered stackings, hexagonally symmetric AB (Bernal) and
rhombohedrally symmetric ABC, have been shown to have
dramatically different band structures and transport proper-
ties [39,40]. However, thickness and stacking-order determi-
nation is particularly difficult for samples more than three
layers thick. In bulk materials, the rods give way to discrete
peaks along k̂z (Fig. S1 of the Supplemental Material [26]),
but at intermediate thicknesses (3–15 layers) they still contain
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interpretable out-of-plane structural information. Although
the possible stacking configurations grow exponentially with
thickness, leveraging minimal prior knowledge about the
specimen significantly reduces the number of possibilities and
makes exact determination of structure tractable.

Here, we characterize the out-of-plane structure of me-
chanically exfoliated 6- and 12-layer graphene samples. At
these intermediate thicknesses, the number of graphene layers
is redundantly described by the width of each Bragg rod along
k̂z (�kz = 2π

λLN ), the angle at which the second-order peak
first reaches zero while tilting with an axis of rotation along
�1 (N = 21

θ (deg) ), and the intensity of the second-order Bragg

rod (I = 4 sin2 (1/2)kzλLN
sin2 (1/2)kzλL

). These three relationships are derived
in Sec. IV of the Supplemental Material [26] from analytic
models of multilayer graphene.

By measuring the relative intensity of the first- and second-
order Bragg peaks (|�1/�2|) at zero tilt (kz = 0), we can
determine the fraction of each sublattice in the system. For
instance, with equal number of all three sublattices’ layers
(e.g., ABCABC) the first-order Bragg peaks have zero inten-
sity; if the system has only two sublattices’ layers in equal
number (e.g., ABAB) the relative intensity is 0.25 (Sec. VI of
the Supplemental Material [26]).

Applying these rules to the tilt pattern in Fig. 6(b) (top),
we determined the sample has six layers and an equal number
of A and B sublattices. Registered six-layer graphene has 35

possible configurations. Eliminating the trivial duplicates and
those with incorrect sublattice proportions leaves only seven
possible stacking orders from which we matched the cor-
rect stacking—ABABAB—by comparison with kinematically
modeled tilt patterns.

Likewise, the sample in Fig. 6(b) (bottom) was found to
be 12 layers thick with an equal proportion of A, B, and
C sublattices, allowing the stacking order to be classified
as ABCABCABCABC, the rhombohedral ordered stacking.
Fast identification of rhombohedral graphene may have im-
portance in fabrication of 2D heterostructure devices.

VIII. SUMMARY AND CONCLUSION

Dimensionally confined 2D materials have rich 3D struc-
ture in reciprocal space described by nearly infinite Bragg

rods that oscillate with complex magnitude encoding the
out-of-plane structure. Using a simple kinematic model of
diffraction, combined with specimen tilt, the structure of these
Bragg rods has been mapped in detail for several 2D materials
(graphene, TMDs) across a range of stacking geometries.
Using this 3D diffraction technique, we probed out-of-plane
structure and symmetry to quantitatively determine critical
structural parameters such as inter- and intralayer spacings
and stacking order in multilayer graphene and TMDs. For
single-layer MoS2 we extracted a chalcogen-chalcogen layer
spacing of 3.07 ± 0.11 Å. We accurately characterized the
full interlayer stacking order of bilayer to multilayer graphene
(demonstrated up to 12 layers), as well as identified mul-
tilayer rhombohedral graphene. The physical and electronic
properties of layered 2D materials are often dramatically
susceptible to these parameters. Although efficiently extracted
with 3D diffraction, out-of-plane features are challenging
or impossible to extract using real-space optical or surface
measurement methods. However, our results are obtained
using a rudimentary TEM available at most institutions.
With the increasing complexity of multilayered materials—
engineered by composition, twist, and stacking order—the
foundational details outlined in this paper enable rapid and/or
high-precision characterization across the complete class of
2D materials. Reciprocal structures illustrated throughout the
paper and Supplemental Material [26] provide a 2D materials
atlas for 3D diffraction. Furthermore, this work directly em-
powers a broader range of advanced diffraction based imaging
techniques—such as dark-field TEM and 4D STEM—capable
of mapping structural order in real space.
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