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A machine-learning approach that we term the “stochastic replica voting machine” (SRVM) algorithm is
presented and applied to a binary and a three-class classification problem in materials science. Here, we employ
SRVM to predict candidate compounds capable of forming stable perovskites and double perovskites and further
classify binary (AB) solids. The results of our binary and ternary classifications compared well to those obtained
by SVM and neural network algorithms.
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I. INTRODUCTION

Recently, there has been a flurry of activity involving the
use of machine learning, an important subfield of artificial
intelligence, in the study of materials and complex physical
systems, e.g., [1–10]. Data mining techniques enable a rapid
search through millions of candidate compounds in order to
identify promising technological materials and to potentially
predict their detailed properties. Such a task may require
far more significant efforts when performed experimentally
[11,12] via the traditional trial and error approach. Machine
learning can make such searches far more efficient by sys-
tematically pointing to promising materials that may then be
fabricated and tested experimentally. In this paper, we will
focus on two material types: perovskites and binary alloys.
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Perovskites (named after the Russian nobleman and min-
eralogist Lev Perovski) are a large class of compounds having
an ABX 3 stoichiometry, where A and B are cations and X is
an anion [13,14]. Numerous technologically important mate-
rials display the perovskite structure shown in Fig. 1. Some
examples include certain high-temperature superconductors,
semiconductors for high-efficiency photovoltaic cells [15],
light-emitting diodes, lasers, and solid-oxide fuel cells (see,
e.g., Refs. [16,17]).

In the examples that we will study here, X will be an oxy-
gen anion. Following a standard convention, the A atoms are
defined to be the larger of the two cations. An ideal perovskite
has a cubic crystal structure that is formed by corner-sharing
BO6 octahedra as seen in Fig. 1. As is seen in this figure, A
ions lie at the corners of the cube while the B and O ions
are, respectively, located at the body center and face centers
of the cube. The BO6 octahedra can distort and neighboring
octahedra can tilt and rotate. This lowers the cubic crystal
symmetry but accommodates a large combination of cations
from the periodic table.
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FIG. 1. The structure of an ABO3 perovskite. A quintessential
material having this structure is CaTiO3.

To ensure stability, the relative size of the A and B cations
must, typically, satisfy certain criteria [18]. (Additional illu-
minating relations between the atomic radii and structure are
found in [19].) More complex double perovskites [11] (see
Fig. 2) exhibit the same architecture yet with a larger unit
cell; these compounds are of the generic chemical composi-
tion A′A′′B′B′′O6 (or, more generally, A′

y′A′′
2−y′B′

z′B′′
2−z′O6 with

0 < y′, z′ < 2). Figure 2 provides an illustration of a double
perovskite with two different A cations and B cations. There
are over 80 elements having, at least, one stable nuclide.
Thus, a priori, numerous combinations of these elements
may potentially realize stable perovskite or double perovskite
structures. To experimentally determine the stability of the
vast number of these candidate perovskites would be an
arduous if not impossible task. In recent years, materials
scientists have turned to machine-learning models, often com-
bined with first-principles total-energy calculations based on
density-functional theory (DFT), to predict the stability of
new theoretical compounds. Along similar lines, in this work,
we will introduce an algorithm that takes in different elements
as inputs and predicts whether or not their combination will
result in a stable perovskite or double perovskite.

FIG. 2. A double perovskite structure with two different cations
at both the A site and the B site.

FIG. 3. Reproduced from [18]. Classification of cubic perovskite
oxides. Candidate perovskite compounds are displayed according to
their tolerance and octahedral factors. (Black) dots indicate stable
perovskite compounds; compositions marked by (red) crosses indi-
cate unstable compounds. A goal of our work is to predict which
materials might be stable.

Our algorithm takes, as an input, the data from known
combinations of A and B cations that are capable of forming
a perovskite structure (see, e.g., [18] and Fig. 3 for perovskite
formability, Sec. I of the Supplemental Material [20], and
Fig. 2 for double perovskite). From these data, the algorithm
learns which conditions should be met for the different ele-
ments in order to allow them to form the perovskite structure.
This is the so-called “training process.” Following the training
phase, the algorithm may test other combinations of the ions;
the algorithm will then yield a “yes” answer for a predicted
stable perovskite structure and yield “no” for compositions
that are predicted to form an unstable perovskite structure.
In the parlance of machine learning, we are training a new
binary classifier over a set of known data. Once this training
is complete, we then apply the trained classifier to investigate
hitherto unknown chemical compositions in order to assess
their formability as stable perovskites. We will follow the
prevalent practice of classifying the stability of candidate per-
ovskite materials by two well-studied ratios: (i) the “tolerance
factor” and (ii) the “octahedral factor.” We will further study
other features including electronegativity.

In this work, we will introduce and summarize our algo-
rithm (general details are further discussed in Ref. [21]), and
demonstrate its utility for the classification (viable formabil-
ity) of (1) perovskite-type compounds and (2) binary octet
alloys. In both cases, we achieve high accuracy. Our method
enables the prediction of stable perovskites and the properties
of binary compounds. Other works (e.g., [22–24]) study vari-
ous aspects of perovskites with existing machine-learning al-
gorithms. In this work, we employed a very general machine-
learning algorithm (whose details will be reported on in [21])
and delineated phase boundaries in the two classification
problems that we investigated.

Our bare binary classifier can be trivially extended to
nonbinary (multiclass) problems via, e.g., the “one-versus-
rest” approach [25]. We will detail a three-class problem when
investigating binary (“AB”) alloys.
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The remainder of this work is organized as follows: In
Sec. II, we provide a description of our algorithm. In Secs. II A
and II B therein, we will, respectively, outline the Gaussian
and multinomial variants of our algorithm. We will next
explain (Sec. III) how we train the algorithm to ascertain
perovskite formability. In Sec. IV, we apply a neural network
analysis based version of our approach to the study of double
perovskites when only the tolerance and octahedral factors
are provided. In Sec. V, we will apply both neural network
and Gaussian kernel based versions of our algorithm to the
study of double perovskite formability when five features (that
further incorporate ionic electronegatives) are included. With
this analysis we may make predictions as to which candidate
systems might be stable perovskites. In Sec. VI, we contrast
the SRVM predictions for stable double perovskites with de-
tailed DFT calculations for the enthalpy of formation. Finally,
in Sec. VII, we will invoke the “one-versus-all” approach to a
ternary classification problem involving AB solids [26].

II. STOCHASTIC REPLICA VOTING
MACHINE ALGORITHM

As befits its name, our “stochastic replica voting ma-
chine” (SRVM) algorithm relies on a voting procedure among
stochastically generated classifiers. As we will explain, these
individual classifiers are defined by a kernel that may be of
any type: e.g., a sum of Gaussians or a multinomial. Initially,
we “train” the system to predict the correct answer. The
trained system may then subsequently predict the outcome
given initial inputs. Training is performed by adjusting the
kernel of each individual classifier such that it reproduces
known results. The voting of classifiers is then given new data
and a vote is taken amongst the predictions of the individual
classifiers.

The input (“training set”) data for N items that need to
be classified is given in terms of a set of a vectors {�vi}N

i=1
defining the features of the items and their corresponding
classification ρi. If the classification is amongst q different
groups, then classification function is a Potts spin variable
whose value ρi = 1, 2, . . . , q denotes the group that item i
correctly belongs to. Potts variables may be generally used
as a classification index in numerous arenas, e.g., [27–30].
The features of each item are combined into a vector �v =
(v1, v2, . . . , vd ). Thus, the Cartesian components of each
vector �vi are equal to the values of all parameters of the
input data associated with item i (e.g., the values of the
individual atomic radii of the ions forming in a candidate
perovskite material). If numerous features are given for each
data point i, then the dimensionality (d) of the vectors �vi

will be high. The goal of machine learning is to make an
educated guess (a “prediction”) as to what the corresponding
classification outcome will be for a new vector �v for which
there is no a priori correct classification known outcome.
Since no additional information is available, the predicted
outcome ρ can only be some function F of all supplied input:
the features defining �v and all known training set data. That is,
the underlying assumption of any machine-learning approach
is that

ρ(�v) = F
(
�v; {�vi}N

i=1, {ρi}N
i=1

)
. (1)

The natural question is as follows: “How may we determine
the correct or ‘optimal’ function F”? Numerous machine-
learning approaches exist. We briefly comment on two of
these. In one important subclass of these, known as “support
vector machines” (SVM) (e.g., [31,32]), F is implicitly as-
certained by inequalities applied to assumed specific function
types. In neural network based machine learning [33,34], in
particular in “deep learning” [35], the function F is formed
by a particular hierarchal recursive structure. Our approach
(SRVM) is, in some regards, more rudimentary yet, as we
will explain, may extend these and other prevalent models.
To illustrate its basic premise, we will consider the binary
(i.e., q = 2) classification problem. Here, ρi = 1, 2 and thus
ρ̃i ≡ (2ρi − 3) = ±1 naturally classifies any data point �v
into one of two groups (labeled by ρ̃i = 1 and ρ̃i = −1).
We define F̃ ≡ (2F − 3) and initially consider F̃ to be an
outcome of a vote amongst the predictions of a large voting
of general continuous stochastic functions {Ga}r

a=1 (that we
need not be of different types) where r is the number of
“replicas” in this voting. We will, principally, focus on two
broad types of stochastic functions. We will examine what
occurs (a) if {Ga}r

a=1 are expressible as sums of random basis
functions. We then turn to (b) functions {Ga}r

a=1 generated
by a weighted averages of “neural network type function”;
by the latter, we allude to functional composition of linear
and Fermi function (also known as a “sigmoid” function in
the machine-learning community). Apart from SVM, related
machine-learning approaches include “voting” methods [36],
which employ randomly generated data sets, “boosting” [37]
which aims to combine different weaker algorithms into a
stronger learners, “decision tree learners” [38], and “random
forest” methods [39] which employ decision trees to combine
the results of various classifiers and often do so while choos-
ing different subspaces of the features or given data. While
our algorithm enjoys many commonalities with these and
other approaches, we underscore that its essential character is
that of a stochastic average over different randomly generated
functions. Basically, we perform (a discrete sum version of)
“functional integration” over different randomly generated
fits to the given data set in order to suggest the most likely
outcomes for given vectors �v. In performing these “functional
integration” averages, the SRVM algorithm that we briefly
introduce below does not discard any data points nor features
to generate lower-dimensional subspaces on which a voting of
classifiers is trained on.

We start with stochastic functions of type (a) and expand
in terms of simple (equivalent type) nonorthogonal randomly
chosen basis functions. A simple choice for the functions Ga

(that will be investigated in this work) is one in which they are
a sum of R random Gaussian functions [40]. Thus, we set

Ga =
R∑

j=1

c jae−(�v−�v ja )2/(2σ 2
ja ), (2)

where {c ja}R
j=1 are coefficients that we will discuss momentar-

ily. In the most minimal form of Ga, all standard deviations σ ja

are set to a uniform fixed value σ ja = σ . The centers {�v ja} of
the Gaussians are randomly chosen in the volume spanned by
the feature space. Thus, for each of the r functions {Ga}r

a=1,
we randomly choose R “anchor points” in the feature space
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volume to be {�v ja}R
j=1. The location of these anchor points

differs from replica to replica. That is, we define each replica
“A” by a different stochastic set of vectors {�v ja}R

j=1. More
comprehensive than the specific choice of random Gaussians
in Eq. (2), the functions Ga may be generally chosen to be of
the form

Ga =
R∑

j=1

c jaK j
a (�v). (3)

Here, the kernel (or basis) functions K j
a could be any arbi-

trary stochastic functions. For the Gaussian form of Eq. (2),
K j

a (�v) = e−(�v−�v ja )2/(2σ 2
ja ). Other general kernels K , different

from a Gaussian function, may, of course, be considered.
For instance, another natural (yet typically computationally
expensive) choice for the kernel Ka that we will return to
in this work (reasonable when the outcome likelihood is
expected to be analytic as a function of the features) is that
of multinomials in the Cartesian components of �v.

During the training phase, we optimize the values of the
coefficients {c ja}R

j=1 given the known outcome for the training
points i = 1, 2, . . . , N such that Ga(�vi ) matches the correct
classification ρ̃i. The number R of the coefficients required in
order to achieve high prediction accuracy is typically smaller
than the number of training data points R < N (in most
instances, in fact, R � N). The optimal value of R depends
on the nature of data as well as the size of data and should
be chosen carefully to avoid overfitting. For each replica
a = 1, 2, . . . , r, the given training data set translates into
linear equations for {c ja}R

j=1. Thus, Eq. (3) explicitly reads

as Ga(�v = �vi ) = ∑R
j=1 Ki j

a c ja, where Ki j
a ≡ K j

a (�v = �vi ). This
embodies a set of overdetermined (since N > R) linear equa-
tions for the coefficients {c ja}. For each of the replicas a =
1, 2, . . . , r, the above relation can be trivially cast as an
explicit matrix equation Ĝa = K̂aĉa. Here, Ĝa and ĉa are two
column vectors of, respectively, lengths N and R whose entries
are, respectively, {Ga(�v = �vi )}N

i=1 and {c ja}R
j=1. The elements

of the rectangular N × R dimensional matrix Ka are, as de-
fined above, given by (K̂a)i j ≡ K j

a (�v = �vi ). The coefficients
ĉa minimizing the cost function or “energy” defined by the
square sum ||Ĝa − K̂aĉa||2 are given by

c ja =
∑

i

(
K̂−1

a

)
jiGia. (4)

Here, the rectangular matrix K̂−1
a [with elements (K̂−1

a ) ji]
is the pseudoinverse of K̂a. Thus, in the training phase, the
goal is to find the coefficient vectors ĉa for each of the
replicas a = 1, 2, . . . , r. With the above values of c ja in tow,
we may now predict the classification of a new “test” item
�v different from all prior training data points (i.e., �v �= �vi for
1 � i � N). That is, we may compute the classification of �v as
predicted by the r independent replicated stochastic functions
{sgn(Ga(�v))}r

a=1 (where sgn denotes the sign function) and
then perform a vote amongst all of these classifiers. The vote
then yields the final prediction of the SVRM,

ρ̃(�v) = sgn

(
r∑

a=1

sgn(Ga(�v))

)
. (5)

FIG. 4. A schematic representation of replica “interactions.” The
spheres depict individual replicas that navigate an “energy land-
scape” looking for stable minima while simultaneously interacting
with one another. As compared to a single solver, in the simplest
setting, these “interactions” may correspond to a vote amongst their
predictions and notably when seeing at which parameter values the
predictions of the replicas are most uniform and thus robust. These
“interacting” replicas may more readily avoid false minima and
converge on the stable low-energy solutions leading to more stable
and accurate predictions. In the algorithm that we outline in this
work, the simplest multireplica vote of Eq. (5) is employed. We will
further optimize the function types to fit by seeing when the replica
predictions are most uniform.

For the q = 2 classification problem that we have considered
thus far, the inner sgn function in Eq. (5) may be replaced
by other appropriately chosen symmetric functions ρ̃(�v) =
W ({Ga(�v)}) with the condition that may only assume the
two values ±1 (corresponding to the two possible classes
to which an item �v may belong to). The voting in Eq. (5)
emulates a more general multireplica “interaction” sketched
in Fig. 4. In this schematic, each sphere denotes an individual
replica. Together, the voting of replicas may better hone in on
optimal predictions for the classification of �v. Putting all of
the pieces together, Eqs. (3)–(5) nearly completely define the
SRVM program. The kernels K j

a may, a priori, stochastically
be chosen to be of any particular functional form. Of course,
if a theory exists, then the functional form of Ga may be more
efficiently designed. In the absence of any such information,
one may simply examine the predictions for random kernels
K j

a . There are three remaining inter-related natural questions:
(1) Is there a particular metric to determine the confidence

with which the results are predicted?
(2) How do we determine the “optimal” number r of the

replicas to be used?
(3) Similarly, what sets the number R of kernel functions

in Eq. (3)?
As we will describe, the answer to all questions may be

determined by examining the overlap of the predictions of the
different stochastic replica functions {Ga}r

a=1. Throughout this
work, we will employ a simple variant of the overlap O(�v)
associated with any point �v whose classification is predicted
by the r replicas {G1, G2, . . . , Gr}, namely,

O(�v) ≡ 1

r

∣∣∣∣∣
r∑

a=1

sgn(Ga(�v))

∣∣∣∣∣. (6)

With this definition, we first explicitly turn to question (1).
If all replicas yield identical predictions (and thus O is close
to unity), then (as is intuitively natural and we verified by
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numerical experiments), this common predicted answer is
likely correct. Analogously, if the replicas are far from a
unanimous agreement about the correct classification (and,
consequently, O is much smaller than one), then the predicted
answer cannot be trusted with high confidence. The above
rule of thumb enables us to scan the parameters r and R to
find values that are likely to yield optimal accuracy [questions
(2) and (3) above]. Typically as the number of replicas r
increases, so does the accuracy. However, larger values of
r entail increasing computational costs with no real benefit.
We thus seek sufficiently large r that enable high accuracy.
By contrast, when the number of anchor points (or more
general basis functions) R becomes too large, overfitting leads
to increasing errors. There are optimal values of R that are
sufficiently large to capture the characteristics of the data yet
not so big that overfitting occurs. In reality, we may fix r
and R to specific values and examine the replica overlap to
ascertain whether the predicted values may be trusted [21].
That is, when the overlap O is averaged over all new data
points �v (whose correct classification is not a priori known
and that needs to be classified by the algorithm) is high, then
the consensus reflected by the average O will suggest that the
current parameters r and R defining Eqs. (3) and (6) enable a
correct prediction of the classification problem.

A variant that we will touch on later is that of “an
expansion in a box.” For typical basis functions K j

a , the
functional form of Eq. (3) assumes that the outcome is a
generally smooth function of �v. If the system exhibits “phase
transitions” as a function of the features (v1, v2, . . . , vd ), then
such an assumption is void. Instead, one may fit the training
data with a particular function of the form of Eq. (3) with
specific coefficients {c ja} only when �v lies in a particular
volume �v ∈ �; different regions will correspond to differ-
ent functional forms (i.e., the coefficients {c ja} may change
from one region of �v space to another). Here, the expansion
will be valid only in a particular “box.” The function Ga

will be allowed to change as �v goes from being in one
domain � to another. Thus, in each of the domains {�b}
comprising the system (in which the system is assumed to be
“analytic”) there will be a different function Gab (specified
by coefficients c jab). In these cases, a natural question is
how to ascertain phase transitions and effectively employ the
existence of these volumes. Our approach here is once again
that of noting when the overlap between different replicas
is highest. That is, given a particular test point �v, we may
train the system with all data that lie in a volume � (a
box) that encloses �v. We then see when, as a function of
the size ||�||, the overlap O(�v) between the replicas for the
predicted outcome at point �v will be the highest. We employed
this approach when the overlap between the various replicas
was small and our original classification outcome was less
certain.

The accuracy of machine-learning classification algorithms
is typically tested by randomly fitting a fraction z of the known
data (i.e., using these data for “training”) and then seeing
how well the algorithm correctly predicts the classification
of the remaining data that are not used as training but rather
supplied to the algorithm only as new vectors �v whose correct
classification is known yet not given to the user but is to be
predicted by the algorithm. This process [or training with

a fraction z of the data and testing the predictions on the
remaining fraction of (1 − z)] is repeated over and over again
with different ways of splitting the known data into two
subgroups of relative numbers set by a parameter z:

training data points : test data points

= z : (1 − z). (7)

The accuracy of the predicted classification is then averaged
over the many ways of splitting the data with this ratio
between the size of the number of training data points and
the tested points kept fixed. In the accuracy tests that we will
report on, we will follow the prevalent practice of choosing
z = 0.8.

A. Gaussian kernels

In what follows, we provide an explicit example in which
the value of R (the number of basis functions) is determined.
In the current context, we seek to find the optimal number
R of anchor points for the Gaussian of Eq. (2). Toward this
end, we may plot the average overlap O between different
replicas as a function of the number of replicas r and the
number of anchor points R. This overlap enables us to de-
termine the optimal values of r and R for which O obtains
its maximum (or, more generally, its maxima). In general,
optimal parameter values (such as R) used in the SRVM
model (also for function types are Gaussian kernels) may
be found by examining when the predictions of the different
replicas are most robust. SRVM does not merely average over
the predictions of different replicas. Rather, as sketched in
Fig. 4, the replicas “interact” with one another so as to make
their collective predictions uniform. In the current setting, this
corresponds to a choice of R that maximizes the inter-replica
overlap O.

To explicitly illustrate the basic premise, we examine the
data of the perovskite classification problem that we will turn
to in greater detail later on. For the time being, we probe how
the average of the overlap O varies as a function of the number
of basis functions used [or anchor points in the case of the
Gaussian kernel of Eq. (2)]. (As remarked earlier [see discus-
sion after Eq. (2)], the anchor points are randomly placed in
the feature space.) As Fig. 5 illustrates, the overlap between
different replicas is maximal for R ≈ 60 anchor points. Since
the inter-replica overlap is maximal for this value of R, we
suspect using this number of anchor points would result in
the optimal accuracy. The average accuracy that we reached
with the Gaussian kernel for determining stable perovskite
oxides was 94.19%. This accuracy may be contrasted with the
performance of a current state-of-the-art SVM package [41]
employing radial basis (i.e., Gaussian) functions; the SVM
method yielded a mean accuracy of 92.53%.

B. Multinomial kernels

As we alluded to earlier, another set of kernels in Eq. (3) is
afforded by a d-component vector �j defining monomials

K �j (�v) = v
j1
1 v

j2
2 . . . v

jd
d . (8)

Here, vk are the Cartesian components (1 � k � d). There are
a variety of ways to produce multinomial-based replica. For
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FIG. 5. The overlap of Eq. (6) averaged over r = 11 replicas
and different test points �v′ that appear in different cross-validation
partitions for the stability of candidate perovskites. Here, this average
overlap (given in percentage) is computed for the predictions of
different Gaussian-type [Eq. (2)] replicas having R fixed anchor
points. The average inter-replica overlap is largest when R ≈ 60
(suggesting that the most accurate predictions are obtained for such
values of R).

instance, different rotations in parameter space may lead to
independent multinomials. A general rotation vk → U h

kk′vk′ ≡
vkh with U a a random rotation matrix will transform the
monomial of Eq. (10) into a multinomial in which the sum
of all powers in each of the individual monomials

J ≡
d∑

k=1

jk (9)

is unchanged relative to its value in Eq. (10). Thus, if we

choose a basis of monomials {K �j
a (�v)} with 0 � jk � p (with a

general natural number p) for all 1 � k � d in one coordinate
system vk , then an independent basis of monomials is afforded
by

K �j
a = v

j1
1av

j2
2a . . . v

jd
da, (10)

with jk � p. This is so as the highest power of each of
the Cartesian coordinates is p < J . In Eq. (10), {vhk}d

k=1
are the coordinates in the rotated basis generated by U a.
Equation (3) may be used to concoct several replica functions

Ga = ∑R
j=1 c jaK

�j
a (�v).

C. Deep neural network type functions

We next turn to functions of the sort associated with deep
neural networks [33,34]. Following the standard recipe for
constructing deep neural networks from individual neuronal
activation functions [33–35,42,43], the individual random
kernels underlying the SRVM method can be combined to
construct more complex composite functions. Herein, the
activation function of each neuron in the network is one of
our randomly chosen functions (similar to those discussed in
the earlier subsections). In the current work, when studying

deep neural network type constructs, we will employ com-
mon sigmoid (or Fermi function type) activation functions in
simple neural networks of different architectures and contrast
their results. More generally, reliable candidate network ar-
chitecture and activation function types may (similar to the
determination of other hyperparameter values in SRVM) be
ascertained by noting when the highest inter-replica overlaps
appear. The input to the node k in layer α = 0, 1, 2, . . . , Nf is
given by a linear combination

ε
(α)
k = Lα

({
ζ

(α−1)
k′

}
,
{
c(α−1)

k

})
≡ −

(∑
k′

w
(α−1))
kk′ ζ

(α−1)
k′

)
− c(α−1)

k , (11)

with w
(α−1)
kk′ and c(α−1)

k being constants. For Nf > α′ > 0, the

function ζ
(α′ )
k′ is of the Fermi (or sigmoid) type

ζ
(α′ )
k′ = f

(
ε

(α′ )
k′

) = 1

1 + eε
(α′ )
k′

. (12)

The variables ζ
(0)
k′ = vk′ are input features. All (Nf − 1)

“layers” α �= 0, 1 are often termed “hidden layers.” In the
last output layer there is only one value of ε (Nf ) (i.e., k =
1 only); here, ζ (Nf ) = θ (−ε (Nf ) with θ (z) = [1 + sgn(z)]/2
being the Heaviside function. That is, a value of ζ (Nf ) = 1
corresponds to a positive classification in the scheme of the
earlier subsection [ρ̃(�v) = 1] while ζ (Nf ) = 0 corresponds of
a prediction of an assignment to the “no” class [ρ̃(�v) = −1].
The coefficients w

(α)
kk′ form rectangular matrices with a number

of rows equal to the number of “nodes” or “neurons” nα

(i.e., k = 1, 2, . . . , nα) in layer α and a number of columns
set by the number of nodes nα−1 in the preceding layer. The
initial layer is that of the input values (i.e., vk = ζ

(0)
k are the

features). In typical neural nets, the single ζ (Nf ) appearing
in the final layer provides the prediction sought after in a
classification problem. Specifically, in binary classification
problems, if ζ f > 0.5, then the predicted classification of �v
is of one type (e.g., “yes”) and if ζ f < 0.5 the prediction
is that �v belongs to the other class. Equations (11) and (12)
schematically correspond to the composite of 2Nf individual
f and L functions

θ
(
LNf

(
f
(
LNf −1( f ( . . . L1(�v) . . . ))

)))
. (13)

All (Nf − 1) “layers” apart from the first transformation on
the initial input vector �v are often termed “hidden layers.”
Starting from random initial parameters {w(α)

kk′ } and {c(α)
k }, we

will optimize the parameters of such neural net functions to fit
the data. Different initializations do not necessarily lead to a
unique set of these parameters when iteratively optimized via
backpropagation [44] to fit the training data. Different neural
architectures having a different number of layers Nf and the
set (n1, n2, . . . , nNf ) specifying the number of nodes in each
iterative layer also constitute different functions of the same
variety. As in Sec. II A, we may find the “optimal” neural
net function types (including contending architectures) by
seeing which types of architecture lend themselves to uniform
consistent predictions amongst different replicas.
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D. Ternary and multiclass SRVM

Thus far, we focused on binary classification [wherein the
sign, Eq. (5), decided to which of two categories a particular
point �v should belong to]. There is, of course, more to life
than only binary classification. In order to classify �v into one
of p > 2 groups, various constructs are possible. One, very
rudimentary, design is to iteratively classify as a point �v as
belonging (or not) to any one of the classes q = 1, 2, . . . , p.
Such a rudimentary approach emulates the well known
“one-versus-all” (OVR) [25] technique; this is the what we
will adopt in this work when we will classify AB solids into
one of p = 3 groups (Sec. VII). Specifically, we will start
by predicting the results of an input vector �v for each of
the possible output values with the SRVM algorithm that we
introduced in the earlier subsections. Similar to the binary
classification, in order construct the pseudoinverse for the ith
output value bivariate algorithm, we will set the result of a
data point as +1 if it outputs a classification of type q and
−1 otherwise. Instead of just taking the sign of the outputted
results, we compared the raw values from results. That is,
if the output associated with the vector �vi as tested against
candidate classes q = 1, 2, . . . , p had the highest incidence of
positive values for a particular class q = q′ then the vector �vi

was classified as belonging to group q′.

III. CUBIC PEROVSKITE FORMABILITY

In this section we employ SRVM to predict whether candi-
date ABO3 compounds form stable perovskite structures. The
training data that we used [18] has d = 2 features briefly noted
in the Introduction: (i) The “tolerance factor”

v1 ≡ rA + rX√
2(rB + rX )

, (14)

where ri=A,B,X denote, respectively, the radii of the A, B, and
X ions, and (ii) the “octahedral factor” defined as the ratio

v2 ≡ rB

rX
. (15)

The data in [18] consist of 223 candidate compounds of
the ABO3 type. Of these compositions, 34 correspond to
stable perovskite structures and the rest are unstable struc-
tures. (After removing duplicate compounds that share the
same tolerance factor and octahedral factor, 188 data points
remain, 29 of which form stable cubic perovskite structure.)
Once the training is performed with input data, we use it
to make the binary prediction regarding the stability of the
contending perovskite compounds. Following Eq. (7), we
repeatedly partitioned the data into two random subgroups
with z = 0.8. Several partitions with this ratio were generated
by the standard cross-validation method in which the data
are divided into nearly five equal parts. Subsequently, four of
these five sets are then used together to train the algorithm and
the remaining one fifth of the data is used as a resource of test
data to see how accurate the predictions of the algorithm are.
The set that is used as the test data is cycled through (being
chosen to be all of the five nearly equal parts of the data).
The accuracy is then averaged over the predictions made over
the five groups when these are used as test data. The accuracy
is further averaged over different random partitions into five
groups. Both for comparison as well as in order to obtain

FIG. 6. Classification results using different SVM kernels em-
ploying the LIBSVM-3.0 package [41].

a more comprehensive picture, aside from our own SRVM
algorithm, we also employed both the standard Gaussian and
polynomial kernels in the well-known SVM method [31,32].
In Fig. 6, we provide the results that we obtained by applying
the SVM algorithm for different kernels. In this figure, the
region above the drawn curves (associated with individual
SVM kernels) is predicted to correspond to stable perovskite
structures; in the parameter region below these curves, no
stable perovskite materials are anticipated. In line with our
main thesis (that of inferring a likely outcome from multiple
independent kernels), the region that is above all drawn curves
corresponds to a domain in the v1v2 plane in which we may
expect (with high confidence) stable perovskite structures.
Similarly, in Figs. 7 and 8, we display the results obtained
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FIG. 7. The viable region in the tolerance factor (v1) and octahe-
dral factor (v2) plane for materials that may form cubic perovskite
structure as ascertained by a multinomial order kernel in the SRVM
method. Here, we employed multinomials of three different orders
(3, 4, and 5). The common region in which all multinomials predict
formability of a cubic perovskite structure is marked as the “yes
region.” Similarly, the region where all three replicas predict the lack
of stable perovskites is denoted as the “no region.”
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FIG. 8. The predicted formability of the cubic perovskite struc-
ture as provided by the Gaussian kernels of Eq. (2) for five different
replicas. These different replicas are produced by randomly choosing
R = 50 fixed vectors in Eq. (2) (see text).

by our SRVM algorithm for, respectively, the multinomial
and Gaussian kernels, respectively [see Sec. II and the dis-
cussion following Eq. (2) for a description of replicas in the
Gaussian case]. The designations of “yes” and “no” reflect
the predictions of the algorithm regarding the viability of
putative compounds of an ABO3-type composition to form
stable perovskite structures. In Fig. 9, we overlay (with dif-
ferent levels of resolution in the two panels) the predictions
of the SVM method and our SRVM algorithm with multiple
kernels/replicas. The shaded region in Fig. 9 is the one
in which all methods/replicas/functions predict that stable
perovskite structures should form. With this region in hand, all
candidate ABO3 materials (of the correct chemistry to allow
such a composition) with tolerance and octahedral factors that
lie in the shaded area are predicted to be stable perovskites.
Some compositions lie near the boundary and do not enable
(insofar as our approach is concerned) a definite prediction
regarding perovskite structures that do not appear in the
data set that we used for training and validation [18]. Two
such candidates are EuZrO3 (v1 = 0.857, v2 = 0.514) and
EuHfO3 (v1 = 0.861, v2 = 0.507). The location of these po-
tential stable perovskite structures is highlighted in Fig. 9(b).
With z = 0.8, the SVM algorithm achieved an accuracy of
92.52%. By contrast, the SRVM algorithm obtained an accu-
racy of 94.14% with a multinomial kernel [here two different
multinomials (where different order multinomials were used
as replicas) and we further employed the “expansion in the
box” construction]; SRVM achieved an accuracy of 94.19%
with a Gaussian kernel (here we employed 11 replicas, each
having randomly chosen anchor points). These two candidates
are indeed known to constitute stable perovskites [45,46].

IV. FORMABILITY OF BISMUTH-BASED DOUBLE
PEROVSKITES USING TOLERANCE AND

OCTAHEDRAL FACTORS

We next turn to predictions regarding the formability of
more complex double perovskites (see, e.g., Fig. 2). Specifi-

FIG. 9. The formability of cubic perovskite structure at two
different resolutions. The yellow region is that in which all methods
(SVM, SRVM with both multinomial and Gaussian kernels) predict
that cubic perovskite structures will form. In (a), we show the entire
region of measured tolerance and octahedral ratios. (b) Provides
a zoomed viewed. Two possible candidate compounds from cubic
perovskite structure are highlighted: EuHfO3 and EuZrO3.

cally, we are interested in finding bismuth-based oxide double
perovskites that can be described with a general formula of
A′A′′B′BiO6 with Bi occupying half of the B-site cations. Our
interest in Bi-based oxide double perovskites is motivated
by the goal to achieve stable and nontoxic alternatives for
lead-halide perovskites that have recently emerged as high-
performance semiconductors with applications in solar cells
and light-emitting diodes, but are plagued with instability and
toxicity issues [47–49].

For the double perovskites, we define the octahedral and
tolerance factors by Eqs. (14) and (15):

rA ≡ rA′ + rA′′

2
,

rB ≡ rB′ + rB′′

2
. (16)

Toward this end, we will examine what occurs if the functions
{Ga}r

a=1 are either a sum of randomly generated Gaussians
or neural network type functions. We will examine both
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(i) a data set involving only double perovskites as well as
(ii) combined data for both cubic and double perovskites.
The double perovskite data set that we first study (provided
in Sec. I of the Supplemental Material [20]) consist of 72
candidate compositions. Of these, 57 are stable and 15 are
unstable double perovskites. Similar to Sec. III, these data
have only two features: the tolerance and octahedral factors
v1,2. These two factors are calculated from the Shannon radii
r of the ions forming the double perovskite. The octahedral
and tolerance factors of double perovskites are defined just
as they were for the perovskites [Eqs. (14) and (15)]. Now,
however, we replace the radius of the A-site (B-site) cation
with the average radii of the A-site and A′-site (B-site and
B′-site) cations involved.

A. Neural net analysis of combined double perovskite and
cubic perovskite data

We examine the 295 instances that include data on both (i)
double perovskite data of Sec. I of the Supplemental Material
(SM) [20] to this work, and (ii) the ternary perovskite forma-
bility data [18] (that we employed in Sec. III). Additional
details regarding these data sets have been relegated to the
SM [20]. We study these materials using the “neural net”
library [50–54]. We randomized the input data and performed
a 10-cross validation analysis for a neural net consisting of
one layer and three nodes. We run an SRVM version of this
neural net: the initial input weights (i.e., those set before back
propagation is applied) are chosen randomly each time that
we run the neural net model. Further details concerning this
analysis are provided in Sec. II of the SM [20].

B. SRVM–neural net predictions for new stable
double perovskites

Armed with a proof of principle of the reliability of the en-
semble of neural network functions for the combined forma-
bility data [18] and the double perovskite data (appearing in
the Sec. A of the SM [20]) we now apply it to suggest hitherto
unexplored candidate perovskite compounds. Predictions for
the stability of the candidate double perovskite compounds
are reported, rather expansively, in Table VI of the SM [20].
Herein, the stability probabilities for the various compounds
are computed as equal to the ratio of (the number of replicas
that yield a positive outcome)/(the total number of replicas
employed).

V. DOUBLE PEROVSKITE ANALYSIS WITH
ELECTRONEGATIVITIES AND

IONIC SHANNON RADII

We now turn to a complete double perovskite data set
of the SM [20] and study these double perovskites alone
(i.e., we do not include the ternary perovskite data in our
analysis). In addition to the tolerance and octahedral factors
of Eqs. (14) and (15), we will now add basic electronegativity
features that directly touch on the interactions underlying the
stability of these systems. Two of these new features are the
electronegativity of the X (in the materials that we consider,
oxygen anion) sites relative to average electronegativity nA

TABLE I. Space-group symmetries and octahedral tilt patterns
for A′A′′B′B′′O6 compounds.

Index Space group Tilt system

2 P1 a−b−c−

4 P21 a−a−c+

5 C2 a−b0c+

11 P21/m a−a−c0

13 P2/c a+b−c0

16 P222 a−b−c−

49 Pccm a+b
′0c0

81 P4 a+a+c−

85 P4/n a0 a0 c−

90 P4212 a0 a0 c+

111 P42m a+ a+ c0

129 P4/nmm a0 a0 c0

and nB of, respectively, the ions at the A and B sites:

v3 = nX − nA′ + nA′′

2
≡ nX − nA,

v4 = nX − nB′ + nB′′

2
≡ nX − nB. (17)

In practice, in order to compute nA,B we need to know the four
electronegativities nA′ , nA′′ , nB′ , and nB′′ . We will employ the
two features of Eq. (17) since these may be extended also to
the ternary perovskites ABO3. Since the B-O bond is covalent
while the A-O interactions are more ionic, we anticipate v3

to be more important that v4. A new feature suggested by
[55] (dubbed therein as τ ) which we included was a nontrivial
function of the average electronegativity of the A ions and the
average Shannon radii rA,B [or, equivalently, the tolerance and
octahedral factors of Eqs. (14) and (15)] with the substitution
of Eq. (16):

v5 = τ ≡ rX

rB
− nA

(
nA − rA/rB

ln(rA/rB)

)
. (18)

The input features of known stable and unstable double per-
ovskites and our results are, respectively, provided in Tables I
and II of the SM [20]. Our corresponding predictions are

TABLE II. Space-group symmetries and octahedral tilt patterns
for A2B′B′′O6 compounds.

Index Space group Tilt system

2 P1 a−b−c−

12 C2/m a0b−b−

14 P21/c a+b−b−

15 C2/2 a0b−c−

48 Pnnn a+b+c+

86 P42/n a+a+c−

87 I4/m a0a
′0c−

128 P4/mnc a+a+c−

134 P42/nnm a0 b− b+

148 R3 a− a− a−

201 Pn3 a− a+ a+

225 Fm3m a0 a0 a0
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given in Table VII of the SM. In the SM (Sec. VI) [20],
we further provide specifics concerning neural net functions
used to fit the data. We return to a simple Gaussian SRVM
of Secs. II A and III and apply it to an analysis of the double
perovskite data with the above-mentioned five features v1�i�5.
A vote within sets of r = 31 replicas was performed 10 times
to yield final predictions. (In Tables X–XVIII of the SM
[20], we display r = 9 such constructed replica functions.)
Each of the replica functions is of the form of Eq. (2) with
R = 17 anchor points. The centers{�v ja} of the Gaussians and
the corresponding coefficients {c ja}R

j=1 are listed in Tables
XX–XVIII of the SM [20]. All standard deviations σ ja are
set to unity, σ ja = σ = 1. Unlike the analysis in Sec. III, we
have not employed the overlap to optimize the number of
anchor points. The resulting fivefold cross-validated accuracy
for the double perovskite data of Sec. I of the SM with the
d = 5 features using the SRVM-Gaussian algorithm is 92%.
In Table I of the SM [20], we provide predictions for the
stability of the screened candidate compounds. In Table VII
of the SM [20], we also present the results of SVM with
radial basis kernels applied and neural networks of different
architecture. The fivefold cross-validated accuracy for this
model is, similarly, also 92%.

VI. THEORETICAL FORMATION ENTHALPY OF
SELECTED DOUBLE PEROVSKITES

As described in Secs. IV and V, we employed SRVM
to predict the formability of hypothetical Bi-based double
perovskite oxides with a general formula of A′A′′B′BiO6,
where Bi occupies half of the B-site cations. From a simple
charge balance, 30 357 total double perovskite oxides of the
form A′A′′B′BiO6 are possible. We considered all the cations
up to Bi in the periodic table for A′, A′′, and B′ sites, while
excluding lanthanides and radioactive Technetium as possible
candidates. Moreover, all possible oxidation states for each
cation were included during charge balance while keeping the
oxidation state of Bi fixed at +3.

Due to the limited number of experimentally synthesized
Bi-based double perovskite oxides, we use a twofold ap-
proach for training our SRVM/SVM models. First, we de-
vised a quick screening criterion to screen some hypothetical
compounds based on the atomic features of the 28 unique
A′A′′B′BiO6 double perovskites (with Bi at the B site) that
have been reported in inorganic crystal structure database
(ICSD) [56]. The atomic features that we used for initial
screening are the tolerance and octahedral factors of Eqs. (14)
and (15). We used Slater’s empirical atomic radii [57] for
calculating these factors. This was done since the tolerance
and octahedral factors are independent of oxidation state and
coordination number, which are unknown for a hypotheti-
cal perovskite. We found that these factors follow a linear
regression model with an R-squared value of 0.84, for the
experimental A′A′′B′BiO6 compounds. Moreover, we find that
144 hypothetical A′A′′B′BiO6 compounds adhere to this linear
regression model.

Next, by using density-functional theory (DFT), we op-
timized the crystal structure of each screened compound to
calculate 
Hf and evaluate its potential formability. The
perovskite framework undergoes cooperative tilting of the

BX 6 octahedra to optimize the coordination environment of
A- and B-site cations [58]. We consider all viable octahedral
tilt patterns for investigating the ground state of a given stoi-
chiometry. These possible tilt patterns and their corresponding
space-group symmetries are summarized in Tables I and II
[59–61]. For a stoichiometry to be considered stable, its cal-
culated 
Hf should be negative. However, compounds with
positive 
Hf are quite common and can be experimentally
synthesized by optimizing experimental conditions. For ex-
ample, a recent survey of the DFT-calculated 
Hf of all
existing binary oxides reported ∼90th percentile of the com-
pounds lie within 94 meV/atom above the ground-state poly-
morph [62]. Therefore, we expect compounds with 
Hf <

100 meV/atom to be formable under suitable experimen-
tal conditions. We label each of the 144 compounds as
stable (
Hf < 100 meV/atom) and unstable (
Hf > 100
meV/atom).

We used experimentally synthesized Bi-based double
perovskite oxides (with Bi at the B site), nonperovskite
oxides, and the compounds labeled as stable and unstable
from initial screening to train our SVM models. Here,
non-double-perovskite oxide corresponds to a compound
following the stoichiometry of a double perovskite but adopts
a nonperovskite crystal structure, listed in the ICSD [56].
As described in Sec. V, we used five different SVM models
followed by a voting procedure (SRVM) to predict the
formability of a hypothetical Bi–double perovskite oxide.
The models employed in this classification process use the
following atomic features: the tolerance factor, the octahedral
factor, the average A-site electronegativity, and the average
B-site electronegativity. We calculate the octahedral and
tolerance factors using Slater’s empirical atomic radii [57] as
well as Shannon’s ionic radii [63]. We consider a hypothetical
Bi–double perovskite oxide to be formable if at least one of
the five SVMs predicts it to be stable.

Out of a total 30 357 hypothetical A′A′′B′BiO6 compounds,
our SRVM algorithm voted 9795 compounds to be stable,
where 8115 of the 9795 compounds are predicted to be stable
by all the five SVM models. We found 1680 out of 9795
compounds are voted as stable by at least one SVM model.
To further assess the formability of compounds that were
voted by our SRVM algorithm to be stable, we selected a few
compounds to perform structural optimization and subsequent
formation enthalpy analysis using DFT. At this point, it is
not possible to optimize all the 9795 compounds using DFT
due to their computational expense. We optimized the crystal
structure of the selected compounds using DFT and calculate
their 
Hf . As mentioned earlier, the perovskite framework
can undergo cooperative tilting of the BO6 octahedra to op-
timize the coordination environment of A- and B-site cations
[58]. We consider all possible octahedral tilt patterns for inves-
tigating the ground state of a given stoichiometry. The DFT
calculations were performed using the projector-augmented-
wave (PAW) method [64] as implemented in the Vienna ab
initio simulation package (VASP) [65]. We employed gen-
eralized gradient approximation (GGA) as implemented in
the Perdew-Burke-Ernzerhof (PBE) functional [66] structure
optimization. Layered and rock-salt ordering were imposed at
the A and B sites, respectively. A plane-wave basis set with a
cutoff of 400 eV was used for structure relaxation, and 520 eV
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FIG. 10. (a) Formation enthalpy for the ground-state structure
of the A′A′′FeBiO6 family of compounds. The X axis represents
the A′′-site cation whereas A′-site cations are defined in the legend.
(b) Schematics showing the [100] projections of ground-state struc-
tures of NaCaFeBiO6 and KBaFeBiO6.

for the final static total energy calculation step. Gamma-
centered Monkhorst-Pack [67] k-points mesh was used for
sampling the Brillouin zone, where k points per reciprocal
atom (KPPRA) were set to be ∼8000 for relaxation and
the single-step static calculation. A Hubbard U parameter of
4 eV was used to account for localized d-electron interactions
in Fe [68]. G-type antiferromagnetism was imposed during
relaxation. The DFT calculations were carried out using the
pseudopotentials and other DFT settings employed by the
Open Quantum Materials Database (OQMD) [69].

The calculated formation enthalpy for each compound is
the difference between the total energy of a given struc-
ture with the minimized free energy of chemical reactants,
which lie at the convex hull, for the given stoichiometry as
implemented within OQMD [69,70]. For example, Eq. (19)
shows the chemical reaction path for which the free energy
is minimized for the reactants for KSrFeBiO6. The forma-
tion enthalpy for KSrFeBiO6 [
Hf (KBaTeBiO6)] is then
calculated using Eq. (20), where E (KSrFeBiO6) is the DFT
total energy/formula unit of KSrFeBiO6, while E (SrFeO3)
and E (KBiO3) are DFT total energies/formula unit of SrFeO3

and KBiO3 respectively:

SrFeO3 + KBiO3 → KSrFeBiO6, (19)


Hf (KSrFeSiO6) = E (KSrFeBiO6) − [E (SrFeO3)

− E (KBiO3)]. (20)
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FIG. 11. The average overlap (given as a percentage) as com-
puted by Eq. (22) averaged over the different cross validation be-
tween the r = 7 different replicas. Here, replicas of the Gaussian
replica model [Eq. (2)] were employed for the ternary classification
of the binary (AB) solids as a function of fixed anchor points R. The
maximum overlap (suggesting an accurate prediction) appears circa
R ≈ 40.

We calculated 
Hf of compounds with a general formula
of A′A′′FeBiO6 using DFT, where A′ = Na, K, Rb, and Cs
and A′′ = Mg, Ca, Sr, and Ba. This family of compounds
was voted to be stable by the SRVM algorithm. We exclude
the Li+ and Be2+ cations as possible A-site candidates due
to their extremely small size for the A-site cubo-octahedral
cavities. Of the 16 possible compounds in the A′A′′FeBiO6

family, 13 compounds are predicted to be stable double per-
ovskites by all the five SVM models, while for the other three
compounds (NaMgFeBiO6, KMgFeBiO6, and RbMgFeBiO6)
SVM-2 and SVM-5 predict them to be unstable with an
overall vote predicting them to be stable. From an analysis of
the formation enthalpy, we find that the A′A′′FeBiO6 family of
double perovskite oxides is reasonably close to our formabil-
ity criterion (
Hf < 100 meV/atom). As shown in Fig. 10,
we find that the ground state of all the 16 compounds has

Hf > 100 meV/atom. However, 8 of the 16 compounds
have 
Hf within (100 to 150) meV/atom. Figure 10(b) shows
the [100] projections of ground-state crystal structures of
NaCaFeBiO6 and KBaFeBiO6. NaCaFeBiO6 is predicted to
have ground-state crystal structure belonging to P21 space
group with a−a−c+ tilt pattern, whereas the ground state of
KBaFeBiO6 is predicted to be the ideal double perovskite
structure (P4/nmm) without any octahedral tilts. The com-
pounds having Mg at the A′′ site exhibit the highest 
Hf .
The average 
Hf for compounds having Mg at the A′′ site is
245 meV/atom. The small size of Mg makes it unsuitable for
the large A-site cavities, even after octahedral tilts, resulting
in a high 
Hf . Also, smaller size at the A site results in
higher degree of octahedral tilting. For instance, the ground
state of RbMgFeBiO6 has a space-group symmetry of P1,
which corresponds to a tilting pattern a−b−c−, resulting in
octahedral tilting along all three crystallographic directions.
Despite having 100 < 
Hf < 150 meV/atom, A′A′′FeBiO6
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FIG. 12. The phase diagram predicted by both the SVM algo-
rithm (denoted by thick solid lines) and our method when using
Gaussian kernels (different color solid regions).

shows a good potential toward thermodynamic stability and
we expect some of the compounds within this family can
be synthesized by optimizing experimental conditions. We
remark that while we achieve very high cross-validation ac-
curacies (the 92% cross-validation accuracy of Sec. V), the
success of our method in predicting stable double perovskite
compounds (in as much as these can be ascertained via DFT
calculations) is far lower.

VII. TERNARY CLASSIFICATION OF AB SOLIDS

We next turn our attention, using the data of [71], to the
classification of binary octet solids [26] (these solids have the
chemical composition AnB8−n where n denotes the number of
valence electrons) into one of q = 3 groups (denoted W, Z, or
R [26,71]). Octet binary alloy crystals include technologically
important semiconductors such as GaAs, GaN, and ZnO. The
three classes that we analyze correspond to dominant zinc-
blende (Z), wurtzite (W), or rock-salt (R) crystal structures
that these alloys typically form. Similar to Sec. III, we ap-
plied both the standard SVM technique with our multiclass
variant SRVM approach (see Sec. II D) with multinomial and
Gaussian kernels. We employed two commonly used figures
of merit [72] as features:

rσ ≡ rA
s + rA

p − rB
s − rB

p ,

rπ ≡ rA
p − rA

s + rB
p − rB

s . (21)

Here, rA
s , rA

p , rB
s , and rB

p denote the pertinent radii for an
electron bound to the A or B ion that is in an s or p orbital.

In the Gaussian approach, we employed the sum of R =
30 individual Gaussians (associated with different anchor

points). The general behavior of the inter-replica overlap is
displayed in Fig. 11 in which it is seen that the overlap
becomes maximal at R ∼ 30. The final classification for each
data point was determined by the group for which a given
data point appeared most frequently out of the five replicas
employed. Let n�v′

w be the number of replicas that classify
point �v′ into one of the three classes w = 0, 1, 2. For a given
cross-validation run, the average replica overlap for this three-
classification problem is defined as

O ≡ 1

rN�v′

∑
�v′

max
w

{
n�v′

w

}
. (22)

Here, N�v′ is the number of test points �v′. The average of
O over the different cross-validation partition is plotted in
Fig. 11 as a percentage. The cross-validation accuracies [as
ascertained by Eq. (7) for z = 0.8] that our SRVM algorithm
obtained for the Gaussian and multinomial kernels were,
respectively, 92.72% and 90.90%. These values were lower
than the accuracy achieved by an SVM algorithm with a
radial kernel (that we found to be 94.54%). In Fig. 12, we
provide the phase boundaries (between the W, Z, and R
phases) as ascertained by SVM (see the solid curves therein)
alongside the boundaries determined by our SRVM method
(the domains of the different phases as predicted by SRVM
are marked by different colors).

VIII. CONCLUSION

In summary, we introduced and implemented a classifi-
cation algorithm to classify various materials and identify
promising compounds. In particular, we investigated (1) the
formability of cubic and double perovskite type compounds
(a binary classification problem) and (2) binary octet alloys
(via ternary classification). A more detailed description of
our algorithm appears in a companion paper [21]. Using this
algorithm, we achieved a high accuracy in both problems.
Combining our approach with other machine techniques, we
suggest candidate stable perovskites and properties of binary
compounds.

Note added. Recently, we became aware of a recent work
by Park et al. [73] that explores, along very different lines, the
applicability of machine learning for double perovskites.
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