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Previously, auxetic materials were realized by designing building blocks with specific geometries or tuning
topology of spring networks. Here, we propose a new approach by properly manipulating the disorder, especially
the bond stiffness disorder, of an unstressed spring network. When randomly distorting a spring network initially
with a close-packed lattice structure, we find that the resultant unstressed network becomes auxetic. Resulted
from the distortion, longer bonds are likely to contribute more to the shear modulus but less to the bulk
modulus. Inspired by this correlation, we realize isotropic auxeticity in the unstressed triangular lattice, by
distributing each bond a spring constant according to a virtual lattice distortion. In the perspective of previous
approaches, however, it is not straightforward to figure out how the close-packed lattices can be turned into
auxetic independent of directions. The key of our approach is the correlated disorder induced by the (virtual)
lattice distortion, which leads to a sufficiently large nonaffine contribution responsible to the auxeticity.
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I. INTRODUCTION

When an elastic material is stretched or compressed in one
direction by a strain of ε‖, it deforms in the perpendicular
direction by a strain of ε⊥. This elastic property can be quan-
tified by the Poisson’s ratio, ν = −dε⊥/dε‖ [1]. Intuitively,
normal elastic materials should have a positive Poisson’s
ratio. For example, a rubber band becomes thinner when
being stretched. However, some man-made materials expand
(shrink) upon stretch (compression) and thus have a negative
Poisson’s ratio [2–18]. These special functional materials are
named as auxetic materials [4], a typical type of mechanical
metamaterials with important applications [5,16–18].

In many of the previous studies, auxeticity has been real-
ized by the design of building blocks with special geometries,
e.g., reentrant structures [2,4], hinged rotating rigid polygons
[11], folded and pleated structures [8,9], etc. Modern low-
dimensional functional materials such as carbon nanotube
sheets [13], graphene-based materials [12], and black phos-
phorus [7] can also exhibit auxeticity under certain conditions,
but are still attributed to micro-structural origins. Moreover,
auxetic behaviors have been observed in some bulk crystals
like cubic metals [19], alloys [20], and quartz [21], but only in
specific directions due to simple geometric reasons. It seems
that selected local geometries are crucial for the occurrence
of the negative Poisson’s ratio. In pure geometric perspec-
tive, two-dimensional triangular lattice cannot be auxetic;
though auxetic in certain directions, three-dimensional close-
packed cubic lattices are unexpected to be auxetic in arbitrary
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directions, either. Therefore close-packed lattices seem not
possess local geometries favorable to auxeticity. In this work,
we aim at finding a general approach to achieve auxetic
materials, which is not picky to building blocks with specific
geometries. If such an approach exists, we would expect to
turn close-packed lattices into auxetic.

Some recent studies have indeed proposed an alternate way
to obtain auxetic materials by selectively altering the topology
of unstressed disordered solids [22–27]. Unlike crystalline
lattices which are anisotropic, disordered solids are isotropic.
There is also no apparent microscopic building blocks in
disordered solids. Otherwise, the nature of disordered solids
would not be so elusive. For isotropic materials, the Poisson’s
ratio can be expressed in terms of elastic moduli [5]: νisot =

d−2G/B
d (d−1)+2G/B , with d , G, and B being the dimension of space,
shear modulus, and bulk modulus, respectively. In order to
realize the negative Poisson’s ratio, the material is required
to have a large enough G/B(>d/2). This provides a way to
design auxetic materials by tuning material’s elastic moduli,
although it is challenging and even counter-intuitive to have
isotropic materials to be rigid to shear but vulnerable to com-
pression. It has been found that, at the bond level, responses
to compression and shear in disordered solids are independent
of each other, so that the negative Poisson’s ratio can be
realized by selectively pruning bonds [22]. Intuitively, cutting
bonds will change elastic properties of close-packed lattices.
However, for a perfect close-packed lattice with identical
bonds, which bonds should be selected to remove? One may
then come up with the idea of removing bonds randomly. As
will be shown later, it does not work to decrease the Poisson’s
ratio. Therefore this pruning-bond approach is not the one that
we look for.
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In both of the previous approaches, the influence of the
bond stiffness has been omitted. Note that the spatial variation
or disorder of the bond stiffness can also affect the elastic
properties of close-packed lattices and make the lattices
isotropic. In this work, surprisingly we find that the bond
stiffness disorder is actually the right element to induce
isotropic auxeticity in close-packed lattices. However, the
disorder needs to be introduced following a hidden rule. A
totally random introduction of the disorder cannot work.
The breakthrough comes from our finding that randomly
distorting the close-packed lattices can lead to auxeticity and
a special correlation between elastic moduli and bond length:
statistically, longer bonds contribute more to the shear mod-
ulus but less to the bulk modulus. Inspired by this correlation,
we develop the rule to manipulate the bond stiffness disorder.
That is to assume a virtual lattice distortion and distribute each
bond a spring constant according to its virtual length. This
significantly decreases the Poisson’s ratio of close-packed lat-
tices and even push it below zero. Therefore our work reveals
another approach to design auxetic materials by manipulating
the lattice site structural disorder or bond stiffness disorder,
in which the lattice distortion plays the key role.

II. METHODS

We study two- and three-dimensional systems with pe-
riodic boundary conditions in all directions. The systems
are initially perfect close-packed lattices with nearest lattice
sites (nodes) being connected by relaxed springs of length l0.
There are totally N nodes in the system. Network distortion
is performed by randomly displacing node i from crystalline
lattice site �ri,c to �ri = �ri,c + �ηi. In two dimensions, �ηi =
(ηcosθi, ηsinθi ) with θi being a random angle ranging from
0 to 2π . In three dimensions, �ηi is randomly chosen from
vectors uniformly distributed on a sphere of radius η centered
at the origin. We set η � l0/2 in order to avoid crossing of
springs. The topology of the network, i.e., number of springs
and their connections, remain unchanged after the distortion.
To maintain mechanical stability, all networks concerned are
unstressed with all springs being relaxed. Normally, a larger η

causes a stronger structural disorder.
The elastic moduli and Poisson’s ratio are obtained by

slightly deforming the unstressed networks and calculating
the linear response after the energy minimization [28]. Upon
deformation, the energy stored in the spring connecting nodes
i and j is

Ui j = 1
2 k(ri j − li j )

2, (1)

where k is the spring constant, ri j is the separation between
nodes (i.e., length of the spring upon deformation), and li j is
the length of relaxed spring before deformation. We set the
crystalline lattice constant l0 to be one.

Because our networks are unstressed, we apply a small
compressive strain ε‖ in the x direction and minimize the
energy while maintaining zero pressure in the perpendicular
direction(s). The network responds to the compression by a
deformation strain ε⊥ in the perpendicular direction(s). As
long as ε‖ is small, we can always obtain a linear response,
from which we determine the Poisson’s ratio ν = −dε⊥/dε‖.

III. RESULTS

A. Auxeticity by lattice distortion

In this part of the work, all springs always have the same
spring constant (bond stiffness) k = 1. Figure 1 shows results
of spring networks distorted from a two-dimensional triangu-
lar lattice. In such networks, each node is connected by six
springs, so the average coordination number z is equal to 6,
well above the isostatic value ziso = 2d = 4. This guarantees
the mechanical stability and the rigidity of the unstressed
spring networks [29–36].

Figure 1(a) compares the bulk and shear moduli, B and
G. Although the triangular lattice is anisotropic, the shear
modulus calculated from the simple shear is equal to that
from the pure shear, so we do not need to worry about the
variation of the shear modulus due to the way to impose shear.
With the increase of η and hence the structural disorder, the
system is more and more isotropic, as long as the system
is large enough. This is also true when the bond stiffness
disorder is introduced to the lattices, as will be shown later.
The data collapse of N = 1024 and 16 384 systems shown
in Fig. 1(a) confirms that our results do not rely on system
size for sufficiently large systems in which the anisotropy can
be avoided (we will discuss the results in the small system
size limit later). Both G and B decrease when η increases.
Apparently, B decays more quickly than G. Surprisingly,
G = B at a critical value of the distortion, ηc ≈ 0.446. When
η > ηc, B is even smaller than G. From the expression of the
Poisson’s ratio νisot for isotropic materials shown in Sec. I,
negative Poisson’s ratio is expected at η > ηc.

As shown in Fig. 1(b), the Poisson’s ratio ν decreases
when η increases, which becomes negative when η > ηc.
We also show νisot for comparison, which collapses well
with ν.

Since the negative Poisson’s ratio emerges when η is large,
disorder is likely to be the cause of auxetic networks. There
are different ways to introduce disorder to a crystalline lattice,
e.g., randomly distorting nodes as done here, removing bonds,
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FIG. 1. Elastic properties subject to the network distortion from
a two-dimensional triangular lattice with all springs having the same
stiffness. (a) and (b) show the shear and bulk moduli, G and B, and
the Poisson’s ratio ν against the magnitude of the node displacement
η, respectively. η = 0 corresponds to a perfect triangular lattice.
Squares and diamonds in (b) are ν(η) and νisot (η), respectively, as
defined in the text, for N = 1024 systems. The lines are guides for the
eye. The insets of (b) are a part of the networks at η = 0.1 (top), 0.3
(left bottom), and 0.46 (right bottom). The Poisson’s ratio becomes
negative when η > 0.446.
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FIG. 2. Comparison of elastic properties subject to the increase
of different types of disorder starting from a perfect triangular lattice
with N = 1024 nodes. (a), (b), and (c) show a part of the systems
with bond stiffness being varied (quantified by the gray scale of the
bond), bonds being removed, and nodes being removed, respectively.
(d), (e), and (f) show the corresponding bulk modulus B (circles),
shear modulus G (squares), and Poisson’s ratio ν (diamonds) as a
function of the strength of disorder for the three cases in (a), (b), and
(c), respectively. Here, ηk sets the range of the bond stiffness from
1 − ηk/2 to 1 + ηk/2, and ηb and ηv are respectively the fraction of
bonds and nodes being randomly removed. In contrast to Fig. 1(b),
the Poisson’s ratios of the three cases do not decrease with the
increase of the disorder.

removing nodes, or varying the bond stiffness [34]. However,
as shown in Figs. 1 and 2, we only obtain negative ν by
distorting nodes. In the other three ways, the Poisson’s ratio
does not tend to decrease upon the increase of disorder. The
direct consequence of distorting nodes is the cause of bond
length disorder. Note that each bond length is determined by
the locations of two nodes. Therefore the bond length disorder
caused by the lattice distortion correlates the displacements
of adjacent nodes and is thus not totally random. For the
other three types of disorder shown in Fig. 2, the change
of any single bond or node is independent. This distinction
suggests that the disorder needs to be introduced in some
correlated rather than a totally random way, while distorting
nodes happens to create this correlation.
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FIG. 3. Effects of the bond stiffness disorder on elastic properties
of the networks. (a) Correlation functions Cg,l , Cg,b, and Cb,l as
defined in the text against the magnitude of the node displacement
η for two-dimensional systems distorted from a triangular lattice
with N = 4096. (b) Examples of spring constant function k(l ) =
1 + tanh[α(l − l0 )] with l0 = 1 being the unit of length. (c) Poisson’s
ratio ν against η when spring constants are set by k(l ). From left to
right, α = 10 (down triangles), 5 (circles), 2 (squares), 0 (diamonds),
and −2 (up triangles). The solid lines are guides for the eye. The
horizontal dot-dashed line labels ν = 0. (d) Correlation between ηc,
the critical value of η at which ν = 0, and α−1. The dashed line
shows the linear relation ηc ∼ α−1 in the large α limit. The horizontal
dot-dashed line labels the upper bound ηc ≈ 0.446 when α = 0.

B. Correlation between elastic moduli and spring length

Inspired by the approach of decomposing elastic moduli
into bonds: G = ∑

i gi and B = ∑
i bi with the sums be-

ing over all bonds [22], we calculate gi and bi, the con-
tributions of spring i to the shear and bulk moduli, for all
3N springs of the distorted triangular lattice. Figure 3(a)
shows that Cg,b = 〈δgδb〉 = 〈(g − ḡ)(b − b̄)〉<0 when η>0,
where ḡ = G/3N , b̄ = B/3N , and 〈·〉 denotes the average over
springs and configurations. Therefore δg and δb are negatively
correlated, indicating that a spring which helps to strengthen
G tends to weaken B. Figure 3(a) also shows that Cg,l =
〈δgδl〉 > 0 and Cb,l = 〈δbδl〉 < 0, where δl = l − l̄ with l
and l̄ being the spring length and its average value. Therefore
longer springs (l > l̄) tend to have a larger g and a smaller b.

This finding is rather inspiring. Up to now, all springs
are set to have identical spring constant. If we make longer
springs stiffer and shorter ones softer, we may be able to
enhance G and meanwhile weaken B, so that the Poisson’s
ratio may become negative at smaller η.

C. Auxeticity by bond stiffness disorder
determined by lattice distortion

We then let the bond stiffness k be an increase function
of spring length l . By employing various functional forms
of k(l ), we find that such manipulation of k indeed signifi-
cantly decreases the Poisson’s ratio. Here we present results
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for a chosen form k(l ) = 1 + tanh[α(l − l0)], where α sets
the steepness of k(l ) in the vicinity of the triangular lattice
constant l0. As shown in Fig. 3(b), k(l ) is bounded in [0,2].
The results in Fig. 1 are just for the special case of α = 0.
We choose the above function for k(l ) just in order to let k(l )
be symmetrically distributed around the average value of 1,
without other special reasons. We also repeat the calculations
using the error function k(l ) = 1 + erf[α(l − l0)] and find
qualitatively similar results (not shown here).

For a given α, we distort the perfect triangular lattice
as done above for α = 0 and simultaneously distribute each
spring a spring constant k(l ). For all α > 0, Fig. 3(c) shows
that ν(η) behaves similarly to the α = 0 case. Interestingly,
the critical value of the distortion ηc at which ν = 0 decreases
with the increase of α. The involvement of the bond stiffness
disorder associated with the bond length greatly weakens the
required lattice distortion for auxetic networks to occur. For
comparison, we also show in Fig. 3(c) an example with α < 0.
As expected, negative α hinders the decrease of ν and pushes
ηc to higher values. With sufficiently large values of |α|, ν

even grows with η. By forcing longer springs to be softer, we
instead are able to achieve much larger ν than that of perfect
crystalline lattice. The manipulation of α thus offers us the
freedom to control the elastic moduli and the Poisson’s ratio
purposely.

Figure 3(d) shows how ηc varies with α. As mentioned
above, when α = 0, ηc ≈ 0.446, which sets the upper bound
of ηc purely induced by the lattice distortion without the help
of the bond stiffness disorder. When α is large, Fig. 3(d)
indicates that ηc ∼ α−1. The negative Poisson’s ratio is then
mostly contributed by the bond stiffness disorder, because the
lattice distortion is too small to cause significant change of
ν on its own, as shown by curves in Fig. 1 in the η → 0
limit. The lattice distortion just acts to provide a way to
cause some spatially correlated bond stiffness distribution.
The linear relation between ηc and α−1 indicates that, when
the bond stiffness disorder dominates, the lattice distortion
must lead to a bond length distribution wider than α−1 in
order for auxetic networks to occur. When α is small, both the
lattice distortion and the bond stiffness disorder contribute to
the formation of auxetic networks, so ηc(α−1) deviates from
the linear relation and approaches the upper limit gradually.

D. Auxeticity in triangular lattice without distortion

Figure 3(d) suggests that negative Poisson’s ratio is pos-
sible in perfect triangular lattice geometry, if we are able to
perform an η → 0 distortion and set the spring constants to
be either 2 or 0, because α → ∞. This suggests that auxetic
networks can also be produced by removing bonds of a perfect
lattice following the η → 0 distortion, as long as the resultant
network is still rigid. In this limit, the initial topology will be
broken and half of the bonds will be removed. Therefore, as
will be shown later, the system will indeed lose the rigidity
because of the floppy modes. Next, however, we will show
that there is a scheme to realize the negative Poisson’s ratio
in the η = 0 networks without having to destroy the lattice
topology and lose the rigidity.

An interesting and inspiring result shown in Fig. 3(d) is
that α ∼ η−1

c when α is large. Note that here ηc corresponds
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FIG. 4. Elastic properties of the triangular lattice without dis-
tortion and with the bond stiffness disorder being introduced by
the virtual distortion. (a) Illustration of a part of a triangular lattice
(solid) and its virtual distortion (dashed). The gray scale of the solid
lines shows the value of the bond stiffness determined by the virtual
distortion (η∗ = 0.15 and α = 10), as quantified by the scale bar.
(b) Poisson’s ratio ν against α for the N = 16 384 triangular lattices.
Spring constants are set by a virtual distortion of η∗ = 0.1 (squares)
and 0.15 (circles). The triangles show the case when spring constants
set by η∗ = 0.15 are randomly distributed to bonds, for comparison.
The solid lines are guides for the eye. The horizontal dot-dashed line
labels ν = 0.

to a real lattice distortion. If we instead assume a virtual
distortion η∗ to a perfect lattice and distribute each bond a
spring constant k(l∗) with l∗ being the virtual length of the
bond after the virtual distortion, as illustrated by Fig. 4(a), can
we achieve auxetic networks with finite α without any lattice
distortion?

Figure 4(b) shows that the virtual distortion scheme indeed
works. At fixed η∗, ν decreases with the increase of α and even
drops below zero. With a larger η∗, a smaller α is required
to obtain the negative Poisson’s ratio. Different from previ-
ous approaches, auxetic materials are obtained here without
designing any specific building blocks (microstructures) or
destroying network topology, but just by utilizing the bond
stiffness disorder.

To highlight the importance of the spatially correlated bond
stiffness distribution generated by the lattice distortion, we
show in Fig. 4(b) another ν(α) curve obtained by randomly
distributing the same set of spring constants from the virtual
distortion. In sharp contrast, the Poisson’s ratio does not decay
with the increase of α any more. We realize the negative Pois-
son’s ratio in the triangular lattice without distortion because
of the finding of the crucial role of the lattice distortion in the
cause of correlated disorder.

One may notice from Fig. 4(a) that there are some bonds
which are so soft that they appear as if pruned. In Fig. 5(a), we
show an example of the integrated bond stiffness distribution
I (k) = ∫ k

0 Pk (k′)dk′ for the case of η∗ = 0.15 and α = 20 with
a negative Poisson’s ratio, where Pk (k′) is the bond stiffness
distribution. The bond stiffness of the weakest bonds is in the
order of 10−5, so it may not be necessary to keep such weak
bonds there.

We then simply remove the weak bonds one by one in
the sequence of increasing stiffness. However, with more
and more bonds being removed, the system has to face to
the danger of losing rigidity. Figure 5(b) shows the number
of nontrivial floppy modes (i.e., normal modes of vibration
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FIG. 5. Effects of removing weak bonds. (a) Integrated distribu-
tion of the bond stiffness, I (k), for the triangular lattice with N =
1024 at α = 20 and η∗ = 0.15. Seen from Fig. 4(b), the Poisson’s
ratio is negative. (b) Number of nontrivial floppy modes, Nf , as a
function of the fraction of bonds being removed, fcut . The bonds are
removed in sequence of increasing stiffness. Nontrivial floppy modes
emerge when fcut is approximately above 0.25.

with a zero frequency, which do not consume energy), Nf ,
against the fraction of bonds being removed, fcut. The normal
modes of vibration are obtained from the diagonalization of
the Hessian matrix. Here, we only consider the floppy modes
of nontrivial collective motion of nodes. The trivial zero-
frequency modes caused by the periodic boundary conditions
and by the nodes with only 0 or 1 bond left are excluded. The
existence of nontrivial floppy modes indicates that the system
loses its rigidity and cannot resist loads. Seen from Fig. 5(b),
floppy modes emerge when fcut reaches about 0.25, so we can
cut at most 25% of the bonds. Therefore, in the α → ∞ limit
when half of the bonds being removed, as discussed in the
beginning of this section, the system can not be rigid.

It is thus important to use a finite α in order to maintain
the rigidity of the networks. When the virtual distortion η∗
is fixed, seen from the shape of k(l∗) in Fig. 3(b), there are
more and more weak bonds approaching the k → 0 limit
with the increase of α. Though weak, those bonds are still
good for the network rigidity, as long as their stiffness is
not negligible. For the case shown in Fig. 5, around fcut =
0.25 when the system loses the rigidity, the bond stiffness is
already in the order of 0.01. Those bonds are stiff enough to
affect the elastic properties of the networks and should not
be simply removed. Therefore the cases shown here are still
far away from the large α limit, where the stiffness of most
of the bonds can be treated as either 0 or 2. An appropriate
α leads to a number of bonds with stiffness distinct from 0
and 2, which are responsible to the auxeticity and the network
rigidity.

E. Nonaffine contribution

We have seen that disorder is here the cause of auxetic
networks, although it is not introduced in a totally random
way. To understand the underlying mechanisms of such aux-
eticity, we may start with some unique properties induced by
disorder. One direct consequence of disorder is the nonaffine
deformation subject to strain [37–40]. In order to quantify
the effects of nonaffinity, we calculate R = dP⊥/dε‖ and
decompose it into an affine part Ra and a nonaffine part Rna

[37–40], where P⊥ is the pressure in the y direction induced
by the strain ε‖ in the x direction. For two-dimensional
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FIG. 6. Comparison of the total response R and its affine and
nonaffine components Ra and Rna as defined in the text. Rna is always
negative. In order to quantitatively compare it with Ra, which is
positive, here we show −Rna. (a) and (b) are for the cases shown
in Figs. 1(b) and 4(b) (η∗ = 0.15), respectively. The horizontal dot-
dashed lines label R = 0.

networks,

R = Ra + Rna = − 1

A

∂2U

∂ε‖∂ε⊥
− 1

A

∑

i

∂2U

∂ε‖∂�ri
· d�ri

dε⊥
, (2)

where U is the total potential energy, A is the area of the
system, and the sum is over all nodes. Rna can be calculated
from the inverse of the Hessian matrix [37–40]. Apparently, R
is negative when ν < 0.

In Fig. 6, we compare R, Ra, and Rna for the α = 0 and
η = 0 (η∗ = 0.15) cases of manipulating the triangular lattice.
The affine component Ra is always positive and does not
decay with the increase of η or α, which is apparently harmful
to the formation of negative ν. In contrast, Rna is negative,
whose absolute value increases when η or α increases and
eventually beats Ra. Therefore nonaffinity induced by disorder
is responsible to the formation of auxetic networks. However,
nonaffinity is ubiquitous in disordered solids, while most of
disordered solids do not have negative Poisson’s ratio. The
way that we produce auxetic networks happens to generate
some elusive mechanisms to boost the contribution of non-
affinity, which should be different from normal disordered
solids and calls for future studies.

F. Building blocks to form periodic mechanical metamaterials

In all the above simulations, we have deliberately focused
on large systems, which tend to be isotropic when disorder
is sufficiently large. In fact, any of the large auxetic networks
shown above can be building blocks to form a periodic auxetic
materials. However, in practice, we always expect that the
building blocks are as simple as possible. It is then necessary
to know how small the system can be to exhibit auxeticity.

The triangular lattice concerned here contains
√

N nodes
per row in both x and y directions.

√
N needs to be even.

Otherwise, the lattice structure will be broken in the y di-
rection due to the periodic boundary conditions. The smallest
system contains two nodes in each direction. However, under
periodic boundary conditions, each node is connected with its
nearest neighbors and their images, which seems unphysical.
Therefore, the smallest systems concerned here should be
N = 16. In fact, regardless of the illness of the N = 4 systems,
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FIG. 7. Elastic properties of small systems evolved from the
triangular lattice and examples of mechanical metamaterials using
such small systems as building blocks. (a) and (b) show the corre-
lation between νxy and νyx as defined in the text with the change
of the magnitude of the node displacement η and the parameter α,
respectively. In (a), α = 0 and all bonds have identical stiffness.
The data are collected for various η. In (b), there is no real lattice
distortion (η = 0). We perform a virtual lattice distortion with η∗ =
0.2 and collect data by varying α. Circles and squares are for N = 16
and 16384, respectively. Horizontal (vertical) dot-dashed lines label
νyx = 0 (νxy = 0). Apparently, νxy ≈ νyx for N = 16 384 systems in
both cases, which does not hold when N = 16, especially when α is
varied in (b). [(c)–(f)] Examples of periodic metamaterials with N =
16 systems being building blocks. The dashed lines are boundaries
of the building blocks. The values of νxy and νyx are given on the left
side of each example. The gray scale of the bonds in (d), (e), and (f)
is the same as shown in Fig. 4(a).

we are still able to use them as building blocks to generate
auxetic networks.

Figures 7(a) and 7(b) show νxy against νyx for the N = 16
and 16384 networks with the variation of η (α = 0) and α

(η = 0 and η∗ = 0.2), respectively, where νyx (νxy) is the
Poisson’s ratio calculated by applying compression in the
x (y) direction. For the N = 16 384 systems which tend to
be isotropic when disorder is sufficiently large, νxy ≈ νyx. In
contrast, the N = 16 systems show strong anisotropy with
a large dispersion of the data points in the (νxy, νyx ) plane,

0.0 0.2 0.4
η

−0.2

0.0

0.2

0.4

ν

(a)

0 50 100 150 200
α

0.0

0.2

0.4

ν

(b)

FIG. 8. Evolution of the Poisson’s ratio with disorder induced by
the lattice distortion for the three-dimensional FCC lattice. (a) and
(b) show Poisson’s ratio ν calculated in the 〈100〉 direction against
the magnitude of the node displacement η and the parameter α for the
N = 16384 systems, respectively. In (a), squares and circles are for
α = 0 and 5, respectively. The virtual distortion for (b) is η∗ = 0.1.
The solid lines are guides for the eye. The horizontal dot-dashed lines
label ν = 0.

when α is varied in the perfect triangular lattice geometry
following a virtual lattice distortion, as shown in Fig. 7(b). The
anisotropy is weaker when there is no bond stiffness disorder
and only η is varied, as shown in Fig. 7(a). For the N = 16
systems, there are still realizations with negative Poisson’s
ratio, which can thus be building blocks to form periodic
auxetic materials.

Figure 7(b) also shows that due to the anisotropy there
are certain realizations of the N = 16 systems exhibiting a
directional Poisson’s ratio exceeding the limits of isotropic
materials. It is known that auxetic materials with ν < −1
can be obtained by taking advantage of anisotropy [8,18]. In
comparison, the metamaterials with ν > 1 which are densified
upon stretch are rare [13]. Using small systems as building
blocks, we broaden the range of the Poisson’s ratio that can
be achieved.

In Figs. 7(c)–7(f), we show examples of periodic meta-
materials with different Poisson’s ratios. The advantage of
our approach beyond previous ones is that we are able to
easily realize various metamaterials just by manipulating dis-
order, especially the bond stiffness disorder. And we gain the
freedom to adjust the values of the Poisson’s ratio with lots
of realizations to use. In contrast, previous approaches only
have limited choices with particular structures. Our approach
will definitely facilitate the design of auxetic materials and
metamaterials with ν > 1.

G. Auxeticity in three-dimensional networks

Up to now, we have shown the realization of auxeticity
in two dimensions. In three dimensions, face centered cu-
bic (FCC) and hexagonal close-packed (HCP) lattices are
stackings of the triangular lattice. It is thus straightforward
to realize auxeticity in these close-packed cubic lattices by
simply stacking auxetic triangular lattices. However, this aux-
eticity is still directional. We wish to see whether the same
manipulations of disorder done for two-dimensional systems
can lead to isotropic auxeticity as well in three dimensions.

Here we take the FCC lattice as the example. As shown in
Fig. 8(a), auxetic networks may still be obtained by distorting
the FCC lattice with a sufficiently large η, but here ηc will be
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above 0.5, the upper limit of the distortion that we set to avoid
the possible crossing of bonds. The adjustment of the bond
stiffness also pushes auxetic networks to occur at a smaller
lattice distortion. Figure 8(b) shows that by introducing the
bond stiffness disorder according to the virtual lattice dis-
tortion we dramatically decrease the Poisson’s ratio with the
increase of α. In contrast to the two-dimensional triangular
lattice, the Poisson’s ratio here does not become negative,
while just decaying almost to zero. This may be due to a
weaker correlation between bond length and elastic moduli
than two-dimensional systems. A more subtle manipulation of
the bond stiffness disorder may be required to boost the decay
of the Poisson’s ratio in order to obtain isotropic auxeticity in
cubic lattice geometries.

IV. DISCUSSION

Taking advantage of disorder, we propose a new approach
to tune elastic moduli of spring networks and obtain auxetic
materials, without the need of designing building blocks
with specific geometries favorable to auxeticity or breaking
the topology. The key is that the disorder must be intro-
duced in some correlated way following the (virtual) network
distortion.

An important finding of our work is that auxetic materials
can be obtained by just adjusting the bond stiffness of spring
networks. As an example, we successfully turn the triangular
lattice into auxetic, even though the lattice does not meet
the conditions required by previous approaches to realize
auxeticity. Of course, due to the bond stiffness disorder and
the spatial heterogeneity of local elasticity, the structure of
the resultant system is effectively different from the initial
one, although the lattice site locations and topology remain
unchanged. Therefore there are still structural origins of the
auxeticity discussed here, which would be rather complicated
due to the presence of disorder and require more follow-up
studies.

Both our approach (except for the pure lattice distortion
with α = 0) and the pruning-bond approach [22–27] intro-
duced in Sec. I play with individual bonds, which may to
some extent perform similar functions. Instead of pruning
bonds [22], if we try to make bonds with large gi stiffer and
bonds with large bi softer (gi and bi are defined in Sec. III B),
we may be able to effectively decrease the Poisson’s ratio
of unstressed jammed solids. On the other hand, after the

lattice is distorted, we may also decrease the Poisson’s ratio
by pruning short bonds, with a special attention to maintaining
the network rigidity. However, note that the precondition for
the pruning-bond approach to take effect is that the disorder
is already present. As discussed in Sec. I, it is ineffective
on perfect lattices, because all bonds are identical. In this
sense, our approach is more general and should have broader
applications. Moreover, maintaining the topology frees us
from the worry of losing rigidity. Compared with gi and bi,
the bond length is much easier to measure, which makes our
approach more experimentally accessible.

Here we only show results of manipulating close-packed
lattices. Our major findings should be general and valid to
other types of spring networks. For instance, we have suc-
cessfully turned unstressed and disordered networks extracted
from jammed solids into auxetic by applying the bond stiff-
ness disorder following the virtual network distortion, which
will be discussed elsewhere. More work is certainly required
to figure out whether and how network symmetry and topol-
ogy may affect the results, especially for some special ones
like kagome lattice [41] which already exhibit extraordinary
elastic properties [42–44]. Note that here we do not take into
account the bond angle rigidity, which is important to stabilize
some hypostatic lattices, e.g., honeycomb. It is also interesting
to know whether there is any analogous way to manipulate
bond angle rigidity disorder and hence the Poisson’s ratio.

Moreover, in addition to the formation of auxetic materials,
the α < 0 curve in Fig. 3(c) indicates that the Poisson’s
ratio of networks with apparent structural disorder can be
tuned to higher values. We expect that adjusting the bond
stiffness of unstressed and disordered solids by means of
network distortion may induce extraordinary mechanical and
vibrational properties distinct from normal disordered solids.
This may reveal new aspects of disordered solids and help us
further understand how different types of disorder affect each
other to determine special properties of disordered solids.
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