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A. P. Zakharov and L. M. Pismen
Technion – Israel Institute of Technology, Haifa 32000, Israel

(Received 13 March 2019; published 10 May 2019)

We analyze the various morphing structures obtained by actuating Janus filaments comprising driven and
passive sectors and textiles incorporating driven and passive filaments. Transitions between alternative shapes
and coexistence of absolutely stable and metastable states within a certain range of relative extension upon
actuation are detected both in Janus rings and textiles. Both single filaments and textiles can be reverse designed
to bend into desired shapes by controlling both the size and orientation of driven sectors.
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I. INTRODUCTION

A major challenge in the development of soft robotics [1]
and smart textiles [2] is programming of desired shapes
attainable upon actuation. Common programmable soft ma-
terials reshaping under the influence of the various external
factors include hydrogels swelling or shrinking by imbibing
or expelling the solvent [3] and liquid crystal elastomers
(LCE), made of cross-linked polymeric chains with embedded
mesogenic structures, which reshape owing to changes of the
nematic order parameter and the director orientation that can
be preprogrammed and controlled by the various physical
and chemical agents, such as heat, light, electric or magnetic
field [4]. Most studies of actuation of LCE explored deforma-
tion of thin pre-patterned sheets [5,6]. The inverse problem
is patterning of a flat sheet that would buckle into a desired
shape upon actuation [7].

Bending and twisting of intrinsically curved filaments has
been largely studied in application to “birods,” composite
filaments glued of prestressed and unstressed stripes, as re-
viewed by Goriely [8]. Similar forms with intrinsic curvature
and twist exist in Nature where they emerge during plant
growth [9,10]. Intrinsic curvature can be generated in compos-
ite filaments—Janus filaments [Fig. 1(a)], combining driven
(a hydrogel or a longitudinally polarized LCE) strands with a
passive component. Such filaments can be fabricated either
by 3D-printing or by using two connected extruders with
simultaneous melt spinning to generate a filament containing
two different materials [11]. Their substantial distinction from
prestressed birods stems from the material nature of a cross-
sectional inhomogeneity. As a result, such a filament remains
under compression even when optimally bent [12], but the
mathematical treatment of the bending and twisting is similar
in both cases.

Textiles incorporating Janus filaments comprising driven
and passive sectors [13] [Fig. 1(b)] provide far more freedom
of creating a variety of shapes than single filaments limited by
their single dimension or sheets constrained by the continuity
requirements that often lead to creation of sharp edges at
locations of topological defects of the order parameter field
or at sharp fronts between domains with different proper-
ties that may readily arise in the course of actuation [14].

Moreover, gliding and bending freedom at nodes of a woven
fabric allow for a greater flexibility compared with 3D-printed
grids [15].

In this communication, we carry out a comprehensive
investigation of shape changing structures incorporating Janus
filaments with the help of both analytical and numerical tools.
We start in Sec. II with defining bending and twisting energy
of a single Janus filament. This is followed in Sec. III by
demonstrating the various forms generated by actuating single
open-ended Janus filaments, including both analytical and
numerical reverse design of desired shapes. In Sec. IV, we
study the effect of constraints imposed by closing Janus fila-
ments into rings with sub-optimal curvature. We further study
textiles combining Janus and passive filaments, starting with a
basic elementary frame structure in Sec. V and continuing in
Sec. VI with morphing a piece of textile embroidered by Janus
filaments. In this system, we encounter transitions between
alternative shapes and coexistence of absolutely stable and
metastable states within a certain range of relative extension
upon actuation. Additional constraints and a reacher bifurca-
tion structure are observed in structures incorporating Janus
rings (Sec. VI D). A short Sec. VII gives an idea of reverse
numerical design of textiles composed of Janus filaments with
variable sizes and orientations of the active sector leading to a
variety of desired forms.

II. GEOMETRY AND ENERGY OF JANUS FILAMENTS

A. Bending energy

The elastic energy of a thin filament, whether passive or
driven, i.e., capable to change its geometry in response to
external inputs, is a combination of stretching, bending and
twisting energies. Since stretching rigidity is proportional to
the cross-sectional area, while the other two rigidities are pro-
portional to the cross-sectional area squared, a thin filament
can be assumed inextensible, and its equilibrium shape is
determined by minimizing the sum of bending and twisting
energies:

F = 1

2
AE

∫
(I + J )ds, (1)
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FIG. 1. (a) The cross-section geometry of a Janus filament with
a mismatched orientation of the Frenet normal vector n and the
material basis. (b) A piece of textile embroidered by a Janus filament.

where A is the cross-sectional area, E is the Young modulus,
and I and J are the bending and twist momenta, respectively.

We are particularly interested in Janus filaments, both free-
standing and elements of woven textiles, combining passive
and driven components. We further restrict to filaments with
a circular cross-section and a driven component occupying
a sector with an angle 2ψ [see Fig. 1(a)], with the passive
component filling the remaining sector. Clearly, the material
inhomogeneity breaks the symmetry of the cross-section. One
can define therefore at each point on the centerline of the
filament, alongside the Frenet frame spanned by the normal
n, binormal b, and tangent l vectors, the material basis
{d, d′, l}, where the vector d is directed along the midline
of the driven sector, and d′ = l × d. Upon actuation, the
driven component elongates locally by a factor 1 + ε, |ε| �
1, causing the filament to develop curvature κ = 1/R. Further
on, we assume ε > 0; the opposite effect of a driven compo-
nent contracting upon actuation is treated in the same way,
differing only by reversing the bending direction. Our goal is
to obtain equilibrium shapes in the absence of external forces,
so that, as a simplifying assumption, we neglect inertial as
well as gravitational contributions to the overall energy.

The bending momentum, determined by the total elastic
energy per unit cross-sectional area of a thin filament with a
radius r � R, is computed by adding the contributions of the
driven (Ia) and passive (Ip) sectors. In the absence of external
constraints, the curvature is directed along the vector d in
the material frame, which therefore coincides with the Frenet
normal vector n. Then straightforward computation yields

Ip = 1

πr2

∫ r

0

ρ3

R2
dρ

∫ π−ψ

ψ−π

cos2 φ dφ

= (κr)2

4π
(π − ψ − sin ψ cos ψ ), (2)

Ia = 1

πr2

∫ r

0
ρ dρ

∫ π+ψ

π−ψ

(
ρ

R
cos φ − ε

)2

dφ

= (κr)2

4π

(
ψ + 1

2
sin 2ψ

)
− 4κrε

3π
sin ψ + ε2ψ

π
, (3)

I (κ,ψ ) = Ia + Ip = 1

4
(κr)2 − 4 ε

3π
κr sin ψ + ε2ψ

π
. (4)

The equilibrium curvature κ̂ is defined by the condition
dI/dκ = 0:

κ̂ = 8

3

ε

πr
sin ψ. (5)

Clearly, extending by a small fraction ε � 1 is sufficient to
attain a curvature radius R � r compatible with the common
thin filament approximation. Under these conditions, slight
variations of the cross-sectional area can be neglected, and
it is inessential whether the driven component is a hydrogel
or a semicrystalline polymer enlarging the filament diameter
in the same proportion as its length or a LCE proportionally
shrinking the cross-section. The common thin filament ap-
proximation is applicable at κr � 1, and therefore we further
restrict to small extensions.

Due to interactions among filaments, constraints or exter-
nal forces, the direction of d in the material basis may deviate
by an angle ζ from the normal vector n, which is depen-
dent only on geometry of the space curve. Then Eqs. (2)–
(4) are modified, after replacing in the integrand cos ψ by
cos(ψ − ζ ), to

Ip = 1

πr2

∫ r

0

ρ3

R2
dρ

∫ 2π−ψ

ψ

cos2(φ − ζ ) dφ

= (κr)2

4π

(
π − ψ − 1

2
sin 2ψ cos 2ζ

)
, (6)

Ia = 1

πr2

∫ r

0
ρ dρ

∫ ψ

−ψ

(κρ cos(φ − ζ ) − ε)2dφ

= (κr)2

4π

(
ψ + 1

2
sin 2ψ cos 2ζ

)

− 4κrε

3π
sin ψ cos ζ + ε2ψ

π
, (7)

I (κ,ψ ) = Ia + Ip = 1

4
(κr)2 − 4 ε

3π
κr sin ψ cos ζ + ε2ψ

π
.

(8)

B. Geometry and twist

The twist θ measures how consecutive cross-sections rotate
along the filament. A Janus filament may possess intrinsic
torsion τ0, which is embedded during manufacturing. Then
the twist momentum is [16]

J = r2

6
θ2 = r2

6
(ζs + τ − τ0)2, (9)

where τ is the geometric torsion of the curve defined in Frenet
frame and the index denotes the derivative with respect to the
arc length s. The intrinsic torsion does not change upon actua-
tion, while τ and ζ are dynamic variables defining, alongside
curvature, deformation of the filament. The equilibrium values
of κ, τ , and ζ should be determined while accounting for both
the bending and twist, and the problem becomes nonlocal due
to the imbedded dependence on changes along the filament.

It is advantageous to describe three-dimensional (3D)
configurations in a coordinate-free form, with the help of
the Frenet–Serret equations relating curvature and torsion to
changes of the Euclidean position x(s) along the centerline:

xs = l, ls = κn, ns = −κl + τb, bs = −τn, (10)

where l, n, and b are, respectively, the tangent, normal, and
binormal unit vectors. Making use of the orthogonality of
the vectors forming the Frenet trihedron, the local curvature
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and torsion are determined, respectively, by taking the scalar
product of the second equation (10) with n and of the third
equation with b as

κ = n · ls, τ = b · ns. (11)

The change of ζ along the filament can be found with
the help of the rotation vector � which defines the rate of
rotation of a local coordinate frame along the filament [16].
The derivative with respect to the arc length of any unit vector
v spanning a particular coordinate frame is expressed through
the vector � as

vs = � × v. (12)

Taking the vector product of this relation with v and using
the representation of the triple vector product through scalar
products yields

� = v × vs + (� · v)v. (13)

In particular, choosing v = l and v = n and using the Frenet-
Serret equations (10), we obtain

� = (� · l)l + κb = (� · n)n + κb + τ l, (14)

leading to

� = τ l + κb, � · n = 0. (15)

Applying Eqs. (12) and (15) to rotation of d = n cos ζ +
b sin ζ in the imbedded frame yields

� = d × ds + (� · d)d = κd sin ζ + (n cos ζ + b sin ζ )

× [ζs(b cos ζ − n sin ζ ) + (τb − κl) cos ζ − τn sin ζ ]

= ζsl + κb, (16)

implying ζs = τ .

III. OPEN-ENDED JANUS FILAMENTS

A. Design of actuated forms

A variety of shapes can be obtained already by bending
a single Janus filament, provided variable orientations of
the driven sector are controlled during manufacturing. The
equilibrium shape of a Janus filament with a given position
of the driven sector, i.e., direction of the basis vector d in each
cross-section, can be, in principle, computed by integrating
the Frenet–Serret equations (10). An open-ended filament can
be constrained only by self-intersections. Assuming they are
absent, n = d, so that ζ = 0. The equilibrium shape should
be then untwisted since there are no applied torques, and,
according to Eq. (9), τ = τ0, while the equilibrium curvature
is given by Eq. (5). This uniquely determines the shape, up to
spatial translations and rotations of the entire filament.

Rather than computing the geometric shape acquired by a
specifically constructed Janus filament, we are often interested
in inverse design, i.e., determining the size and orientation of
the driven sector in each cross-section along the filament that
would generate a desired shape upon actuation. The shape
to be attained can be defined either analytically or numeri-
cally, in a discretized form, as will be described in detail in
Sec. III C. In both cases, the curvature and torsion should be
read from the desired shape, and the size and orientation of

FIG. 2. Planar transformation of a filament of unit length. (a) The
clef shape with the length of the normals proportional to the local
curvature. (b) The angle ψ of the driven sector; the vertical lines
correspond to the inflection points. Parameters: ε = 0.2, r = 10−3.

the driven sector along the filament computed with the help of
Eq. (5).

In the simplest case of two-dimensional (2D) reshaping,
the area occupied by the driven component vanishes at inflec-
tion points, and the driven sector reappears on the opposite
side after this point is passed; these events are marked by
vertical lines in Fig. 2 that demonstrates the way of actuating
an initially straight filament into a cleflike shape. Out-of-plane
bending, which leads to three-dimensional forms, is attained
by rotating the driven sector (τ0 �= 0), which can be engi-
neered by rotating coupled extruder streams molding a Janus
filament. The variety of forms obtained in this way is limited
only by self-intersections of filaments and the magnitude of
dilation.

B. Analytical inverse design

While inverse design of 2D shapes is straightforward, there
are multiple ways to obtain even a simple 3D shape delineated
by filaments. Since we are interested in neither an optimal
layout nor a uniform surface covering, we attempt here to
reproduce a desired 3D shape by covering the target surface
by a single filament, and only require the filament to remain
smooth with no sharp kinks and self-intersections. It is natural
therefore to describe a slender deformable filament as a space
curve with the coordinates x(s) parametrized by the arc length
s, and determine its local properties with the help of the
Frenet frame spanned by the tangent, normal, and binormal
unit vectors, respectively, l, n, and b.

If the desired shape can be expressed analytically as a con-
tinuous curve with the Euclidean position defined as a vector
function x(s) of the arc length s, the curvature and torsion
are computed straightforwardly with the help of Eqs. (11).
The simplest analytically treatable 3D example is a helix
x(t ) = {cos t, sin t, at} parametrized by a variable t related to
the arc length as s = t

√
1 + a2. Then Eq. (11) yields constant

curvature and torsion

κ = 1/
√

1 + a2, τ = a/
√

1 + a2. (17)

The size of the driven sector is characterized by the angle ψ ,
which is required to deform an originally straight-line filament
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FIG. 3. [(a)–(c)] The various 3D shapes made of a single prepro-
grammed filament. [(d)–(f)] The size of the driven sector and torsion
as functions of the arc length s.

into the helix with the unit radius and pitch a, is defined then
by Eq. (5) with κ̂ given by the first Eq. (17), while the second
Eq. (17) defines rotation of the driven sector alongside the
filament.

Less trivial examples are provided by the three shapes
depicted in Figs. 3(a)–3(c) obtained by parametrizing appro-
priate spatial curves. For the spherical shape in the left-hand
panel, the Euclidean positions are defined as

x(t ) = {sin at cos t, sin at sin t, cos at}, (18)

where a = 0.05, t ∈ [π ; 19π ]. For the cuplike shape in the
central panel, we have

x(t ) = {(b sin at + 1) cos t, (b sin at + 1) sin t, ct}, (19)

where a = 0.05, b = 0.7, c = 0.02, t ∈ [−20π ; 11π ], and for
the wavy cylinder in the right-hand panel,

x(t ) = {cos at, sin at, bt + c sin dt} (20)

with a = 0.2, b = 0.01, c = 0.1, d = 1.5, t ∈ [0; 80π ]. In
these examples, both the curvature and torsion vary along
the length of the filament; their dependence on the variable
t are defined (after normalizing t to the arc length) by the
same Eq. (11), though the respective analytical expressions
are far more involved than Eq. (17). The resulting change
of ψ and rotation of the orientation angle of the basis over
the length of the filament are shown in Figs. 3(d)–3(f). Take
note that in Fig. 3(f) the torsion diverges at inflection points
where the curvature vanishes. As in the 2D example in Fig. 2,
the vanishing driven sector reappears then at a different
location.

C. Numerical inverse design

If the desired shape is given numerically, the local curva-
ture and torsion are obtained by discretizing the centerline of
a filament as a chain of nodes. Then the local curvature can
be conveniently calculated at each ith node as an approximant
κi = 2αi/(li−1 + li ), where αi � 1 is the angle between two
links adjacent at the ith node and li−1, li are the distances
between the points i − 1, i and i, i + 1, respectively. This

FIG. 4. [(a) and (b)] A filament of unit length reshaping to a cat
sculpture. The normals are colored according to the local curvature
(a) and twist (b). (c) The size of the driven sector and torsion as
functions of the arc length s. Parameters: ε = 0.2, r = 10−4.

approximation is valid as long as the local curvature radius is
large compared to the distance between discretization points.
The approximated torsion τ is computed on an ith link as τi =
−βi/li, where βi is the angle between projections of normals
at the points i − 1 and i + 1 onto the normal plane of the ith
link, with the sign defined by the counterclockwise rotation
convention. Once the geometric data are known, the size and
orientation of the driven sector are computed as outlined in
Sec. III A.

An example of inverse design applied to a rather complex
shape imitating a wire sculpture [17] is shown in Fig. 4.
The coloring or shading of the normals in these pictures is
proportional to the local curvature (a) and torsion (b). The dis-
tribution of ψ and τ along the filament is shown in Fig. 4(c).

IV. DEFORMATION OF A CLOSED JANUS FILAMENT

A. Virtual displacements

In a closed Janus filament with a constant area and ori-
entation of the driven sector, instabilities are apt to arise due
to an interplay between bending and twist. In an untwisted
circular ring with a radius 1/κ0, originally flat and torsionless,
the basis d is parallel to the Frenet normal; this, however is apt
to change when the ring relaxes to an equilibrium curvature
κ̂ < κ0, which, due to a constrained geometry of a closed
ring, necessitates misalignment of the two vectors and the
emergence of nonzero torsion.

The change of energy caused by small deformations can
be computed by testing effects of displacing the centerline
defined in a parametric form x(s) by increments u, v,w along,
respectively, l, n, b, so that

δx = ul + vn + wb. (21)
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The tangential displacement u is a gauge variable that ex-
presses a reparametrization of a displaced curve. For a nonex-
tensible filament, perturbing the first Frenet-Serret equa-
tion (10) and replacing the derivatives with respect to s with
the help of other equations, yields the increment of l:

δl = δxs = (us − κv)l + (vs + κu − τw)n + (ws + τv)b.

(22)

Since l is a unit vector, the projection δl · l should vanish. This
yields the relation between u and v in the isometric gauge

us = κv. (23)

Equation (22) thus reduces to

δl = V n + W b; V = vs + κu − τw, W = ws + τv.

(24)

In the same manner, we obtain the increment of n from
the second Frenet-Serret equation with the help of Eqs. (23)
and (24):

κ δn = −δκ n + ∂s(V n + W b)

= −V l + (Ws + τV )b + (−δκ − κus

+ κ2v + Vs − τW )n. (25)

Again, requiring the projection δn · n to vanish and using
Eq. (23) gives the increment of the curvature:

δκ = Vs − τW. (26)

The perturbation of n reduces therefore to

δn = −V l + Ub; U = κ−1(Ws + τV ). (27)

The increment of the torsion τ is obtained from the third
Frenet-Serret equation after using Eq. (23) and requiring the
projection δb · b to vanish:

δτ = κW + Us. (28)

B. Stability of an untwisted ring

The linear stability of a ring can be studied by testing the
effect of infinitesimal harmonic perturbations

v = ṽeiks, w = w̃eiks, τ = τ̃eiks,

u = ũeiks = − iκ0

k
ṽ, ζ = ζ̃eiks = − i

k
τ̃eiks, (29)

where the last two relations follow from Eqs. (23) and (16)
and the wave number k = nκ0 should be an integer multiple
of κ0.

The change of energy δF is quadratic in the perturbation
amplitudes, and the basic configuration is unstable when
δF < 0. For the purpose of linear stability analysis, we need
to compute the lowest order (quadratic) resonant terms in
Eq. (34) to determine whether the energy decreases upon vir-
tual infinitesimal displacements of the filament and rotations
of the basis defined by Eqs. (29) and their complex conjugates
ṽ∗e−iks etc. The curvature is expressed as

κ = κ0 + κ̃eiks + κ̃∗e−iks + κ, (30)

where κ denotes constant terms quadratic in perturbation
amplitudes. The relations between the curvature and torsion

and virtual displacements follow from Eqs. (26) and (28).
Collecting the first-order terms only yields

κ̃ = −(
k2 − κ2

0

)̃
v, τ̃ = − ik

κ0

(
k2 − κ2

0

)
w̃. (31)

Collecting quadratic terms in Eq. (26) yields the second-order
resonant term

κ = 2(k2/κ0)
(
k2 − κ2

0

)|w̃|2. (32)

Eliminating the extension coefficient ε with the help of
Eq. (5), the variable part of the bending moment can be
expressed through the equilibrium curvature κ̂:

I = 1
4 r2κ (κ − 2̂κ cos ζ ). (33)

The twist moment given by Eq. (9) with τ0 = 0 is, in view
of Eq. (16), J = 2

3τ 2. The relevant nonoscillating second
order terms in the integrand of Eq. (1) are computed using
Eqs. (31), (32) and replacing k = nκ0, κ = qκ0 as

I = 1

2
r2[|̃κ|2 + κ (κ0 − κ̂ ) + κ0κ̂ |̃ζ |2] + 2

3
|̃τ |2

= r2κ4
0

[
1

2
(n2 − 1)2 |̃v|2 + f (n2)|w̃|2

]
, (34)

f (n) = (n2 − 1)2

(
n2 1 − q

n2 − 1
+ q

2
+ 2

3
n2

)
. (35)

Notably, this expression does not involve the size of the driven
sector, which only affects the equilibrium curvature κ̂ .

Normal displacements affect only the perturbation of κ ,
and the filament is always stable to normal displacements.
Instability to binormal displacements is determined by the
function f (k) in Eq. (35). The instability sets on at q > qc,
where qc is obtained by solving f (n) = 0:

qc = 2

3

n2(2 + n2)

2 + n2
. (36)

The numerical values are qc = 3.2 at n = 2, qc = 6.6 at n =
3, qc ≈ 11.3 at n = 4. These values differ from those reported
in Ref. [12] but not in a qualitative way. A twisted ring can be
proven to be absolutely unstable to infinitesimal perturbations,
in accordance with Ref. [12].

C. Large-amplitude deformations

Large-amplitude deformations are computed by numerical
simulations based on approximating the filament centerline
as a discrete curve with material frames defined at nodes.
Equilibrium configurations can be attained by solving the
energy minimization problem. The local curvature and torsion
are computed as described in Sec. III C, while the angle ζ in
Eq. (9) depends on mutual orientation of the Frenet frame
and the material basis defined in the reference state. The
energy minima are located using the gradient descent method
by computing energy gradients due to imposed small virtual
local perturbations of each degree of freedom, i.e., by three
spatial displacements and rotation of the material frame. After
each simultaneous update of node positions and orientations,
calculation of gradients and overall energy is repeated till the
energy gain vanishes.
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FIG. 5. Elastic instability transitions in a closed Janus filament
under actuation. The overall energy gain due to reshaping a fila-
ment to stable and metastable configurations at different values of
the parameter q and the initial perturbation wavelength. Instability
thresholds found in stability analysis are plotted by solid lines.
Dashed lines show transitions to a higher looping number.

We found that nonplanar configurations for each looping
number always exist below the instability thresholds qc, so
that the instabilities analyzed above are always subcritical.
The overall energy of the configurations is plotted in Fig. 5
as a function of the dimensionless parameter q. The results
indicate multistability with coexisting metastable and abso-
lutely stable configurations with different looping numbers.
The general tendency seen in Fig. 5 indicates transitions to
larger looping numbers with increasing q. Relaxation to a
lowest energy configuration is commonly restricted by self-
intersections of a filament, so that large-amplitude pertur-
bations are necessary to further decrease the energy while
avoiding self-contact.

V. RESHAPING OF AN ELEMENTARY FRAME

A. Geometry and energy of an elementary frame

More possibilities arise when Janus filaments are incor-
porated in two-dimensional woven structures. Textiles as-
sembled from separate filaments allow for more freedom
compared to continuous sheets, as they are not constrained
by the condition of incompressibility. The filaments in textiles
are relatively disperse and may be able to slide, bend, and
change the distance between them. Stitching at edges ensures
the integrity of the fabric and, alongside interlacing, prevents
self-intersections.

As a model example allowing for analytical treatment,
we consider a minimal piece of textile containing two Janus
filaments with half a cross-section occupied by an actuated
material. The elementary structures include two Janus fila-
ments and one passive filament placed in between, which
are oriented before actuation along the y axis, and three
passive filaments positioned in the orthogonal x direction and
connecting the ends and centers of the Janus filaments. All
filaments are originally straight and have the same length L in
the reference state. The filaments are allowed in this model
example to freely change connection angles at their ends.
At the same time, relative rotation of the framing filaments
causes twist of the two central filaments that has not been
accounted for in Ref. [13]. Although the integrity of this

FIG. 6. Representative configurations of elementary frames with
antisymmetric actuation (a) and symmetric [(b) and (c)] actuation.

minimal structure is not supported by weaving, we assume
that the two passive filaments intersecting at the central node
remain in contact. Some typical shapes obtained upon actua-
tion are shown in Fig. 6.

The energy of an elementary frame is dependent on the
curvatures κi of the driven, parallel passive, and perpendicular
framing and central filaments (marked by the indices i →
(a, y, x, c), respectively) and twists θc, θy. Since curvatures of
each filament are constant along their length, it is convenient
to work with the respective curvature radii Ri = 1/κi. The
general expression for energy per unit volume, scaled by
Eπr4/2, where the radii r and Young moduli E of driven and
passive filaments are assumed to be equal, can be written as

F = 1
4

[
R−2

y + R−2
c + 2R−2

x + 2I (1/Ra)
] + 1

6

[
θ2

y + θ2
c

]
.

(37)

The bending moment I (1/Ra) = I (κa) of driven filaments is
given by Eq. (8) where we set ψ = π/2 to maximize the
curvature attained upon actuation. As usual, we neglect here
a small correction to the radius of driven filaments upon
actuation, 1/

√
1 + ε/2 for LCE or 1 + ε/2 for the case of

isotropic expansion.
To detect the dependence of the curvatures of passive

filaments on Ra and ε, it is convenient to define arc angles
φi = Li/Ri with the lengths of all passive filaments equal to
L and La = L(1 + ε/2). We will also need the chord half-
lengths (half-distances between the ends of bent filaments)
di = Ri sin φi/2 and the heights of the segments (sagitta)
hi = Ri(1 − cos φi/2). Independently of orientation of driven
filaments, the character of deformations is defined by the sign
of the difference

δ = da − dy = 3

4

πr

ε
sin

[
3

4

εL

πr

(
1 + ε

2

)]
− 1. (38)

This difference grows at very small extensions and then
decreases and becomes negative above the critical elongation
εc = 2Ra arcsin(L/Ra) − 2.

B. Antisymmetric actuation

Consider first the case when both Janus filaments are
oriented in the same direction and bend in the frame plane. At
ε < εc, δ > 0, elongation of driven filaments upon actuation
overcompensates the decrease of da caused by bending. A flat
configuration is possible under these conditions when the per-
pendicular framing filaments bend inward with the curvatures
1/Rx satisfying da − dy = hx. This deformation reduces the
half-distance between the driven filaments to dx < L/2, and
therefore the central perpendicular filament must also bend
with the same curvature radius Rx to preserve its length, while
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FIG. 7. Antisymmetric bending of the frame made of filaments
with r = 0.05 and L = 2. (a) Dependence of the curvature of per-
pendicular filaments and the bending energy on rotation of driven
filaments about midpoint at ε = 0.005. (b) The dependence of the
curvatures of driven and passive filaments in the equilibrium config-
uration on the extension coefficient ε.

the parallel passive filament remains straight. The bending
should be in-plane (in either direction) if preserving the con-
tact with the rectilinear parallel passive filament at the central
node is required, and lifting the central node off-plane would
require extending the framing filaments.

The energy of this configuration is

F = 3
4 R−2

x + χ I (1/Ra). (39)

The energy minimum is determined by trade-off between the
energies of perpendicular passive and the driven filaments,
leading to a deviation of the latter’s curvature from the optimal
value κ0. The curvatures κa and κx are related as

κa sin
L(1 + ε/2)

2Ra
= Rx

(
1 − cos

L

2Rx

)
+ L

2
. (40)

This equation is transcendental, and therefore the optimum
has to be computed numerically. We found that 1/Rx de-
creases with 1/Ra at any ε > εc; thus, equilibrium config-
uration is attained when driven filaments are at the optimal
curvature 1/R0.

Rotating the driven filaments off-plane around their mid-
point in opposite directions by some angle ξ reduces the
projection of the base of the driven filament on the original
plane to d̂a = da cos ξ ; as a result hx = d̂a − dy and curvature
1/Rx decreases [Fig. 7(a)]. However, dc also contracts with in-
creasing angle ξ as dc = d̂x = √

d2
x − (da sin ξ )2, which leads

to buckling of the central perpendicular filament and a rise
of bending energy. Off-plane rotation around the midpoint, in
addition, causes twist in the central perpendicular filament.
Due to the ensuing increase of energy, the planar state always
remains optimal, as shown in the inset of Fig. 7(a).

When ε > εc and δ < 0, the equilibrium state is also planar
[Fig. 6(a)] and, consequently, no twist arises. The parallel
passive filament may bend in-plane or the driven filaments
may reduce their curvature to lower the difference dy − da.
In one limit, the parallel passive filament remains straight,
and the perpendicular filaments bend with the same curvature
radius Rx as at δ > 0, with the only difference that the framing
filaments bend now outward. The dependence of optimal
values of Ra and Rx on the extension coefficient ε is shown
in Fig. 7(b). The optimal curvature of driven filaments grows
with ε, but bending resistance of passive filaments leads to
an equilibrium at 1/Ra < 1/R0. The curvature 1/Rx attains

FIG. 8. (a) The rotation angle of driven filaments around their
midpoint as a function of the extension coefficient and (b) the energy
gain of a twisted shape over the planar configuration in a frame with
a symmetric arrangement of driven filaments.

a minimum at the critical elongation εc and then rapidly
increases.

C. Symmetric actuation

When the curvature radii of driven filaments are ori-
ented inside the frame, both central filaments remain straight
[Figs. 6(b) and 6(c)]. A configuration with 1/Rx �= 0, Ra =
R0, satisfying dx = dc − ha, with driven filaments remaining
parallel, becomes not optimal and the frame switches to a
twisted shape to reduce dx. The twist angle ξ can be found
together with hx by solving the relations

hx = |da cos ξ − dy|, d2
x = (dc − ha)2 + (da sin ξ )2.

(41)

The result depends on Ra only if the central filaments are
straight. The twist energy differs from zero in both configura-
tions. In the first case, the torque is applied only to driven fila-
ments, and at ξ �= 0 all filaments experience a twist. We found
that lowest energy configurations are attained at some optimal
angle ξ that minimizes the overall energy with Ra > R0, and
the twist angle depends on the extension ε [Fig. 8(a)]. The
overall energies for shapes with ξ = 0 and for twisted con-
figurations at optimal ξ (ε) are shown in Fig. 8(b). A twisted
shape is preferable at any ε, since twist provides a significant
advantage by reducing bending energy. Typical shapes for
configurations with parallel driven filaments and filaments
turned by ξ are presented, respectively, in Figs. 6(b) and 6(c).

VI. SHAPE MULTISTABILITY IN TEXTILES

A. Reshaping of a rectangular strip

Full-fledged textiles present further examples of multista-
bility. We start with reshaping of a planar rectangular piece
of textile embroidered over opposite sides by two driven fila-
ments. Interlaced passive filaments form the rest of fabric. All
filaments have the same mechanical properties, but we assume
that Janus filaments are twice as thick as the passive ones
to make the reshaping effect more pronounced. To keep the
integrity of the fabric, the structure should be stitched at the
edges. Unlike the arrangement in our earlier publication [13],
we assume that internal filaments are stitched to the boundary
filaments in a way allowing them to rotate around the latter’s
axis [see Fig. 9(a)]. The boundary filaments apply a torque,
and cause a twist in stitched filaments when rotating off-plane.
Since torque is applied at the ends only, twist is uniformly
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FIG. 9. (a) A piece of woven structure with loop connections at
the ends and a Janus filament oriented at an angle ρ to the midsurface.
The cross-section of the Janus filament shows the driven sector with
the angle ψ and the deviation of normal vector n in the Frenet frame
from the material normal by an angle ζ . (b) An equilibrium shape of
textile with two untwisted Janus filaments that are allowed to freely
rotate retaining the zero mismatch angle ζ .

distributed along internal filaments and is determined by the
angle difference between projections of the border filaments
onto the normal plane. In order to induce twist also in Janus
filaments, we assume that they are attached in the same way to
the framing passive fibers. This brings about a larger diversity
of shapes compared to the case when driven filaments are free
to rotate, leading to a bent equilibrium shape with no twist, as
in Fig. 9(b).

Equilibrium configurations can be attained following pseu-
dotime evolution equations for the locations of the centerlines
of each filament xi(s) together with additional angular vari-
ables affecting twist. The positional equations are discretized
as locations of the intersection nodes:

dxi j

dt
= − ∂

∂xi j

∑
segm

Fsegm, (42)

where the Fsegm is the energy of filament segments between
the nodes.

Altogether, there are three degrees of freedom at each node,
i.e., 3mn degrees of freedom in a rectangular piece of textile
woven of m + n filaments. In addition, there are m + n − 2
variables describing the difference between orientations of the
framing fibers at the two ends of all filaments (except the
framing passive ones) that determine the respective torques.
We solve the optimization problem for the elastic energy
using the gradient descent method, starting from a reference
state and applying small local perturbations of each degree
of freedom to compute energy gradients. After all gradients
are found, the node positions and angles are simultaneously
updated and the procedure is repeated.

The woven structure of the textile, depicted in Fig. 9(a),
imposes a “microcurvature” component along the normal
to the envelope surface of the fabric, that depends on the
distance �i, j between intersections and prevents convergence
of neighboring nodes to distances comparable to the diameter
of the filaments. The microcurvature κi, j at a node (i, j)
of the ith filament is approximated in the limit r � �i, j by
κi, j ≈ 4r/(�i, j+1 + �i, j−1). In the actual computations, this
additional curvature is taken into account by shifting the
locations xi, j of intersecting filaments by r along the normal
to the envelope of the fabric and using the approximant κi, j =
|αi, j |/ min〈�i, j+1, �i, j−1〉, where αi, j is the angle between the

FIG. 10. Antisymmetric arrangement of textile. (a) Free energy
as a function of extension coefficient ε. (b) A flat textile structure at
ε = 0.0125. (c) A twisted textile structure at ε = 0.0175.

two adjacent links. The approximation is valid as long as
the local curvature radius is large compared to the distance
between nodes. The intersecting filaments should remain in
contact under these conditions, since their separation will in-
crease the microcurvature, which is minimal (though nonzero)
when the network is regular and increases with growing
inhomogeneities.

B. Antisymmetric actuation

An initially planar textile with two framing Janus fila-
ments, which are oriented in the way causing them to bend
in the same direction in the textile plane, remains flat until
ε ≈ 0.0125 (Fig. 10). No twist arises in such a configuration;
at ε < εc, the Janus filaments elongate rather than develop
curvature, leading to a slight bend of boundary passive fil-
aments. At εc < ε < 0.0125, the perpendicular passive fil-
aments remain straight, changing the angle at connections
with Janus filaments, but parallel passive filaments bend in
the enveloping plane of the textile because the distance be-
tween the ends of the Janus filaments shortens. Since one
of the driven filaments bends inward, becoming closer to
parallel filaments, and another one bends outward, increasing
the distance from the neighboring filament, bending is not
symmetric and depends on the filament position. The parallel
filaments in the center of textile remain almost straight due
to a lower compression, while filaments near the driven ones
bend in the same direction to reduce microcurvature and to
prevent convergence of filaments. As a result, the structure
has a different density of parallel passive filaments, as seen in
Fig. 10(b).

As the actuation rate increases, the difference in density,
as well as in rigidity, across the textile grows, leading to
a difference between the curvatures of driven filaments. It
becomes more difficult to attain the intrinsic curvature for
the Janus filament that bends inward. The distance between
the ends of the driven fibers becomes shorter than between
their middle points, and therefore the perpendicular passive
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FIG. 11. Symmetric actuation of a textile piece. (a) Free energy
as a function of the extension coefficient ε. Stable and metastable
states are plotted by solid and dashed lines, respectively. The vertical
dotted line shows the critical value of ε at the shape transition.
[(b) and (c)] Typical configurations, respectively, before (ε = 0.015)
and (c) after (ε = 0.02) the shape transition.

filaments are compressed near the boundaries. This incom-
patibility grows with ε and, finally, the structure bends out
of plane and reshapes to a twisted configuration of two
alternative orientations [Fig. 10(c)]. This causes an increase
of distances between the ends of the driven filaments which
moderates bending of passive filaments. This shape is prefer-
able because twisting energy is less costly than bending
energy. Moreover, such an arrangement is only slightly af-
fected by twisting rigidity, and equilibrium structures at dif-
ferent ε qualitatively repeat our previous results in Ref. [13],
where filaments were allowed to rotate about their axis at
the boundary nodes. Since in an elementary frame with the
same arrangement of actuation the difference in curvatures
of driven filaments does not arise, the frame, unlike textile,
remains planar, and there is no reason to switch it to a twisted
configuration.

C. Symmetric actuation

The trade-off between bending and twisting energies be-
comes more pronounced in a symmetric arrangement where
no planar configurations exist at ε �= 0. When the extension
coefficient is small, the Janus filaments develop curvature
by bending the entire structure, which increases distortion
close to the passive boundaries for perpendicular filaments
and close to the middle line, for parallel ones [Fig. 11(b)].
The Janus filaments develop intrinsic curvature, and yet they
retain the symmetry with no twisting energy arising in such
configuration up to ε < 0.0175. However, the resistance to
bending of the passive part of textile leads to a fast growth of
the bending energy, which is reduced by transition to a twisted
shape [Fig. 11(c)], since it is less energetically expensive to

FIG. 12. (a) Reshaping of a twisted Janus ring restricted by two
perpendicular passive filaments. (b) Deformation of two twisted
Janus rings with opposite coiling handedness connected by a differ-
ent number of passive filaments.

twist than to bend a rod. The structure evolves by rotating
about the middle line, increasing the distances between the
ends of the driven fibers. As a result, it reduces compression
of passive fibers and the bending energy, but induces twisting
energy costs. Such a shape change occurs at ε ≈ 0.0175,
accompanied by a jump of twisting and bending energies
clearly distinguished in the energy plot [Fig. 11(a)].

The reverse transition to a small ε and nontwisted con-
figurations takes place at lower value ε ≈ 0.012. It forms a
hysteresis loop with a coexistence interval of the untwisted
configuration, which is absolutely stable and has a lower over-
all energy, and the twisted one, which is metastable and exists
within the interval 0.012 < ε < 0.0175 and can be attained
only from a twisted shape at higher ε. We note that the textile
shapes at ε > 0.0175 reproduce the optimal configurations
found for a frame of the same type of actuation.

D. Imbedded Janus rings

Janus filaments forming closed loops provide neat exam-
ples of elastic instabilities by generating a variety of elaborate
shapes. Isolated twisted closed filaments are absolutely unsta-
ble to off-plane deformations and acquire multiple convoluted
shapes [12], but they can be stabilized when restricted by
passive filaments or woven into a textile fabric. Such arrange-
ments provide ways to control the reshaping and to extend our
understanding of connectivity in woven structures.

We consider first the shape change of a twisted Janus ring
connected by two passive filaments crossing in the center with
the lengths equal to the ring diameter, which is initially in a
planar configuration. The passive filaments are not allowed
to change positions of their connecting points with the Janus
filament, but they can rotate about it and change the angle
at these nodes. Rotation of the Janus filament around the
centerline of passive filaments imposes, however, a twist,
and the reshaping leads to compression of passive fibers. We
assume that the central node may change its position, but the
filaments remain in contact, as it was also assumed for an
elementary frame in Sec. V.

A reshaping ring passes through at least three qualitatively
different configurations as the extension coefficient increases.
Deviation of the Janus filament from the original plane de-
pends on the parameter ε and shown in Fig. 12(a). At ε <

0.005, the bending energy of the ring is low compared to
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FIG. 13. Shapes of a cylindrical textile with two Janus filaments
of the same handedness and [(a)–(c)] 2, 3, and 4 turns of the basis,
respectively, at the same extension parameter ε = 0.015. Projections
on the three normal planes are also shown.

the twisting and bending energy of passive filaments, and the
structure remains planar with minor deviations of the ring
from the initial circular shape. A further increase of ε leads
to bending of the passive filaments. First, at 0.005 < ε <

0.02, only one of them buckles, while the other one remains
straight, causing the ring to acquire a significantly nonplanar
shape. With further increase, the entire structure inflects,
so that at ε > 0.02 there are no stable configurations with
passive filaments remaining straight. Finally, the Janus ring
produces an additional loop, as it develops an internal twist
to reduce the bending energy. The average deviation from
original plane decreases but, unlike an unconstrained Janus
ring [12], it cannot fold up to a planar configuration, and warps
until being restricted by a self-intersection limiting further
deformation.

Interaction between twisted closed Janus filaments con-
nected by passive filaments also restricts their reshaping. This
affects shape transformations in a structure consisting of two
Janus rings of the same circumference and pitch length, but
opposite coiling handedness. Figure 12(b) compares struc-
tures with the same value of the extension coefficient ε =
0.03 but different number of connecting passive filaments.
A single ring with an imposed twist by 2π folds at this
value of ε to a double-covered circle, but connecting passive
filaments constrain the deformations. When the total bending
energy of connecting filaments is lower than the energy of
Janus rings, each ring changes its shape to a form of almost
flat partially folded loop. Increasing the number of passive
filaments enforces the connectivity that prevents bending of
passive filaments and leads to growing deviations of the
rings from the planar configuration, forming loops that are
perpendicular to the original plane. Typical shapes at different
values of connectivity are shown in Fig. 12(b) together with
the mean squared deviation of the rings from the average
vertical position.

The change of reshaping regimes of constrained Janus
rings becomes still more pronounced in woven cylindrical
“sleeve” structures. The results of computations for two iden-
tical Janus rings of the same handedness and pitch embroi-
dered into a cylindrical textile are presented in Fig. 13. The
connecting passive filaments tend to damp the deformations,
and therefore the two Janus filaments, unlike unconstrained
twisted Janus rings, are prevented from attaining an optimal
curvature by producing multiple loops. This causes a cylin-
drical fabric to deform into ellipsoidal, triangular, square,

FIG. 14. Woven structures obtained by actuating a unit square
piece of textile. [(a) and (b)] Shapes with positive and negative
Gaussian curvature. [(c) and (d)] A spiral shape with constant areas
of driven sectors. [(e) and (f)] A relief of a man at constant orientation
of driven sectors. Colouring or shading shows the mean curvature H
(left) and the Gaussian curvature (right) at the nodes [(a), (b), (d), and
(f)] or the orientation and elevation of filament sectors [(c) and (e)].
(g) A flower shape obtained from textile with nonuniform internal
orientation and amplitude of curvature. Parameters for (a)–(g): ε =
0.03, r = 10−3.
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etc. cross-sectional shapes, depending on the number of full
internal rotations of the Janus ring.

VII. NONUNIFORM ACTUATION

We now extend our investigation to address the reshaping
of woven structures with multiple Janus filaments of different
intrinsic curvature and seek to understand the design criteria
for creation of tunable textiles. Such metamaterials are suf-
ficiently flexible to program on-demand internal geometry of
each filament constituting the fabric and to to control desired
morphing from 2D to 3D strictures.

An initially planar piece of textile, unlike a continuous flat
sheet, can develop shapes with a nonzero Gaussian curvature
even when the driven sectors of each filament have a constant
size and orientation along filaments. Examples of shapes
with positive and negative Gaussian curvature are shown in
Figs. 14(a) and 14(b). In the first case, all filaments are
oriented uniformly and tend to develop curvature normally
to the textile surface, generating positive mean and Gaussian
curvatures of the enveloping surface at each node. In the
second case, negative Gaussian curvature is attainable when
the filaments have opposite orientation in two orthogonal
directions. The amplitudes of curvatures are, however, not
homogeneous at different nodes in both cases, reaching a
maximum near the boundaries and being more uniform in the
center of textile. Developing a nonzero Gaussian curvature
causes compression and extension of different parts of struc-
ture, so that the initial regular arrangement becomes perturbed
by convergence and dispersing of filaments upon transition to
a new equilibrium shape.

A variety of 3D shapes can be obtained upon actuation
when either areas or orientations of driven sectors, or a
combination of both, are chosen in a slightly more artful
way to reach a desired shape. For example, in Figs. 14(c)
and 14(d), we define local orientation of the intrinsic curvature
for each filament in such a way that generates a spatial spiral
relief upon actuation. All filaments tend to develop curvature
normally to the enveloping surface, but the structure has two
domains of opposite orientation of intrinsic curvature, upward
(ρ = π/2) and downward (ρ = −π/2) through reversing po-
sitions of the driven sectors in transitional zones, while the
amplitude of internal curvature defined by the values of ψ and
ε is set constant in whole structure. As a consequence, the tex-
tile generates appropriate vertical out-of-plane displacements
and nonzero Gaussian curvature of the enveloping surface.

Alternatively, the target shape can be attained by patterning
the areas of driven sectors (i.e., the angle ψ), while keeping
the orientation of internal curvatures uniform along filaments.

This generates local bending and normal displacement in the
driven domain, while other nodes remain planar. In Figs. 14(e)
and 14(f), we demonstrate such a kind of actuation with a
nonsymmetric pattern of passive/driven sectors revealing a
sculpture of a climbing man. The resolution and details of the
textures depend on the textile density and geometry, since the
local curvature radius is assumed to be larger than the distance
between filaments.

A combination of nonuniform driven sectors and variable
orientation of intrinsic curvatures provide a flexibility in
design of more complex 3D shapes. In order to generate a
shape that perfectly recovers a target 3D object, we must solve
a nontrivial inverse design problem. The solutions provided
here are imperfect, but our aim is to demonstrate advantages
of shape-programmable textile capable to morph in a sophis-
ticated way to reproduce desired shapes, even without solving
the inverse problem precisely. In particular, we prescribe an
arrangement that generates a flower shape, which is shown
in Fig. 14(g). This complex shape cannot be attained by pre-
scribing either ψ or ρ, since both the amplitude and direction
of curvature vary at each node. The orientation of filaments
throughout the structure is chosen to change gradually from
ρ = 0 at one boundary to ρ = π at opposite edge, so that
the boundary filaments develop curvature directed inward and
normally to enveloping surface in the center. The amplitude of
curvature is defined in such a way that renders “flower petals”
locally flat and oriented upward.

VIII. CONCLUSION

Morphing driven Janus filaments and textiles comprising
various combinations of driven and passive filaments creates
a wide variety of shapes. Transitions between qualitatively
different structures minimizing the overall bending and twist-
ing energy may take place at certain values of the extension
coefficient, and metastable structures may coexist with an ab-
solutely stable state under certain conditions. Reverse design
of desired forms can be achieved by programming the size
and orientation of a driven sectors in Janus filaments; this task
becomes both more flexible and more difficult, compared with
either single filaments or continuous sheets when morphing
textile composed of or embroidered with Janus filaments.
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