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Temperature effects on the electronic band structure of PbTe from first principles
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We report a fully ab initio calculation of the temperature dependence of the electronic band structure of PbTe.
We address two main features relevant for the thermoelectric figure of merit: the temperature variations of the
direct gap and the difference in energies of the two topmost valence band maxima located at L and �. We account
for the energy shift of the electronic states due to thermal expansion, as well as electron-phonon interaction
computed using the nonadiabatic Allen-Heine-Cardona formalism within density functional perturbation theory
and the local density approximation. We capture the increase of the direct gap with temperature in very good
agreement with experiment. We also predict that the valence band maxima at L and � become aligned at
∼600–700 K. We find that both thermal expansion and electron-phonon interaction have a considerable effect
on these temperature variations. The Fan-Migdal and Debye-Waller terms are of almost equal magnitude but
have an opposite sign, and the delicate balance of these terms gives the correct band shifts. The electron-phonon
induced renormalization of the direct gap is produced mostly by high-frequency optical phonons, while acoustic
phonons are also responsible for the alignment of the valence band maxima at L and �.
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I. INTRODUCTION

Given their ability to convert waste heat into electric-
ity [1–4], thermoelectric (TE) materials could, in principle,
play an important role in the future development of energy
harvesting technologies. However, their practical applications
are limited due to poor efficiency, which is extremely chal-
lenging to enhance because of the conflicting requirements
for the desired physical properties. A high-performance TE
material has to be a good electrical conductor, a poor thermal
conductor, and, at the same time, possess a large Seebeck
coefficient [1,2]. All these parameters are strongly dependent
on the relative energies of the electronic band states relevant
for charge transport [5,6]. If the band energy differences
are small (∼0.1 eV), they may be strongly renormalized by
temperature [7–9], which in turn may significantly affect
thermoelectric transport properties [10].

PbTe is among the most efficient bulk thermoelectric
materials for temperatures between 500 K and 900 K [2].
It is a direct narrow-gap semiconductor, and its direct gap,
located at the L point, is very sensitive to temperature vari-
ations [7,11–14]. Interestingly, PbTe exhibits a temperature
induced shift of the direct band gap that is opposite to the ma-
jority of semiconductors: The gap increases with temperature
from 0.19 eV at 30 K to 0.38 eV at 500 K [7,11]. The positive
temperature coefficient of the direct gap may be beneficial
for the thermoelectric performance of PbTe [6,7,15], since
a larger gap suppresses bipolar effects caused by intrinsic
carrier activation at higher temperatures [7]. The temperature
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variation of the direct gap also modifies the effective masses
and thermoelectric transport coefficients, which can be seen
from the nonparabolic two-band Kane model [16,17]. It is thus
essential to account for the temperature dependence of the
direct gap and effective masses when modeling electronic and
thermoelectric transport in PbTe and other direct narrow-gap
semiconductors [10].

Furthermore, PbTe has a complex valence band (VB)
structure [18–22], with two energetically close maxima whose
energy difference also depends on temperature. The top VB
maxima are located at the L point, while additional heavier
pockets are situated along the � line, with the maximum
at � = 2π

a (3/8, 3/8, 0), where a is the lattice constant. The
secondary VB maximum (VBM) at � is considered to be
∼0.1–0.17 eV below that of the VBM at L at low temper-
atures (∼4 K) [23–28]. It has been argued in the literature
that the energy difference between these two VBM decreases
due to temperature, and they become aligned at a temper-
ature between 400 K and 700 K [7,26,29]. This feature of
the electronic band structure of PbTe is of great interest
for improving its thermoelectric performance. It has been
suggested that such enhanced band degeneracy, induced by
temperature or alloy composition, may yield higher Seebeck
coefficient without significantly reducing electronic conduc-
tivity [6,7,30]. To accurately account for the influence of this
valence band alignment (or “band convergence” [6]) on the
thermoelectric performance of p-type PbTe, it is necessary
to reliably determine the temperature variation of the energy
difference between the VBM at L and �.

The first-principles theoretical framework for calculating
temperature dependent electronic band structures based on
the Allen-Heine-Cardona (AHC) formalism [31–33] and den-
sity functional perturbation theory (DFPT) [34–36] has been
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developed recently [37,38]. The temperature dependence of
electronic energies originates from thermal expansion and
electron-phonon interaction (EPI) [32,39–41]. Allen, Heine,
and Cardona [31–33] developed the theoretical approach that
accounts for the renormalization of electronic bands due to
EPI and includes the second-order contributions with respect
to atomic displacement, known as the Fan-Migdal and Debye-
Waller terms. They showed that EPI can induce renormal-
ization of the band structure comparable to those induced
by electron correlations [31–33]. The AHC formalism has
recently been recast in a form suitable for the first-principles
calculations of the EPI contribution using DFPT [37,38].

In this work, the temperature renormalization of the elec-
tronic structure of PbTe due to electron-phonon interaction
and thermal lattice expansion is studied from first principles.
We calculate the temperature dependence of the direct gap
and the energy difference between the two topmost valence
band maxima at L and �. The electron-phonon contribution
is computed using the nonadiabatic AHC approach and DFPT
combined with the local density approximation, while the
thermal expansion contribution is obtained by calculating the
electronic band structure of the thermally expanded lattice
using density functional theory. We obtain a positive temper-
ature coefficient for the direct gap, dEg

dT , that agrees well with
experimental results [7,11–14]. We predict that the tempera-
ture at which the valence band maxima at L and � “converge”
is ∼600–700 K. We show that both thermal expansion and
electron-phonon interaction give sizable contributions to these
temperature changes. The sign of the temperature variations of
the direct gap and the energy difference between the valence
band maxima at L and � originate from the Debye-Waller and
the Fan-Migdal contributions to EPI, respectively, together
with thermal expansion. The dominant contribution to the
electron-phonon renormalization of the direct gap stems from
high-frequency optical phonons, while acoustic phonons also
contribute to the “convergence” of the valence band maxima
at L and �.

II. METHOD AND COMPUTATIONAL DETAILS

A. Ground-state calculations

We obtain the electronic band structure of PbTe using den-
sity functional theory (DFT) and the local density approxima-
tion (LDA) [42,43] implemented in the ABINIT code [44,45].
We use Hartwigsen-Goedecker-Hutter norm-conserving pseu-
dopotentials [46] with the 6s26p2 states of Pb and 5s25p4

states of Te explicitly included in the valence states. We use
the cutoff energy of 45 Ha and a 12 × 12 × 12 Monkhorst-
Pack kkk-point grid. The spin-orbit interaction (SOI) at the
LDA level of theory underestimates the band gap to such
a degree that the conduction and valence bands invert and
mix heavily near the L point, producing a “negative” band
gap [47]. In contrast, excluding SOI in the LDA calculations
for PbTe leads to the correct character of the conduction and
valence band states near the direct gap at L. In this work,
we use both the LDA including and excluding SOI to cal-
culate the temperature dependence of the electronic bands of
PbTe.

B. Temperature renormalization of electronic bands

In the finite temperature regime, the temperature (T ) de-
pendence of a single particle electronic energy is given as
Enkkk (T ) = εnkkk + �Enkkk (T ), where nkkk is the state index and
εnkkk is the energy in the case where all the atoms are kept
frozen in their equilibrium positions at 0 K. The temperature
variation of the electronic energy, �Enkkk (T ), includes two
contributions [32,41]:

�Enkkk (T ) =
(

∂εnkkk

∂T

)
P

=
(

∂εnkkk

∂ ln V

)
T

β +
(

∂εnkkk

∂T

)
V

, (1)

where the first term represents the energy renormalization
due to lattice thermal expansion, i.e., the thermally induced
change in volume at constant temperature (β is the volumetric
thermal expansion coefficient). The second term is the energy
renormalization due to phonon populations, i.e., the vibration
of atomic nuclei at constant volume. The effect of electron-
phonon interaction at constant volume on the temperature
induced energy shifts is usually the dominant term in Eq. (1)
and is the most difficult term to compute from first princi-
ples [48]. We calculate the renormalization of the electronic
structure of PbTe due to thermal expansion and electron-
phonon interaction as described in the following subsections.

C. Thermal lattice expansion

We calculate the effect of thermal expansion on the elec-
tronic band structure of PbTe by varying the lattice con-
stant that accounts for thermal expansion of the lattice and
computing the corresponding electronic structures using DFT.
We obtain temperature dependent lattice constant including
zero-point renormalization (ZPR) as [49]:

a(T ) = a0 + 1

3NqqqB

∑
qqqλ

h̄ωqqqλγqqqλ

(
nqqqλ(T ) + 1

2

)
. (2)

Here a0 is the lattice constant calculated using DFT-LDA,
Nqqq is the total number of sampled qqq points, B is the bulk mod-
ulus, ωqqqλ is the frequency of the phonon mode with the wave
vector qqq and the branch index λ, γqqqλ is the mode Grüneisen
parameter defined as γqqqλ = −d (log ωqqqλ)/d (logV ) [50] where
V is the primitive unit cell volume, and nqqqλ(T ) is the Bose-
Einstein distribution function for the phonon mode qqqλ at
temperature T . We also compute linear thermal expansion
coefficient using [50]

α = 1

3NqqqV B

∑
qqqλ

cqqqλγqqqλ, (3)

where cqqqλ is the heat capacity of the phonon mode qqqλ. Phonon
frequencies used in the calculation of the lattice constant and
linear thermal expansion coefficient of PbTe were computed
using harmonic interatomic force constants at 0 K obtained
from Hellman-Feynman forces for 128-atom supercells using
LDA excluding SOI [51]. In Appendix A, we present the
comparison between our calculated thermal lattice expansion,
lattice constant, and phonon dispersion of PbTe with experi-
ments.
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D. Electron-phonon interaction

The electron-phonon renormalization of the electronic
structure of PbTe, including the zero point renormalization,
is calculated using the Allen-Heine-Cardona theory [31–33]
and its DFPT implementation in the ABINIT code [44,45].

The main aspects of the AHC approach are summarized as
follows [37,52]. Electron-phonon interaction is treated per-
turbatively and consists of two terms representing the second
order Taylor expansion in the nuclear displacement, known as
the Fan-Migdal (FAN) and Debye-Waller (DW) self-energy
terms [52–54]:

�FAN
nkkk (εnkkk, T ) =

∑
n′qqqλ

∣∣gqqqλ

nn′kkk

∣∣2

Nqqq
×

[
nqqqλ(T ) + 1 − fn′kkk+qqq(T )

εnkkk − εn′kkk+qqq − ωqqqλ + iδ
+ nqqqλ(T ) + fn′kkk+qqq(T )

εnkkk − εn′kkk+qqq + ωqqqλ + iδ

]
, (4)

�DW
nkkk (εnkkk, T ) = 1

Nqqq

∑
qqqλ



qqqλqqq′λ′
nn′kkk [2nqqqλ(T ) + 1]. (5)

Here fn′kkk−qqq(T ) is the electronic Fermi-Dirac distribution
for the electronic state n′kkk − qqq [55], and δ is an infinitesimal
positive number that indicates how to integrate over the singu-
larity in the self-energy integral, i.e., principal part for the real
part of the integral, and Dirac delta function for the imaginary
part. The first-order electron-phonon matrix elements gqqqλ

nn′kkk in
Eq. (4) represent the probability amplitude for an electron to
be scattered by phonons, and are given as [52,53]

gqqqλ

nn′kkk = 〈un′kkk+qqq|∂vKS
qqqλ |unkkk〉uc, (6)

where unkkk and un′kkk+qqq represent the Bloch part of the wave
functions for the initial and final electronic states, and the sub-
script “uc” indicates that the integral is carried out within one
unit cell. ∂vKS

qqqλ is the first order derivative of the Kohn-Sham
potential with respect to the atomic displacements induced by
the phonon mode qqqλ with frequency ωqqqλ and is given by [52]:

∂vKS
qqqλ =

√
h̄

2ωqqqλ

∑
κα

√
1

Mκ

eλ
κα (qqq)∂κα,qqqv

KS, (7)

where eλ
κα is the αth Cartesian component of the phonon

eigenvector for an atom κ with mass Mκ . ∂κα,qqqv
KS is the lattice

periodic part of the perturbed Kohn-Sham potential expanded
to first order in the atomic displacement.

The second-order electron-phonon matrix elements 

qqqλqqq′λ′
nn′kkk

in the Debye-Waller term given by Eq. (5) are very chal-
lenging to compute [38]. To overcome this problem, one can
use the rigid-ion approximation and rewrite the Debye-Waller
term as the product of first-order electron-phonon matrix
elements [31], which can be obtained from DFPT [37,48]. The
non-rigid-ion contribution is expected to be small in extended
systems [48] and is typically neglected in the calculation of
the Debye-Waller term [52].

The nonadiabatic AHC approach described above, where
phonon frequencies are explicitly accounted for in Eq. (4),
allows us to calculate energy shifts due to zero-point renor-
malization for polar materials like PbTe [37,48,52]. In Ap-
pendix B, we present the convergence studies for the ZPR
of the direct gap with respect to the qqq-grid density and the
parameter δ. Our AHC-DFPT calculations yield apparently
converged ZPR shifts using a 48 × 48 × 48 qqq-grid and δ →
0. We present ZPR values calculated in this manner in the
rest of the paper, as well as finite temperature energy shifts
obtained using a 48 × 48 × 48 qqq grid and δ = 1 meV. These

calculations, however, do not fully capture the long-range
longitudinal optical phonon (polaronic) contribution to energy
shifts as qqq → 0. We show a detailed analysis of this contribu-
tion in Appendix C and find that an incomplete description
of this effect in our DFPT calculations introduces an error of
∼10% for the ZPR shifts of PbTe. This error in the energy
shifts due to polaronic effects decreases with temperature
down to ∼1% at 800 K. We also note that the adiabatic
approximation [i.e., neglecting phonon frequencies in Eq. (4)]
with sufficiently large values of δ (∼0.1 eV) gives comparable
values of the temperature variations for the direct gap and the
energy difference between the valence band maxima at L and
� as the nonadiabatic approach, but cannot give converged
values for their ZPRs when δ → 0 [37,48,52].

We note that the DFPT implementations of the AHC
approach are currently limited to harmonic effects on the tem-
perature renormalization of the electronic states [37,48,52]. In
contrast, anharmonic effects are taken into account in molec-
ular dynamics (MD) [29] and frozen-phonon AHC [8,54]
calculations, but the coarseness of the Brillouin zone sampling
could be a great limitation for their convergence. On the
other hand, the DFPT and frozen-phonon implementations
of the AHC approach give insight into the relative impor-
tance of the Fan-Migdal and Debye-Waller contributions to
electron-phonon coupling, as well as the relative contribution
of different phonon modes, unlike MD calculations.

III. RESULTS AND DISCUSSION

A. Electronic structure of PbTe using the local density
approximation

We first discuss the ability of the LDA calculations to
accurately describe the electronic band structure of PbTe.
The LDA without SOI reproduces the essential features of
PbTe’s band structure: the direct narrow gap at the L point
and the valence band maximum located along the � line; see
the solid black line in Fig. 1. Our previous work has shown
that the LDA excluding SOI correctly captures the ordering
of the VBM and conduction band minimum (CBM) at L, as
well as the ordering of the VBM at L and �, in contrast to
the LDA including SOI [47]. Our computed direct band gap
using the LDA excluding SOI is 0.5 eV and overestimates
those obtained from experiment (0.19 eV at 4.2 K [56,57])
and previous hybrid HSE03 functional and quasiparticle
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FIG. 1. Electronic band structure of PbTe for lattice constants at
different temperatures, calculated using the local density approxima-
tion without spin-orbit interaction, including the effect of thermal
expansion and neglecting electron-phonon interaction. The valence
band maximum at L is fixed at 0 eV. Arrows indicate the energy
shifts of the states at L and � as temperature increases.

self-consistent GW (QSGW) calculations, see Table I. The
calculated energy difference between the lowest CBM and the
second lowest CBM at L is 0.45 eV using the LDA without
SOI and underestimates the values obtained using the LDA
including SOI or higher levels of theory (the hybrid HSE03
functional, QSGW) of ∼1.2 eV [47,58,59]. The computed
energy difference between the valence band maxima at L and
� using the LDA excluding SOI is � = 0.15 eV. This value
agrees very well with the values extracted from magnetotrans-
port [24,26] and optical absorption [25] experiments ranging
from 0.1 to 0.17 eV at low temperatures (∼4 K) [23–26], and
those obtained using HSE03 and QSGW, see Table I.

On the other hand, the combination of LDA’s tendency
to underestimate the band gap and the inclusion of SOI
results in an inverted band gap in PbTe [47]. SOI causes
the valence band maximum to be repelled upward, while
the conduction band minimum is repelled downward. The
resulting band gap is underestimated to such a degree that the
topmost valence band and the bottommost conduction band

TABLE I. Direct band gap at L (Eg) and the energy of the local
maximum at � with respect to the valence band maximum at L (�)
for PbTe, calculated using the local density approximation (LDA)
without and with spin-orbit interaction (SOI), and compared to pre-
vious hybrid HSE03 functional and quasiparticle self-consistent GW
(QSGW) calculations and low temperature (∼4 K) measurements.

Eg (eV) � (eV)
Experiment 0.19 [56,57] 0.1–0.17 [23–26]

LDA without SOI 0.5 0.15
LDA with SOI −0.30 0.18
HSE03 with SOI [47] 0.23 0.16
QSGW with SOI [59] 0.29 0.21

become interchanged and mix heavily near L [47,58]. Also,
including SOI pushes the � valley upward, which becomes
the topmost valence band maximum forming an indirect band
gap with the conduction band minimum at L [47], at odds
with experimental observations. As shown in Ref. [19], the top
valence and bottom conduction bands at L of PbTe correspond
to the representations L6+ and L6−, respectively, but that order
is inverted in the LDA calculations including SOI. In the same
paper, the topmost valence band at � is denoted by �5. To
account for the correct ordering of all these states in our LDA
calculations that include SOI, we define the direct gap at L
as Eg = EL6− − EL6+ and the energy difference between the L
and � valence band maxima as � = EL6+ − E�5 . Using this
notation, we obtain a negative direct band gap of −0.3 eV and
� = 0.18 eV using the LDA including SOI. Consequently,
the band gap is substantially underestimated in the LDA
with SOI in comparison to the more accurate hybrid HSE03
functional and QSGW calculations (see Table I), while � is
described accurately.

B. Electronic structure dependence on thermal lattice expansion

The temperature dependence of the electronic structure of
PbTe due to thermal expansion is shown in Fig. 1, where
the VBM at L is fixed at 0 eV. This and all other figures
show our results obtained using the LDA without SOI unless
it is explicitly stated that the LDA with SOI is used. We
calculate the band structure at the lattice constant values for
temperatures ranging from 0 K to 800 K, or equivalently, for
the lattice constant expansion up to 1.48% with respect to
the 0 K value. Figure 1 clearly shows that thermal expansion
increases the direct gap and reduces the energy difference
between the two topmost valence band maxima. We note that
thermal expansion renormalizes the direct gap more strongly
than the difference in energies between the VBM at L and �.

C. Temperature variation of the direct gap

We apply the nonadiabatic AHC theory using DFPT-LDA
to compute the zero-point and finite-temperature renormal-
ization of the direct gap of PbTe at L. Details of calculating
the ZPR for the direct gap due to electron-phonon interaction
(EPI) are given in Appendix B. We find the direct gap ZPR
due to EPI of 19.09 meV and 21.58 meV using the LDA
excluding and including SOI, respectively. On the other hand,
the ZPR for the direct gap of PbTe due to thermal expansion
is 6.58 meV (excluding SOI) and 7.78 meV (including SOI),
which translates into the total ZPR of 25.67 meV (excluding
SOI) and 29.36 meV (including SOI).

Now we discuss the finite temperature renormalization
of the direct gap of PbTe due to both thermal expansion
and electron-phonon interaction and compare it with optical
absorption experiments [7,11–14]. The total temperature vari-
ation of the direct band gap is shown in Fig. 2. Due to the inac-
curate direct gap values obtained from LDA, we show the tem-
perature dependence of the direct gap with respect to its LDA
value, �Eg = Eg(T ) − Eg(LDA), and quantify its temperature

derivative dEg

dT . Using a linear fit for Eg with respect to T in the

range of 200–800 K, we compute dEg

dT ≈ 3.05 × 10−4 eV/K

and dEg

dT ≈ 4.35 × 10−4 eV/K excluding and including SOI,
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FIG. 2. Temperature variation of the direct band gap of PbTe
with respect to its local density approximation (LDA) value due to
both thermal expansion (TE) and electron-phonon interaction (EPI)
[solid black and dotted red lines correspond to the LDA excluding
and including spin-orbit interaction (SOI), respectively], thermal ex-
pansion excluding SOI (dash-dotted blue line) and electron-phonon
interaction excluding SOI (dashed green line). Dash-double-dotted
black line above ∼691 K illustrates the crossover from a direct
to an indirect gap between the conduction band minimum at L
and the valence band maximum at �, calculated excluding SOI.
Symbols represent the optical absorption experimental data from
Refs. [7,11–13].

respectively. These values compare very well to the recent
experimental value of dEg

dT ≈ 3.2 ± 0.1 × 10−4 eV/K [7] ob-
tained from optical absorption data up to 500 K and the
value of dEg

dT ≈ 4.2 × 10−4 eV/K (for T � 400 K) calculated
with ab initio MD [29]. We note that the experimental gap
values continue increasing at a lower rate than dEg

dT ≈ 3.2 ±
0.1 × 10−4 eV/K for temperatures above 500 K [7]. Other
values for dEg

dT from optical absorption measurements fall

in the range of dEg

dT ∼ 3.0–5.1 × 10−4 eV/K [11–14]. These
studies also report the gap saturation for temperatures above
∼500 K [11–13]. The likely reason for this nonlinear exper-
imental trend is the crossover from a direct to an indirect
band gap between the conduction band minimum at L and the
valence band maximum at �. This effect in our LDA calcu-
lations without SOI is illustrated by the dash-double-dotted
black line appearing above ∼691 K in Fig. 2. Accounting
for this crossover, we compute the temperature coefficient
for the indirect gap of ≈0.88 × 10−4 eV/K above ∼691 K
(excluding SOI) and ≈1.44 × 10−4 eV/K above ∼623 K
(including SOI).

Our calculated values of dEg

dT using both LDA with and
without SOI are within the range of experimental values, and
differ from each other by 42%. This indicates that accounting
for SOI or the correct order of states near the gap does not
affect the calculations very much. The reason for this could be
that the dominant contribution comes from states that are far
away from the gap due to their large density of states. We thus
conclude that the accuracy of the electronic band structure

TABLE II. Total and individual contributions to the temperature
coefficient of the direct gap (Eg) and the energy difference between
the valence band maxima at L and � (�) from thermal expansion
(TE) and electron-phonon interaction (EPI), calculated using the
local density approximation (LDA) excluding and including spin-
orbit interaction (SOI). These coefficients are obtained using a linear
fit for Eg and � with respect to temperature between 200 K and
800 K.

dEg

dT (×10−4 eV/K) d�

dT (×10−4 eV/K)

TE EPI TE EPI

LDA without SOI 1.12 1.93 −0.44 −1.73
LDA with SOI 1.37 2.98 −0.46 −2.43

Total Total
LDA without SOI 3.05 −2.17
LDA with SOI 4.35 −2.89

does not affect our results more than several tens of percent.
Furthermore, all physical trends discussed in this work remain
the same regardless of whether SOI is included or excluded in
the LDA calculations.

The individual contributions of thermal lattice expansion
and electron-phonon interaction to the renormalization of the
direct gap of PbTe obtained using the LDA without SOI
are also given in Fig. 2. We also summarize the individual
contributions to the temperature coefficient of Eg from thermal
expansion and electron-phonon interaction in Table II. Both
thermal expansion and EPI have a significant effect on dEg

dT ,

and their contributions to dEg

dT are both positive. These findings
are in qualitative agreement with those of a recent ab initio
MD simulation [7,29] and early empirical pseudopotential
calculations [40,41]. EPI effects on the direct gap renormal-
ization are stronger than those of thermal expansion up to
800 K.

Figure 3 illustrates the effect of electron-phonon interac-
tion on the temperature dependence of the direct gap, together
with the Fan-Migdal and Debye-Waller contributions. We find
that the Fan-Migdal term reduces the band gap as temperature
increases. The Debye-Waller contribution is similar in mag-
nitude to the Fan-Migdal term in PbTe, but it is larger and
has the opposite sign. This results in the positive value of dEg

dT
i.e. an increasing direct gap with temperature due to EPI in
the entire temperature range considered. These trends are in
accordance with the conclusions of the detailed theoretical
analysis of Ref. [31] for direct narrow-gap semiconductors.
Our results are also consistent with previous empirical pseu-
dopotential calculations in PbTe [39–41,60] that concluded
that the Debye-Waller contribution to the temperature depen-
dence of the direct band gap is significant. Therefore, the
Debye-Waller contribution to EPI and thermal expansion both
determine the positive sign of the temperature variation for the
direct gap of PbTe.

We next analyze the frequency-resolved phononic con-
tribution to the electron-phonon renormalization of the
VBM and CBM at L and identify the main contributions.
For this, we calculate the spectral function g2F (nkkk, ω) =∑

qqqλ ( ∂εnkkk
∂nqqqλ

)δ(ω − ωqqqλ) [32], where ωqqqλ is the phonon
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FIG. 3. Temperature-dependent correction of the direct band gap
in PbTe with respect to its local density approximation (LDA) value
due to electron-phonon interaction (solid black line), and the Fan-
Migdal (dotted blue line) and the Debye-Waller (dashed red line)
contributions to electron-phonon interaction. (Note the larger energy
scale for the Fan-Migdal and the Debye-Waller terms than for the
total correction.) These results are obtained using the LDA excluding
spin-orbit interaction.

frequency of the mode qqqλ, εnkkk the electron state energy, and
nqqqλ the phonon population. The spectral function g2F (nkkk, ω)
thus represents the phonon density of states weighed by
squared electron-phonon matrix elements [32,61]. We show
the spectral functions for the VBM and CBM at the L point
in Fig. 4. The spectral functions are largest for the phonon
frequencies between 3 THz and 3.5 THz, which have a domi-
nant effect on the electron-phonon induced renormalization of
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FIG. 4. Spectral function g2F (nkkk, ω) (see text for explanation)
versus phonon frequency for the conduction band minimum (solid
black line) and the valence band maximum (dashed black line) at the
L point in PbTe. The phonon density of states is also given by the
dotted red line. These results are computed using the local density
approximation excluding spin-orbit interaction.
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FIG. 5. Temperature variation of the energy difference between
the valence band maxima at L and � for PbTe due to both thermal
expansion (TE) and electron-phonon interaction (EPI) (solid black
and dotted red lines correspond to the local density approxima-
tion excluding and including spin-orbit interaction (SOI), respec-
tively), thermal expansion excluding SOI (dash-dotted blue line)
and electron-phonon interaction excluding SOI (dashed green line).
Green squares represent the ab-initio molecular dynamics results
from Ref. [7], while dash-double-dotted magenta line shows the re-
sult quoted in Ref. [26] and deduced from the temperature saturation
of the fundamental gap in optical absorption measurements [11,12].

the direct gap. Comparing the peaks of the spectral functions
with the phonon density of states, we find that the largest
contribution to the gap changes due to EPI comes from the
high-frequency optical phonons.

D. Temperature variation of the topmost valence band
maxima at L and �

We next use the nonadiabatic AHC theory to calculate the
zero-point and finite-temperature renormalization for the en-
ergy difference � between the valence band maxima at L and
� in PbTe. We find the ZPR of � due to EPI of −8.72 meV
and −9.05 meV using the LDA excluding and including
SOI, respectively. The computed ZPR of � due to thermal
expansion is −2.37 meV (excluding SOI) and −2.40 meV
(including SOI), resulting in the total ZPR of −11.09 meV
(excluding SOI) and −11.45 meV (including SOI).

The temperature dependence of the energy difference �

is illustrated in Fig. 5. For comparison, we included the
corresponding results of an ab-initio MD calculation [7] in
the same figure. Experimental data for �(T ) is scarce, and
only infrared reflectivity experiments in Ref. [25] reported the
� value of 0.08 eV at 300 K. Most of the literature quotes
the temperature coefficient of d�

dT = −4 × 10−4 eV/K [26],
which was deduced from the temperature saturation of the
fundamental gap at ∼450 K observed in optical absorption
measurements [11,12], assuming that this effect indicates
the alignment of the VBM at L and �. However, a few
recent analyses of the optical and Hall mobility data [7,62]
questioned this result, and concluded that the “convergence”
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FIG. 6. Temperature-dependent correction of the energy differ-
ence between the valence band maxima at L and � in PbTe due
to electron-phonon interaction (solid black line) and the Fan-Migdal
(dotted blue line) and the Debye-Waller (dashed red line) contribu-
tions to electron-phonon interaction. These results are obtained using
the local density approximation excluding spin-orbit interaction.

of the VBM at L and � may occur at significantly larger
temperatures. We obtain the temperature coefficient of d�

dT ≈
−2.17 × 10−4 eV/K and d�

dT ≈ −2.80 × 10−4 eV/K using
the LDA excluding and including SOI, respectively. These
two values differ by ∼30%, which again confirms that ac-
counting for SOI or the correct order of the states near the gap
does not affect the calculations much. We find that the valence
band maxima at L and � “converge” at ∼691 K (without
SOI) and ∼623 K (with SOI). Our results are consistent
with those obtained using ab initio MD predicting that the
“band convergence” occurs at ∼700 K [7], while an earlier
MD calculation obtained the “convergence” temperature of
∼400 K [29].

Figure 5 also shows the individual effects of thermal expan-
sion and electron-phonon interaction on the energy difference
� between the VBM at L and � computed using the LDA
without SOI. The individual contributions to the temperature
coefficient of � from thermal expansion and electron-phonon
interaction are also given in Table II. The contributions of
both thermal expansion and EPI to d�

dT are negative, i.e., �

decreases with temperature. The EPI contribution to d�
dT is

stronger than the thermal expansion contribution in the entire
temperature range, similarly as for the direct gap.

We next analyze the effect of the Fan-Migdal and the
Debye-Waller contributions to EPI on the temperature depen-
dence of �, see Fig. 6. The Fan-Migdal term decreases � with
increasing temperature. The Debye-Waller term has a similar
magnitude as the Fan-Migdal term, but it is smaller and has the
opposite sign. The importance of including the Fan-Migdal
term in determining the sign of d�

dT was also deduced in the
early theoretical work of Ref. [41]. Consequently, in contrast
to the direct gap, the Fan-Migdal contribution to EPI and
thermal expansion produce the negative sign for the temper-
ature variation of the energy difference between the VBM at
L and �.
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FIG. 7. Spectral function g2F (nkkk, ω) (see text for explanation)
versus phonon frequency for the valence band maximum at � (solid
black line) and L (dashed black line) in PbTe. The phonon density
of states is also given by the dotted red line. These results are
computed using the local density approximation excluding spin-orbit
interaction.

Finally, we identify the dominant phonons that contribute
to the electron-phonon renormalization of �. Figure 7 shows
the spectral function g2F (nkkk, ω) for the VBM at L and �.
High-frequency optical phonons above 3 THz give a large
contribution to the electron-phonon renormalization of the
VBM at L and �, similarly as for the direct gap. However,
acoustic phonons also contribute considerably to the EPI
renormalization for the VBM at �, in contrast to the EPI
renormalization of the direct gap.

IV. CONCLUSIONS AND SUMMARY

We have investigated the temperature variation of the direct
band gap and the energy difference between the L and �

valence band maxima of PbTe from first principles. We have
analyzed the effect of electron-phonon interaction on the
electronic structure renormalization using the nonadiabatic
Allen-Heine-Cardona formalism and density functional per-
turbation theory, as well as the renormalization induced by
thermal expansion using density functional theory. We obtain
the temperature dependence of the direct gap of PbTe that is in
very good agreement with that observed experimentally. We
predict that the valence band maxima at L and � become
aligned at ∼600–700 K. These parameters may be useful
for building accurate models of the electronic bands and
thermoelectric transport properties of PbTe. We find that both
thermal expansion and electron-phonon interaction have a
substantial influence on these temperature variations. Thermal
expansion and the Debye-Waller (Fan-Migdal) contribution to
electron-phonon interaction determine the sign of the temper-
ature changes of the direct gap (the energy difference between
the L and � valence band maxima). High-frequency opti-
cal phonons are mostly responsible for the electron-phonon
induced renormalization of the direct gap, whereas acoustic
phonons also contribute to the “convergence” of the valence
band maxima at L and �.
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APPENDIX A: LINEAR THERMAL EXPANSION
COEFFICIENT, LATTICE CONSTANT, AND PHONON

DISPERSION OF PbTe

Figure 8 shows our calculated linear thermal expansion and
the lattice constant of PbTe as a function of temperature using
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FIG. 8. (a) Calculated (solid black line) and experimental [63,64]
(red dots) linear thermal expansion of PbTe. (b) Calculated (solid
black line) and experimental [65] (red squares) temperature-
dependent lattice constant of PbTe divided by its value at 100 K. The
local density approximation without spin-orbit interaction is used in
these calculations.
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FIG. 9. Phonon dispersion of PbTe calculated using density
functional perturbation theory and the local density approximation
excluding (solid black line) and including (dotted blue line) spin-
orbit interaction. Orange circles indicate the frequency of the zone
center transverse optical mode when spin-orbit interaction is in-
cluded. Experimental data from inelastic neutron scattering [64] (red
squares) and optical spectroscopy [66] (magenta diamonds and green
triangles) are also shown.

the LDA without SOI. The computed values agree very well
with experiments [63–65]. The LDA lattice constant is 6.348
Å. When the zero point renormalization is taken into account,
we obtain the lattice constant of 6.355 Å at 0 K. Our calcu-
lated lattice constant at 300 K is 6.386 Å, which compares
fairly well with the experimental values of 6.46179 Å [65]
and 6.462 Å [67]. The lattice constant obtained using the
LDA including SOI does not differ much from the one with-
out SOI (6.339 Å, ∼0.14% smaller than the one without
SOI).

In Fig. 9, we plot the phonon dispersion of PbTe cal-
culated using DFPT and LDA and compare it with the ex-
perimental data from inelastic neutron scattering (INS) at
297 K [64] and optical spectroscopy at 5 K and 300 K [66].
The phonon band structure calculated without SOI agrees very
well with that measured with INS. The TO mode frequency
is closer to the optical measurements at 5 K when SOI is
accounted for. This softening of the TO mode due to SOI
was also observed in the previous DFPT-LDA calculations of
Ref. [68] and can be explained by the gap inversion and a
resulting strong modification of the electron-phonon coupling
between valence and conduction bands [69]. Other than the
TO mode close to the zone center, the phonon band structures
calculated using the LDA with and without SOI are very
similar.

APPENDIX B: CONVERGENCE STUDY FOR THE
ZERO-POINT RENORMALIZATION OF THE DIRECT GAP

DUE TO ELECTRON-PHONON INTERACTION

Nonadiabatic effects on the temperature dependence of the
electronic band structure can be accounted for by keeping the
phonon frequencies ωqqqλ in the Fan-Migdal self-energy given
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FIG. 10. Convergence study for the zero-point renormalization
(ZPR) of the direct band gap of PbTe with respect to the qqq-point grid
density (Nqqq is the total number of sampled qqq points). These results are
computed using the local density approximation excluding spin-orbit
interaction.

by Eq. (4). The convergence study for the ZPR of the direct
gap at L with respect to the qqq-point grid density calculated
using the nonadiabatic AHC approach is given in Fig. 10.
The direct gap converges linearly with 1/N1/3

qqq , where Nqqq is
the total number of sampled qqq points. The results appear
nearly converged for the qqq-grid densities of 36 × 36 × 36
(1/N1/3

qqq = 0.0278) and 48 × 48 × 48 (1/N1/3
qqq = 0.0208) and

small δ values (δ � 10 meV). Nevertheless, the long-range
(qqq → 0) longitudinal optical (LO) phonon contribution to the
band structure renormalization is not fully accounted for in
these calculations (see Appendix C). In Fig. 11, we show
the convergence study with respect to δ for the valence band
(Lv), conduction band (Lc), and direct gap at L and the qqq
grid of 48 × 48 × 48. Using a Lorentzian fit for δ → 0 as
discussed in Ref. [37], we calculate the direct gap ZPR of
19.09 meV using the LDA without SOI. We have checked
this result including SOI with the qqq grid of 48 × 48 × 48 and
δ = 1 meV, and we obtain the ZPR value for the direct gap of
−21.58 meV.

APPENDIX C: POLARONIC CONTRIBUTION TO THE
BAND STRUCTURE RENORMALIZATION

It has been pointed out that the densities of commonly used
qqq grids in nonadiabatic AHC-DFPT calculations (of the order
of 48 × 48 × 48) may not be sufficiently large to accurately
describe the long-range LO phonon (polaronic) contribution
to the band structure renormalization as qqq → 0 [70]. We
estimate this error in our calculations on a 48 × 48 × 48 qqq grid
in the following manner: We first calculate the polaronic shift
on very dense qqq grids using the effective mass approximation
and the Fröhlich model for electron-LO phonon coupling
(similarly to Ref. [70]). We then subtract the corresponding
polaronic shift obtained using the 48 × 48 × 48 qqq grid we
used in the DFPT calculation from the converged shift on a
very dense grid.

The polaronic shift expression we used in the calculations
above is a generalization of Eq. (2) in Ref. [70] for the cases
where the relevant electronic band states are described by two
or three effective masses (CBM and VBM of PbTe at L and
VBM at �, respectively). For example, the polaronic shift of
the conduction band at L can be given as:

�ECBM
L = − 1

Nqqq

∑
qqq

h̄e2ωLO

2V ε0

(
1

ε∞
− 1

εs

)
1

q2

×
[

nLO(T ) + 1

h̄2q2
‖/2m∗

‖ + h̄2q2
⊥/2m∗

⊥ + h̄ωLO

+ nLO(T )

h̄2q2
‖/2m∗

‖ + h̄2q2
⊥/2m∗

⊥ − h̄ωLO

]
, (C1)

where ωLO is the LO phonon frequency (approximately taken
as a constant for different qqq), ε0 the vacuum permittivity, ε∞
and εs the high-frequency and static dielectric constant, h̄ the
reduced Planck constant, e the electron charge, and V the unit
cell volume. nLO(T ) is the Bose-Einstein occupation for the
LO phonons. q‖ and q⊥ are the projections of the qqq vector
on the L-� and L-W directions, which are parallel to the
directions of parallel and perpendicular effective masses at
L, m∗

‖ , and m∗
⊥. All these parameters were obtained from our

DFT and DFPT calculations [47,71]. Our calculated effective
masses of the � valley in the units of free-electron mass
along the three principal axes [110], [11̄0], and [001] are:
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FIG. 11. Convergence study for the zero-point renormalization (ZPR) at the L point of: (a) the valence band (Lv), (b) the conduction band
(Lc), and (c) the direct gap (Eg) with respect to the parameter δ for the qqq-point grid of 48 × 48 × 48. The Lorentzian fit for δ → 0 for the ZPR
of the direct gap is shown by solid red line. The local density approximation without spin-orbit interaction is used in these calculations.
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FIG. 12. Convergence of the polaronic shift for the direct gap
at L up to 800 K with respect to the number of qqq points. Black
circles represent the polaronic shift calculated on a 48 × 48 × 48 qqq
grid used in our density functional perturbation theory (DFPT) cal-
culations. Inset: Energy difference between the converged polaronic
shift of the direct gap (solid black line in the main figure) and the one
obtained using the 48 × 48 × 48 DFPT qqq grid.

m∗
‖ = 0.178, m∗

⊥xy = 0.046, and m∗
⊥z = 3.788 and agree well

with the corresponding QSGW values [59].

The singularity in the second term of Eq. (C1) is computed
by principal parts integration. To do that, we center the
qqq grids with respect to the pole of the integrand. Figure 12
shows the convergence of the polaronic shift for the direct
gap at L of PbTe with respect to the qqq-grid density. We
find that very dense qqq grids with ∼1010 points are needed
to converge the direct gap values. Similarly, we find that
it is necessary to use ∼1012 qqq points to converge the en-
ergy difference � between the VBM at L and � for PbTe.
We note that the principal part approach on a fine qqq grid
presented here might not be the only way to converge the
polaronic contribution to energy shifts. An analytic solution
of Eq. (C1) may allow an accurate answer with a coarser
qqq grid as done in Ref. [70] for the isotropic effective mass
case.

In addition to the converged polaronic shift for the direct
gap at L, Fig. 12 also shows the corresponding shift for the
48 × 48 × 48 DFPT qqq grid and their difference in the inset,
which gives our estimated errors. These errors for the direct
gap and those for the energy difference between the VBM
at L and � are relatively small compared to the total shifts
calculated on the 48 × 48 × 48 DFPT qqq grid and given in
Figs. 2 and 5, respectively. For the direct gap at L, the errors
range from 12.9% at 0 K to 0.32% at 800 K. For the energy
difference between the VBM at L and �, they range from
10.74% at 0 K to 1.93% at 800 K.
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