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Phase field parameters for battery compounds from first-principles calculations
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In this work, we present and apply schemes to determine from first-principles calculations the relevant
effective parameters used in phase field theory simulations of battery compounds. In particular, we derive that a
consistent free energy density can be obtained by mean-field sampling, which is especially suited for materials
with different configurations on a lattice, such as alloys or Li intercalation batteries. In addition, it is demonstrated
that mean-field sampling can be performed very effectively with the use of special quasi random structures and
that experimentally determined free energy density parameters for LiFePO4 are reproduced by density functional
theory calculations. The additional computation of interfacial and strain energy parameters allows us to present
a consistent phase field parametrization of Li2FeSiO4 without relying on experimental data.
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I. INTRODUCTION

The thermodynamics of many solids can be understood
from lattice based models such as the Ising model or its
generalization in form of the cluster expansion [1]. Such
lattice-based models are used more and more in material
science to simulate relevant materials properties such as, e.g.,
the phase diagram of alloys or Li batteries, as they allow effi-
cient sampling of configuration space and numerical solution
of statistical mechanics integrals [2–6]. On the other hand,
the time- and length scales of many relevant phenomena,
as, e.g., microstructure evolution or nucleation and growth,
are out of reach for atomistic sampling methods, such that
coarse-grained continuum models as, e.g., phase field models
[7–12] are necessary.

In the case of Li-ion batteries, many important properties
like phase stability, open circuit voltages or migration barriers
and equilibrium (dis-)charge profiles can be understood from
first-principles calculations [13,14]. However, several aspects
of kinetics are less understood, especially for phase-separating
intercalation materials, where metastable phases and strain
effects can become important [15–22]. In this case, it is neces-
sary to include knowledge from continuum scale simulations,
e.g., via phase field models [11,23–26] in order to get a full
understanding of electrode behavior which depends on single
particle properties. Furthermore, this also allows to address
the collective behavior of the many interconnected particles
which the electrode consists of [4,27–30].

A central part of phase field models is the energy density
functional, a very basic one being the Cahn-Hilliard energy
functional [31,32], which defines the free energy as

�[x(r)] =
∫

V
[φ(x(r), T ) + κ (∇x)2]ρdV. (1)

In the case of a phase-separating material with stable low-
and high-concentration phases, ρ would correspond to a site

density, x(r) to a normalized, local concentration, φ(x(r), T )
to the (nonconvex) local free energy density and κ (∇x)2

to gradient corrections, which contribute, e.g., to interface
energies. It can be viewed as local density plus gradient
approximation within a classical density functional theory
framework [33]. Many important properties, e.g., the spinodal
points, depend on the nonconvex shape of φ(x). In the case
of Li batteries, the basic functional of Eq. (1) is typically
augmented with anisotropic interfacial terms and strain and
surfaces contributions [23–26,34–39].

Furthermore, it has been realized that an important step
towards making phase field models predictive is to use con-
sistent parameter sets, which is typically done by combining
experimental data [23–26] or CALPHAD [40,41] modeling
results [42–46] with theoretical insights, e.g., for interface or
elastic terms. To our knowledge, a consistent and efficient
approach to derive phase field parameters from pure ab initio
calculations is still missing.

In this work, we propose and test three consistent
construction schemes for the non-convex homogeneous
free energy density φ(x) of phase-separating compounds
based on ab-initio calculations and mean-field theory. The
schemes are efficient and generally applicable also in other
fields of material science, e.g., for approximating phase
diagrams.

Experimentally determined continuum parameters for
LiFePO4 (LFP) are reproduced purely based on density func-
tional theory (DFT) calculations. Afterwards, we determine
the corresponding parameters for Pmn21 Li2FeSiO4 (LFS)—
a cheap and promising cathode material for future Li ion
batteries [47–52]. To our knowledge, there are neither theoret-
ical nor experimental continuum parameters available to date
for this material. Therefore, we also determine the interface
energy and strain energy parameters, that are typically used
in phase field simulations of phase-separating Li intercalation
compounds from DFT calculations for LFS.
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With this study we try to contribute to the understanding of
phase-separating battery materials in particular, as it will open
the pathway towards understanding the different behavior of
Li2FeSiO4 and LiFePO4 from a continuum scale perspective.
The methodological recipe for the determination of phase field
parameters, however, is general and can be applied equally,
e.g., to alloy systems.

II. DENSITY FUNCTIONAL THEORY CALCULATIONS

This paper relies on density functional theory (DFT) cal-
culations of bulk, defect and interface energies as well as of
elastic properties of LixFeSiO4 (x = 0, . . . , 2). Total energies
are readily obtained by spin-polarized calculations using the
periodic DFT code VASP [53,54] and projector augmented-
wave (PAW) pseudopotentials [55,56] with the VASP standards
for Li, Fe, and Si and the soft variant for O atoms to reduce
the necessary plane-wave cutoff to 400 eV. Brillouin zone
integrations were performed on a 3 × 3 × 3 Monkhorst-Pack
k-point grid for the 2 × 2 × 2 bulk supercells [16 formular
units (f.u.)], similar as in earlier publications [52,57], us-
ing Gaussian smearing. As exchange correlation functional,
we used the generalized gradient approximation (GGA) of
Perdew-Burke-Ernzerhof (PBE) [58] with Hubbard+U cor-
rection for the Fe 3d states in the rotationally invariant form
[59]. The effective U parameter was set to 4 eV, consistent
with previous studies [51,52,57,60,61].

Convergence tests yielded an accuracy of ≈3 meV/f.u.
for relative energies. The magnetic orientations of the high
spin Fe atoms do not play a major role for this material,
which is why we always initialize ferromagnetic-like polar-
ized moments. Geometric relaxations were performed until
forces were smaller than 0.01 eV/Å. k-point grids were scaled
appropriately for differently sized computational cells, e.g.,
for interface, surface or strain calculations.

Interface energies between x = 0 and 1 phases were deter-
mined by performing bulk calculations on periodic solid-solid
heterostructures. We chose heterostructures for low index
interfaces with a typical cell size of 6 Å × 5 Å × 40 Å,
corresponding to two 20-Å-thick single-phase regions as
previous surface energy calculations showed that even such
drastic changes in the chemical environment as experienced
at surfaces decay approx. ≈7 Å below the surface. In order to
treat all interface directions on the same footing, we chose to
construct heterostructures starting from the primitive unit cells
of the materials Li1FeSiO4 and Li2FeSiO4 at the common
lattice constants of Li2FeSiO4. The construction scheme for
interfaces and the corrections necessary to treat strain relax-
ation effects are discussed in the Supplemental Material [63].
We estimate the accuracy of interface energies of our approach

to be ≈1 meV/Å
2
.

III. METHODOLOGY AND RESULTS

Li extraction of the first Li ion per formula unit (f.u.) from
Pmn21 Li2FeSiO4 (LFS) occurs via a two-phase reaction,
related to the growth of a Li poor phase at the cost of a Li rich
phase [47,48], where they correspond to the stoichiometric
compounds Li2FeSiO4 and Li1FeSiO4 at 0 K. Deintercalation
of the second Li per f.u., however, implies extraction voltages
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FIG. 1. Formation energies Eform for 70 configurations. The val-
ues are normalized to the formation enthalpies of Li2FeSiO4 and
FeSiO4. The convex hull is drawn in red. Relative volumes V/Vx=2

are visualized according to the color scale at the right-hand side.
Green data points exhibit a volume decrease.

beyond the stability window of common electrolytes and
structural instabilities [61,62].

Therefore we focus here on the extraction of the first Li per
f.u.. We relate the two stable 0 K Pmn21 Li1+xFeSiO4 phases
to Li concentrations x = 0, 1 on a sublattice.

On a continuum level, phase separation is characterized
by a nonconvex homogeneous bulk free energy f (x, T ) or
the connected generalized Landau free energy φ(x, T, μ) =
f (x, T ) − μx, where μ is the imposed Li chemical potential,
which can be controlled by the external voltage. (Meta-)stable
states are characterized by the minima of φ with respect to x:

∂φ(x, T, μ)

∂x
= 0. (2)

A. Relevant degrees of freedom

In general, the free energy can be derived from the partition
function of the systems by appropriate summation over states
α. In the case of Li intercalation batteries and other systems
that can be mapped onto a lattice the relevant degrees of
freedom are the occupancies of lattice sites. It has been shown
for LiFePO4 that the electronic degrees of freedom, in form of
localized small polarons [64,65], need to be included to derive
an accurate phase diagram and solubility limits [66]. In order
to test whether localized polarons exist as well in LFS, we
analysed the properties of Fe atoms in LFS.

A 2 × 1 × 2 supercell containing eight formula units (�
64 atoms, � 16 Li atoms) was studied and Li ions randomly
removed for different overall Li concentrations.

The resulting formation energies Eform are plotted in Fig. 1,
relative to the formation enthalpies of Li2FeSiO4 (x = 2)
and FeSiO4 (x = 0). The convex hull (drawn in red) only
comprises the three ground states at x = 2, 1, and 0, which
is indicative for the phase separating properties of LFS. In
addition to the stabilities, the illustration also allows to ana-
lyze the relative volume changes upon delithiation, which is
coded into the color. Between x = 2 and x = 1 the relative
volume change stays limited to below ≈2%, for smaller
concentrations, however, considerable volume increase can be
observed.

055401-2



PHASE FIELD PARAMETERS FOR BATTERY COMPOUNDS … PHYSICAL REVIEW MATERIALS 3, 055401 (2019)

TABLE I. Properties of Fe atoms determined from the stable
ground state structures of LixFeSiO4 at x = 2, 1, 0. As all Fe atoms
are equivalent in these structures the standard deviations are smaller
than 10−5, thus not measurable on the presented scale.

x oxidation 3d charge mag. moment Fe-O bond length
state (e) (μB) (Å)

2 Fe2+ 6.097 3.718 2.045
1 Fe3+ 5.854 4.216 1.903
0 Fe4+ 5.938 3.786 1.822

We studied the properties of the Fe species in all configu-
rations by analyzing the integrated projected valence charge
density of Fe 3d states, Fe magnetic moments and the average
Fe-O bond length of the Fe-O tetrahedra. The existence of
integer oxidation states and localized polaronic states should
be reflected in discrete, noncontinuous changes in these prop-
erties. In Table I, we have listed properties of the three stable
groundstate structures with assumed oxidation states 2+, 3+,
and 4+. An important property of the three ground states in
the convex hull is the equivalence of all Fe atoms which makes
the standard deviations for charge, magnetic moment and
bond length negligibly small (<10−5). The Fe ion properties
are plotted for the whole dataset in Fig. 2. The two states
Fe2+ and Fe3+ form clearly separated clusters. However, the
Fe3+ cluster is connected to the Fe4+ state. This confirms that
only Fe2+ and Fe3+ are present for x = 1, . . . , 2, however, for
x < 1, intermediate states appear (see Fig. 2).

As a result, Fe2+ and Fe3+ states can be assigned unam-
bigously using a bond-length based classifier (threshold 1.97
Å), where oxidation states 3+ are obtained for smaller Fe-O
bond lengths and 2+ for larger ones. In this case, the number
of Fe3+ ions is found to correspond exactly to the number of
removed Li (see Fig. 3).

FIG. 2. Fe charge, magnetic moment and Fe-O bond-lengths for
all analyzed Fe atoms. The bars are color-coded according to the
bond length and semitransparent to visualize the density. The arrows
indicate 2+, 3+, and 4+ states.
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FIG. 3. Number of Fe2+ and Fe3+ ions for concentrations x =
1, . . . , 2. A bond-length-based classifier was used separating the both
oxidation states at a critical Fe-O distance of 1.97 Å.

B. Continuum free energy construction

As in the CALPHAD approach [40,41] and other semiem-
pirical construction schemes of free energies [67], we use
an ideal-mixing-like entropy part for the homogeneous free
energy. The findings presented above indicate, however, that
also the configurational degrees of freedom for Fe2+ and Fe3+

(small polarons) need to be taken into account appropriately
for LFS. This suggests to construct a homogeneous bulk free
energy expression by doubling the configurational entropy
contributions per f.u. for Li1+xFeSiO4, x ∈ [0, 1] via

f (x, T ) = u(x) + 2kBT [x ln(x) + (1 − x) ln(1 − x)]. (3)

Taking the 0-K equilibrium Li chemical potential μeq as a
reference such that μ = μeq + δμ the generalized free energy
φ leads to

φ(x, T, δμ) = ũ(x) − δμx

+ 2kBT [x ln(x) + (1 − x) ln(1 − x)], (4)

where ũ corresponds to the homogeneous bulk internal energy
above hull. We will restrict ourselves to the following polyno-
mial expression for ũ:

ũ(x) = −(Ēd + δ)x(x − 1) + δ

2
x(x3 − 1). (5)

This expression ensures that ũ(0) = ũ(1) = 0 at the equi-
librium chemical potential at 0 K is fulfilled. Note that most
phase field theory simulations rely on an even simpler expres-
sion for the internal energy with δ = 0 in Eq. (5). We have
introduced the additional term with δ to allow for different
absolute slopes of ũ(x) at x = 0 and 1, as motivated in the
next paragraph.

We note in passing that the real decomposition in inter-
nal and entropic contributions of the free energy obtained
from appropriate thermodynamic averages might be rather
different than given by the semiempirical formula in Eq. (3).
The general use of this type of expression in phase field
theory indicates, however, that an corresponding construction
protocol might be of interest. This is in particular true, as
the nonconvex nature of f (x, T ) for phase-separating mate-
rials cannot be obtained from free energy sampling, as size-
converged, free energy sampling leads necessarily to convex
free energy landscapes (phase separated states). Here, we
propose three different construction schemes of ũ, consistent
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with the expression (4): (i) is rather empirical but instructive,
(ii) and (iii) are computationally more expensive but formally
better defined as they provide the exact mean-field free energy.
Descriptions are given specifically for Li intercalation mate-
rials, the translation to the field of alloys and related lattice
systems is, however, straight-forward.

(i) Defect energies. The first construction scheme for ũ in
Eq. (5) is based on the fact that the change in ũ(x) for small
concentration deviations ε from x = 0 and 1 is related to a
concentration ε of “defects” where E0

d is the defect energy of
a Li interstitial that occupies an empty sublattice sites close to
x = 0 and E1

d the Li vacancies energy within the x = 1 phase,
respectively. Thus the parameters of Eq. (5) can be related to

these defect energies, namely Ēd = E0
d +E1

d
2 and δ = E0

d − E1
d

for 0-K defect energies at the equilibrium chemical potential
μeq.

(ii)+(iii) Homogeneous sampling. Equation (4) can be de-
rived more formally based on mean-field theory. We consider
only the configurational degrees of freedom on the sublattice
for potential Li sites. In this case, any configuration σ can
be defined by the site occupancy variables σi with values
σi = 0 (unoccupied) and 1 (occupied) for site i. The internal
energy U (σ ) is a function of the configuration σ and could,
e.g., be expressed by a cluster expansion.

The free energy for such a Hamiltonian on a lattice can be
determined analytically within mean-field theory, e.g., using
the ideas of the Bragg-Williams method [68,69] for arbitrary
internal energy U (σ). It is obtained by sampling the system
with uncorrelated site occupancy probabilities px according
to

px(σi ) =
{

1 − x for σi = 0
x for σi = 1 , (6)

px(σ) =
∏

i

px(σi ), (7)

〈Ô〉x =
∑

σ

px(σ)O(σ). (8)

Here, O(σ) represents any operator, or observable, and 〈Ô〉x is
the corresponding mean-field thermodynamic average given
an average concentration x. The mean-field Landau free en-
ergy φ(x, T, δμ) per site is given by

φ(x, T, δμ) = 1

N
〈U 〉x − δμ〈σ̂i〉x − T

N
〈S〉x. (9)

The probabilities as defined in Eq. (7) can be thought
of as a trial grand canonical density matrix and equilibrium
solutions found by minimization of the parametric Landau
free energy per site φ(x, T, δμ) with respect to x, in line with
Eq. (2).

The average Li concentration per site is 〈σ̂i〉x = 1 · px(σi =
1) = x. The resulting configurational entropy per site i is
given by

〈s〉x = 〈S〉x

N
= −kB

N
〈ln

∏
i

p̂i〉x = −kB〈ln pi〉x

→ 〈s〉x = −kB[x ln(x) + (1 − x) ln(1 − x)]. (10)

It corresponds to the entropy terms of Eq. (4), when assuming
in addition independent polaronic degrees of freedom with
same x.

The equivalence of Eqs. (9) and (4) proves that the ideal
mixing entropy should be used in combination with the mean-
field averaged internal energy to obtain the exact mean-field
approximation to the system under study. The long history
and reliability of mean-field theories in physics indicates to
us that this is the most straight forward way to derive the
homogeneous free energy for phase field theories. In partic-
ular, no artificial length scales for determining averages at
concentration x are introduced, as the average 〈ũ〉x = 〈U 〉x

N is
purely based on the mean-field statistics, as defined in Eq. (8).

The internal energy average for a finite system with N
potential Li lattice sites is given by

〈ũ〉x = 1

N

∑
σ

px(σ)U (σ) (11)

=
N∑

k=0

∑
(
∑

σi=k)

xk (1 − x)N−k U (σ)

N
(12)

=
N∑

k=0

W (k, N, x) · 〈ũ〉(k/N ), (13)

〈ũ〉(k/N ) = average at a concentration k/N, (14)

W (k, N, x) =
(

N

k

)
· xk (1 − x)N−k . (15)

For N → ∞ : 〈ũ〉x → 〈ũ〉(k/N=x). Therefore, in the limit of
infinite simulation cell size, the average internal energy 〈ũ〉x

approaches the trivial average of the internal energy over all
states with global concentration x. All of these states have
equal statistical weight. It should be stressed that the mean-
field average is a nonthermodynamic average, e.g., low lying
energetic states have no increased statistical weight due to a
Boltzmann factor.

We test below two approaches (ii) and (iii) to calculate 〈ũ〉x.
In case (ii), we sample configuration space using the statistics
given by formulas (13)–(15) and sampling within a 2 × 2 × 2
supercell with 16 f.u.. In case (iii), we sample configuration
space by the use of special quasi random structures (SQS)
[70,71]. SQS are characterized by the exact properties given
in Eqs. (6) and (7). Although used in many applications,
to the best of our knowledge there are no publications that
state explicitely that all quantities that are averaged using
special quasi random structures are indeed averaged using the
exact statistics of mean-field theory. Potential discrepancies
in practice are due to imperfect sampling statistics with using
a single SQS, that can only reproduce correct statistics for a
limited number of interaction motives.

Having these limits of accuracy in mind, sampling and
averaging the internal energy [Eqs. (13)–(15)] can as well be
performed by evaluation of the energy of a representative SQS
structure at x.

We start with construction scheme (i). In order to un-
derstand its accuracy we applied it first to LiFePO4, the
widely studied drosophila of phase separation, which allows
a comparison to experimental, as well as to theoretical data.
We determined defect energies within a 2 × 2 × 1 supercell,

055401-4



PHASE FIELD PARAMETERS FOR BATTERY COMPOUNDS … PHYSICAL REVIEW MATERIALS 3, 055401 (2019)

TABLE II. DFT derived open circuit voltages and internal energy
parameters / defect energies Ēd and δ (see text) for LFP. Solubility
limits are derived from the free energy and are in perfect agreement
with experimental values. The phase field theory parameters Ēd of
Ref. [39] were determined by a fit to experiments. �μG is the
estimated hysteretic gap as determined from the spinodal points of
the constructed free energy.

LFP References

μeq vs Li(m) (eV) −3.410 −3.47 [60]
Ēd , δ (eV) 0.174, −0.002 0.183 [26,39]
solubility limits (%) 4.6, 95.6 3.2, 96.2 [73]
�μG (eV) 0.066 -

allowing atomic coordinates and the cell shape to relax while
using the equivalent parameter set as within the materials
project database [72]. As explained, the defect energies E0

d
and E1

d are the energy of a single Li atom in the otherwise
empty sublattice and the vacancy formation energy in the
completely filled lattice at the equilibrium Li chemical poten-
tial μeq. As an example, E0

d is calculated via

E0
d = EDFT(N (Li) = 1) − EDFT(N (Li) = 0) − μeq. (16)

The results are presented in Table II. They allow direct
determination of the free energy [Eq. (3) and (5)] and of the
phase diagram of LFP by the common tangent construction.
Indeed we find practically equivalent phase diagrams for LFP
to the ones obtained by much more elaborate techniques or
as in experiment. As an example, solubility limits at room
temperature are in very good agreement with experiments
(see Table II). Furthermore, the term Ēd corresponds to the
solid solution parameter used in phase field theory (as δ ≈ 0)
models. With the defect energy method we find Ēd =
0.174 eV, which agrees well with the commonly used phase
field parameter of 0.183 eV, although the phase field theory
parameters were determined by a fit to experiment [26,39].
These results indicate that our construction scheme yields
reasonable homogeneous free energy values and is indeed a
possible way for determining phase field parameters directly
from rather simple ab-initio calculations. Other phase field
simulations use slightly different values, which arises from
the neglect of polaronic entropy effects in their model free
energy [23].

For LFS, formation energies for interstitials and vacancies
were calculated within a 2 × 2 × 2 cell at μeq, allowing
atomic coordinates and the cell shape to relax. We estimated
the finite size errors to be of ≈20 meV which we ignore
here. For construction schemes (ii) and (iii), we calculated the
energies above hull for random structures in the same super-
cell. Averaged internal energies [Eq. (14)] were determined
by averaging at concentrations k/N (k = 1, . . . , 15, N = 16)
before constructing the homogeneous MFT average according
to Eq. (13) for intermediate concentrations x. The results are
plotted in the upper part of Fig. 4, together with a fit of Eq. (5).
The grey data points correspond to energies of randomly
created structures, the green circles correspond to averages
over the random structures [Eq. (14)] and the black solid line
corresponds to the MFT average according to Eq. (13). The

FIG. 4. Homogeneous sampling of the internal energy. (Top)
Sampling according to approach (ii). Dark circles correspond to
energies of individual random structures. Green circles correspond to
averages over the random structures [Eq. (14)]. The black solid line
corresponds to the MFT average according to Eq. (13), the red dashed
line a fit of Eq. (5). (Bottom) Sampling according to approach (iii)
using special quasi random structures in 2 × 2 × 2 and in 3 × 3 × 3
supercells, together with a fit and the MFT average determined in
method (ii).

minute difference between the MFT average and the green
datapoints suggests that the cell size is already close to the
limiting value N → ∞ where they are identical. We also
want to point out that the black line is not a fit, but that the
interpolation arises naturally from Eq. (13).

In addition, optimized SQS were constructed with the
mcsqs tool of the ATAT software package [71,74–78] for
concentrations x = 0.25, 0.50, 0.75 within the 2 × 2 × 2 su-
percell and for concentrations x = 1/6, 2/6, 4/6, 5/6 within
a 3 × 3 × 3 supercell. The SQS were obtained by optimizing
the correlation function match for pair, triple, and quadruple
motives with a spatial extent of 7, 6, and 6 Å, respectively. The
use of the bigger supercell was necessary to reduce correlation
function mismatch for intermediate x. A perfect match was
only obtained for x = 0.5. The resulting SQS energies are
plotted in the lower part of Fig. 4 including the fit of Eq. (5) as
red dashed line and the mean-field average from approach (ii)
as black line. The equivalence of construction schemes (ii) and
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TABLE III. DFT derived internal energy parameters/defect ener-
gies Ēd and δ (see text) for LFS using the three different construction
schemes. For methods (ii) and (iii), Ēd and δ are found by a fit of
Eq. (5) to the data (red dashed lines in Fig. 4). The open circuit
voltage [μeq/e vs Li(m)] is −3.132 V.

LFS approach

(i) defects (ii) MFT avg. (iii) SQS

Ēd , δ (eV) 0.461, −0.074 0.397, −0.041 0.399, −0.058
�μG (eV) 0.522 0.412 0.414

(iii) is demonstrated by the practical equivalence of these lines
as well as the free energy parameters as tabulated in Table III.

It furthermore indicates that the effective cluster interac-
tions related to the considered correlation functions upon SQS
construction include effectively all relevant interactions of the
system. It should be noted, however, that the method here does
not necessitate the construction of a cluster expansion, but
is purely based on generating statistical samples of structures
such that the distribution of correlation functions corresponds
to the sampling probability given by mean-field theory.

Mean-field averaging [(ii) and (iii)] results in a noticeably
lower interaction constant Ēd for LFS when compared to the
defect energy approach (i) (0.40 versus 0.46 eV, Table III). On
the other hand, when comparing the order of magnitude, e.g.,
with respect to the LFP results (Table II), the difference seems
less dramatic, in particular, if we are interested in comparing
overall free energy shapes.

In a simplistic picture, e.g., if only homogeneous
(de-)lithiation of battery particles is considered, the so-called
hysteretic voltage gap �μG [29,30] can be related to the shape
of the underlying free energy, in particular the spinodal points.
As a result it is possible to estimate �μG directly from the
interaction parameter Ēd . Under these assumptions we predict
LFP to exhibit a smaller hysteretic voltage gap �μG than LFS
(�μG = 0.07 eV versus 0.52–0.41 eV, Tables II and III). The
same observations are made indeed in experiment, however,
with lower absolute values for both materials [30]. In reality,
smaller gaps can be expected when nucleation happens. In
order to study nucleation within phase field theory as in the
case of LFP [24], elastic as well as interfacial energy terms
need to be determined.

C. Elastic properties

Elastic constants for Li1FeSiO4 and Li2FeSiO4 were cal-
culated by DFT within the 1 × 1 × 1 primitive unit cell using
two approaches. On the one hand relying on the VASP’s
internal routines, and on the other hand by fitting a quadratic
energy expression according to linear elasticity [Eq. (17)] to
appropriately deformed cells.

�E = V
(
σikεik + 1

2Ciklmεikεlm
)
. (17)

The relevant deformation gradient tensors F̄ for or-
thorhombic cells were taken from Ref. [79]. F̄ and the original
and strained lattice vectors, represented by the cartesian row
vectors of b̄r and B̄r , respectively, are related by the following

TABLE IV. Orthorhombic elastic constants of Li1/2FeSiO4 in
Voigt notation [82].

C (GPa) C11 C22 C33 C44 C55 C66 C12 C13 C23

LiFeSiO4 207 85 101 19 30 17 41 31 26
Li2FeSiO4 220 132 138 36 41 43 68 63 43

matrix multiplications:

B̄r = b̄r F̄	, F̄	 = b̄−1
r B̄r, ε̄ = 1

2 (F̄	F̄ − 1). (18)

We use the more general Lagrangian finite strain definition
ε̄ in contrast to infinitesimal strains which erroneously do
not vanish for infinitesimal rotations [80,81]. Furthermore
we present results using the Voigt notation [82]. We ap-
plied deformations with strain components up to 7% and
observed linear behavior. Indeed, the predicted energy of
strained systems using Eq. (17) with the fitted constants was
slightly more accurate than what Eq. (17) with VASP’s elastic
constants yields, which is why we report here the values
fitted to explicit cell distortions. The elastic constants for
LiFeSiO4 and Li2FeSiO4 are tabulated in Table IV. In fact,
LiFeSiO4 (slightly nonorthorhombic) has nonorthorhombic
tensor components with values <0.5 GPa, which allows to
treat both materials as orthorhombic.

The elastic energy of strained precipitates in solids can be
visualized by plotting B(n), where B(n) is given by [83]

B(n) = Ci jklε
0
i jε

0
kl − niσ

0
i j� jl (n)σ 0

lmnm,

[�−1]i j = Cikl jnknl ,

σ 0
i j = Ci jklε

0
kl ,

with n = k
|k| . (19)

We use the Einstein summation convention. B(n) is a measure
for the strain energy necessary to create a coherent interface
perpendicular to the direction n = k/k. The terms contribut-
ing to B(n) only depend on common elastic constants Ci jkl

and the stress free transformation strain ε̄0 which is the
strain, necessary to transform the material with the host lattice
constants to the precipitate equilibrium lattice constant. When
the elastic constants of both phases differ significantly, an
analysis of the strain energy is a little more involved [83–85].
Here we plot B(n) for averaged elastic constants of both
phases LiFeSiO4 and Li2FeSiO4 and the values as in Tables IV
and V. Figure 5 shows that the coherency strain energy is

TABLE V. Equilibrium unit cells and corresponding components
of the related stress free transformation strain ε̄0 for the nucleation of
LiFeSiO4 inside the Li2FeSiO4 matrix. Strain components are given
in the Voigt notation.

a (Å) b (Å) c (Å) α β γ

LiFeSiO4 6.091 5.622 5.044 90.0 90.8 90.0
Li2FeSiO4 6.332 5.395 4.998 90.0 90.0 90.0

ε1 ε2 ε3 ε4 ε5 ε6

ε̄0 (%) −3.7614 4.4308 0.9236 −0.0005 −0.6538 −0.0021
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FIG. 5. B(n) [Eq. (19)] for elastic constants corresponding to the
average of LiFeSiO4 and Li2FeSiO4. (x, y, z) is along the crystal axes
(see Table V).

minimized along the 〈110〉 directions [(x, y, z) is along crystal
axes, see Table V], which allow to conclude that large, strain
energy dominated LiFeSiO4 inclusions should be platelet-like
and aligned approximately perpendicular to 〈110〉 (similar as
in the case of LFP [23]).

D. Interface energies

Interface energies for (100), (010), (001), and (110)
LiFeSiO4/Li2FeSiO4 interfaces were determined from join-
ing lattice-matched supercells of both phases along these di-
rections. This implies that we restrict ourselves to atomically
sharp interfacial structures. The studied heterostructures were
thicker than 40 Å where the lattice constants of Li2FeSiO4

were used as common lattice parameters. For calculating in-
terface energies, all atoms within the periodic heterostructures
were allowed to relax, not however the supercell itself. In
this case, the induced strain relaxation necessitates to correct
appropriately the relevant bulk reference energies of the two
phases by a correction term �Es(B̄r ) in order to obtain mean-
ingfull and converging interface energies. We determine aver-
aged interface energies according to the following formula:

γ (B̄r ) = Ehetero(B̄r ) − Ebulk (B̄r ) + �Es(B̄r )

2 · A(B̄r )
. (20)

Here, B̄r is the common lattice (Li2FeSiO4). The exact proce-
dure to determine, e.g., �Es as well as a convergence study is
discussed in detail in Ref. [63] to support the validity of this
approach. As the lattice constants of LiFeSiO4 and Li2FeSiO4

are practically identical, we expect our results to be hardly
affected by the choice of the chosen common lattice. The
obtained interface energies are tabulated in Table VI. Interface
energies for arbitrary directions are interpolated by a fitted,
ellipsoidal directional dependence of the following form:

γ (θ, φ) = 1√
sin2(θ ) cos2(φ)

a2 + sin2(θ ) sin2(φ)
b2 + cos2(θ )

c2

. (21)

TABLE VI. DFT determined interface energies γ . We also in-
cluded the semiaxes lengths a, b, and c along the Cartesian axes x, y,
and z for a fitted, interpolating ellipsoid given by Eq. (21).

interface (100) (010) (001) (110) a b c

γ (meV/Å
2
) 11.6 8.9 7.1 10.5 11.77 9.37 7.10

We note in passing, that—due to the lack of data—we
implicitly assumed a very smooth directional dependence with
no energy extrema for intermediate directions which might,
however, be existent in reality. The fitted values for a, b, and
c are tabulated as well in Table VI, where a, b, and c are the
semiaxes along the Cartesian axes x, y, and z and θ and φ the
respective angles in spherical coordinates.

The determined interface energies are for atomically sharp
interfaces. Within phase field theory, however, interface en-
ergy terms are represented by gradient terms of, e.g., a con-
centration field. In order to determine the interface term in
Eq. (1) that goes along with the above proposed free energy
density, we proceed by matching the total energy expression
of a Cahn-Hilliard model to DFT results as follows.

�[x(r)] in Eq. (1) becomes stationary for equilibrium den-
sity profiles x(r), as well as for critical nuclei, as elaborated in
Refs. [31,32]. Just as a side remark, we want to stress that, in
contrast to classical nucleation theory, this approach exhibits
a more realistic behavior for large overpotentials and close to
critical points (e.g., the spinodal), where nucleation barriers
vanish as the homogeneous bulk free energy becomes unstable
against infinitesimal density fluctuations, which cannot be
properly described by classical nucleation theory.

We assume the scalar κ and the site density ρ

to be concentration- and temperature-independent, in
agreement with most phase field theory publications
[23,24,26,34,36–39].

Here, φ(x(r), T ) at equilibrium chemical potential has
been constructed before in this work [Eq. (4), δμ = 0]. For
simplicity, we restrict ourselves to a one parameter internal
energy ũ(x) = Ēd x(1 − x), as in most phase field theory sim-
ulations. A refit results in Ēd = 0.412 eV. We estimate κ by
requiring the 0-K interface energies for (atomically) sharp
interfaces as from Table VI to correspond to the Cahn-Hilliard
result at 0 K.

The atomically sharp interface, where the concentration
varies from x = 0 to x = 1, is assumed to correspond within
Cahn-Hilliard theory to a linear variation in x across an
interface width given by the lattice parameter a = 1/ 3

√
ρ. The

gradient |∇x| reduces to 1
a and the interface energy σ can be

expressed by a one-dimensional integral across the interface
at the equilibrium chemical potential (see, e.g., Refs. [31,32]),
which gives at 0 K:

σ = ρ

∫ ∞

−∞

[
ũ(x(r)) + κ

(
dx

dr

)2
]

dr, (22)

σ = ρ

(
a

6
Ēd + κ

1

a

)
, (23)

κ = a4σ − a2

6
Ēd . (24)
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TABLE VII. DFT determined parameters and the derived Cahn-
Hilliard (CH) gradient penalty parameter κ .

relevant CH parameters

γ0 (meV/Å
2
) a (Å) Ēd (meV) κ0 (meVÅ

2
)

7.1 4.4 412 1338

We derive κ from the minimum of the determined interface
energies γ0 of atomically sharp interfaces by substituting the
Cahn-Hilliard interface energy σ in Eq. (24) with the DFT-
determined interface energy γ0. The extension of Eqs. (22)–
(24) towards tensorial κ for dealing with direction dependent
interface energies is straight forward. The so-determined,
relevant Cahn-Hilliard continuum parameters for LFS are
tabulated in Table VII.

The (temperature dependent) Cahn-Hilliard equilibrium
interface energy σ and width l for a phase-separated state,
where both phases are in equilibrium, are derived in Ref. [31]
and are given by

σ = 2ρ
√

κ

∫ x1

x0

√
�φ(x)dx, (25)

�φ(x) = φ(x, T, δμ = 0) − φ(x0, T, δμ = 0), (26)

x0,1 :
∂

∂x
φ(x, T, δμ = 0)|x0,x1 = 0, (27)

l ≈ (x1 − x0)

√
κ√

�φ(x = 0.5)
. (28)

After having parametrized the Cahn-Hilliard model from
requiring it to reproduce the DFT interface energy using a
nonequilibrium stepwise concentration profile, it is possible to
find the equilibrium interface energy within the Cahn-Hilliard
model for a range of temperatures different from 0.

The temperature dependence of interface widths l and
interface energies σ are obtained by numerical solution of
Eqs. (25)–(28) for T = 0–350 K and plotted in Fig. 6. Even
at 0 K we observe a slight reduction of the interface energy
due to the fact that the step wise assumed trial concentration
profile was not a minimizing profile of the Cahn-Hilliard

equation (7.1 versus 6.8 meV/Å
2
).

Some interface broadening is expected for room temper-
ature [l (0/300 K) = 3.6/4.5 Å]. It should be noted that
the thicknesses l are only an estimate for the thickness of
a smooth concentration variation across the interface. Yet it
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FIG. 6. Temperature dependence of the interface width l and
interface energy σ as obtained from the ab initio parametrized Cahn-
Hilliard model [Eqs. (25)–(28) for T = 0–350 K].

can be stated that the determined parameters indicate rather
sharp interfaces of the size of one lattice constant, which
is due to that fact that intermediate concentrations which
arise for smeared out interfaces are energetically rather un-
favourable for LFS (see Fig. 4). More interesting is the
estimated temperature evolution of the interface energy, which
becomes considerably lower as the calculated 0 K DFT value:

γ0 = 7.1 meV/Å
2 ⇔ σ (0/300 K) = 6.8/5.3 meV/Å

2
. This

is ultimately related to the fact that the energy contributions of
spacial regions with intermediate concentration become less
with higher temperature, due to an increased stabilization of
those.

IV. DISCUSSION AND OUTLOOK

We have derived from ab initio calculations the relevant
continuum parameters necessary for simulating the behav-
ior of Li1+xFeSiO4 using phase field theory. This includes
the nonconvex homogeneous bulk free energy density, the
elastic and the interfacial energy terms. For the construction
of the free energy density, we focused on rationalizing an
appropriate way for determining the internal energy, given
that it is combined with the common ideal solution entropy
expression. The simplest construction scheme (i) is motivated
by the fact that the lowest-order polynomial expressions for
the internal energy that interpolates smoothly between the
two limiting compositions can be related identically to defect
energies, e.g., vacancies or interstitials. The accuracy of this
approach was validated for LixFePO4, by being able to repro-
duce experimental solubility limits and phase field parameters
published in literature. In addition, we pointed out that a
generic free energy expression with an ideal solution entropy
part as, e.g., used in the CALPHAD approach and derived free
energy expressions can be identified with the exact mean-field
solution for lattice type systems. As a result, we suggested to
combine the ideal solution entropy with an averaged internal
energy, calculated using the sampling statistics of mean-field
theory. Furthermore, the equivalence of mean-field sampling
statistics and the statistics underlying the construction of spe-
cial quasi random structures was highlighted, and exemplified
by calculating the mean-field averaged and the SQS averaged
internal energy of Li1+xFeSiO4.

We showed that it is possible to determine homogeneous
free energy densities as used in phase field theory from a very
reduced number of ab initio calculations, e.g., without the
need of constructing a cluster expansion or similar approxi-
mations. In particular, we want to note that the nonconvex free
energy expression by mean-field sampling is well-defined in
the sense that it is independent of the sampled cell size, given a
certain minimum size defined by the extent of the interactions.

Although being only an approximation, mean-field the-
ory gives in many cases a very good qualitative and even
quantitative agreement with the true solution of the problem,
as exemplified by the three-dimensional Ising model. We
showed here that derived solubility limits for LFP are in very
good agreement with experiment and that mean-field derived
estimated hysteretic voltage gaps of LFP and LFS show the
correct trends when compared to experiment.

In addition we determined elastic properties and ana-
lyzed briefly the expected alignment of interfaces in phase
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separated situations along the 〈110〉 directions. Furthermore,
we determined interface energies using DFT and derived the
corresponding interfacial penalty term for a phase field model
of LFS.

To our knowledge, such a recipe for the determination of
all relevant phase field parameters from ab initio calculations
has not been put forward and applied before. In addition,
the demonstrated relationship between mean-field free en-
ergies and semiempirical model free energies is important
to understand the range of validity of past and future work
in thermochemical modeling. As an example, the authors of
Ref. [67] propose the “semiempirical” construction of phase-
diagrams for pseudobinary systems based on combining the
ideal mixing entropy with an internal energy averaged over
highly symmetric structures (HSS). They tested this “semiem-
pirical” approach by comparison to the correct phase diagrams
obtained by Monte Carlo sampling. The theoretical assess-
ment in this work here allows to evaluate this semiempirical
approach and derive that it corresponds to a large extent to

a mean-field free energy construction as the HSS-averaged
internal energy corresponds approximately to the mean-field
average. As a result, the equivalence of the HSS and Monte
Carlo phase diagrams in Ref. [67] can be interpreted as a
prove of the accuracy of mean-field theory. In addition, this
hints towards the possibility of constructing in a very effective
way approximate free energies, e.g., for phase diagrams in a
high-throughput way, by the use of a few SQS computations.

In addition, we hope that the numerical results of this study
will enable researchers in the battery community to simulate
and understand better the behavior of LFS in particular in
comparison to LFP. We will analyze different delithiation
mechanisms of LFS in a follow up paper.
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