Coexistence of polar displacements and conduction in doped ferroelectrics: An *ab initio* comparative study

Chengliang Xia, ^{1,2} Yue Chen, ^{1,*} and Hanghui Chen^{2,3,†}
¹Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
²NYU-ECNU Institute of Physics, NYU Shanghai, Shanghai 200062, China
³Department of Physics, New York University, New York, New York 10003, USA

(Received 9 December 2018; published 15 May 2019)

Polar metals are rare because free carriers in metals screen electrostatic potential and eliminate internal dipoles. Degenerate doped ferroelectrics may create an approximate polar metallic phase. We use firstprinciples calculations to investigate n-doped LiNbO₃-type oxides (LiNbO₃ as the prototype) and compare to widely studied perovskite oxides (BaTiO₃ as the prototype). In the rigid-band approximation, substantial polar displacements in *n*-doped LiNbO₃ persist even at 0.3 e/f.u. ($\simeq 10^{21}$ cm⁻³), while polar displacements in n-doped BaTiO₃ quickly get suppressed and completely vanish at 0.1 e/f.u. Furthermore, in n-doped LiNbO₃, Li-O displacements decay more slowly than Nb-O displacements, while in n-doped BaTiO₃, Ba-O and Ti-O displacements decay approximately at the same rate. Supercell calculations that use oxygen vacancies as electron donors support the main results from the rigid-band approximation and provide more detailed charge distributions. Substantial cation displacements are observed throughout LiNbO_{3- δ} ($\delta = 4.2\%$), while cation displacements in BaTiO_{3- δ} ($\delta = 4.2\%$) are almost completely suppressed. We find that conduction electrons in LiNbO_{3- δ} are not as uniformly distributed as in BaTiO_{3- δ}, implying that the rigid-band approximation should be used with caution in simulating electron-doped LiNbO3-type oxides. Our work shows that polar distortions and conduction can coexist in a wide range of electron concentration in n-doped LiNbO3, which is a practical approach to generating an approximate polar metallic phase. Combining doped ferroelectrics and doped semiconductors may create new functions for devices.

DOI: 10.1103/PhysRevMaterials.3.054405

I. INTRODUCTION

Polar metals are materials that are characterized by the absence of inversion symmetry and the presence of intrinsic conduction due to partial band occupation [1–5]. They are rare in solids because free carriers can screen electrostatic potential and eliminate internal dipoles that arise from asymmetric charge distributions [6–10]. Anderson and Blount predicted in 1965 that polar metals can exist [11], and the recent experimental confirmation of LiOsO₃ as the first polar metal has stimulated intensive theoretical and experimental research [12–21].

However, the above definition of a polar metal (absence of inversion symmetry and presence of conduction) excludes degenerately doped insulating ferroelectrics [21]. Electron-doped perovskite ferroelectric compounds ABO_3 (BaTiO₃ as the prototype) have been widely studied both in theory and in experiment [22–28]. First-principles calculations show that cation displacements and conduction can coexist in n-doped BaTiO₃ up to a critical concentration of 0.1e per formula [26]. This indicates that even with long-range Coulomb interaction screened by free electrons [29–31], a short-range portion of Coulomb force with an interaction range of the order of the lattice constant is sufficient to induce ferroelectric instability

in BaTiO₃ [26,32,33]. Experimentally, there are contradictory results: Refs. [23,24] show that in oxygen-reduced BaTiO_{3- δ}, polar displacements can coexist with conduction and do not vanish until a critical concentration of $1.9 \times 10^{21} {\rm cm}^{-3}$, which is consistent with first-principles calculations [26]. However, a neutron diffraction study on n-doped BaTiO₃ found phase separation in which ferroelectric displacements only exist in an insulating region, which is spatially separated by nonpolar metallic regions [22]. On the other hand, while electron-doped LiNbO₃-type ferroelectric oxides (LiNbO₃ as the prototype) have been investigated in the literature, the focus has been on electronic structure and the optical property [34–37]. The structural property and the possible coexistence of polar displacements with conduction have received little attention.

In this work, we use first-principles calculations to do a comparative study on doping effects in insulating ferroelectrics. We compare the aforementioned two important classes of ferroelectrics: one is perovskite oxides (BaTiO₃ as the prototype) and the other is LiNbO₃-type oxides (LiNbO₃ as the prototype). We find different behaviors in these two materials upon electron doping. In the rigid-band approximation, cation displacements in n-doped BaTiO₃ quickly get suppressed and completely disappear at a critical doping of $0.1\ e/f.u.$, while substantial cation displacements are found in n-doped LiNbO₃ up to an electron concentration of $0.3\ e/f.u.$ Moreover, Li-O displacements decay more slowly than Nb-O displacements. With an electron doping of $0.3\ e/f.u.$, Nb-O displacements are reduced by about 50% from the undoped

^{*}yuechen@hku.hk

[†]hanghui.chen@nyu.edu

value, while Li-O displacements are reduced by only about 10%. This is different from *n*-doped BaTiO₃, in which both Ba-O and Ti-O displacements decay approximately at the same rate. This indicates that Li-O displacements are more persistent than Nb-O displacements in a metallic environment. Supercell calculations that use oxygen vacancy as electron donors support the main results from the rigid-band approximation and provide more detailed charge distributions. We find that in n-doped LiNbO₃, conduction electrons are not as uniformly distributed as in *n*-doped BaTiO₃, but substantial cation displacements are found throughout *n*-doped LiNbO₃. Using supercell calculations, we also compute the formation energy of oxygen vacancies. The formation energy of oxygen vacancies in *n*-doped LiNbO₃ is about 1 eV higher than that in n-doped BaTiO₃, which is reasonable considering the fact that the band gap of LiNbO₃ is about 1 eV larger than that of BaTiO₃.

The paper is organized as follows. In Sec. II we provide computation details. We present the main results (rigid-band calculations and supercell calculations) in Sec. III. We conclude in Sec. IV.

II. COMPUTATIONAL DETAILS

We perform density functional (DFT) calculations [38,39], as implemented in the Vienna Ab-initio Simulation Package (VASP) [40,41]. We employ a local density approximation (LDA) pseudopotential [42]. We also test our key results using a revised Perdew-Burke-Ernzerhof generalized gradient approximation (PBEsol) [43]. The key results do not qualitatively change with different exchange correlation functionals. We set an energy cutoff of 600 eV. Charge self-consistent calculations are converged to 10^{-5} eV. Both cell and internal coordinates are fully relaxed until each force component is smaller than 10 meV/Å and the stress tensor is smaller than 1 kbar.

For pristine bulk calculations, we use a tetragonal cell (5-atom) to study BaTiO₃ and find that a=3.95 Å and c/a=1.01; we use a hexagonal cell (30-atom) to study R3c LiNbO₃ and find that a=5.09 Å and c=13.81 Å. Both of them are in good agreement with previous studies [44].

To simulate doping effects, we use both the rigid-band approximation and supercell calculations. In rigid-band modeling, we study a 5-atom cell BaTiO₃ (tetragonal P4mm and cubic $Pm\bar{3}m$) and a 30-atom cell LiNbO₃ (noncentrosymmetric R3c and centrosymmetric $R\bar{3}c$). We use a Monkhorst-Pack k-point sampling of $14 \times 14 \times 14$ for BaTiO₃ and $8 \times 8 \times 3$ for LiNbO₃. In supercell calculations, we use a 119-atom cell for both BaTiO₃ and LiNbO₃ (oxygen-vacancy concentration of 4.2%/f.u. and nominal electron doping of 0.084~e/f.u.). The supercells for BaTiO₃ and LiNbO₃ are shown in Figs. 4 and 5. We use a Monkhorst-Pack k-point sampling of $8 \times 8 \times 8$ in supercell calculations.

In our supercell calculations, we remove one (charge-neutral) oxygen atom in LiNbO₃ supercells of different sizes to simulate different oxygen vacancy concentrations. The supercell with oxygen vacancies is charge-neutral, and we fully relax the structure (both lattice constants and internal coordinates) to get the ground-state property.

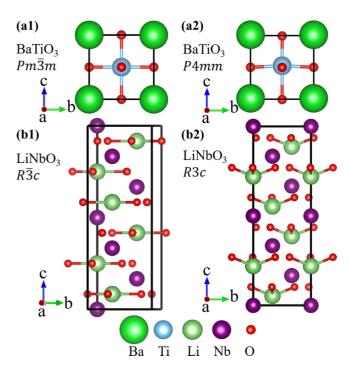


FIG. 1. Atomic structures of BaTiO₃ and LiNbO₃. Panels (a1) and (a2) show cubic $Pm\overline{3}m$ and tetragonal P4mm structures of BaTiO₃, respectively. Panels (b1) and (b2) show centrosymmetric $R\overline{3}c$ and noncentrosymmetric R3c structures of LiNbO₃, respectively.

We check a higher-energy cutoff (750 eV) and a denser k-point sampling, and we do not find any significant changes in the key results.

III. RESULTS AND DISCUSSION

A. Rigid-band calculations

In the rigid-band approximation, materials are pristine and extra electrons are added to the system with the same amount of uniform positive charges in the background. Figure 1 shows the crystal structures of pristine BaTiO₃ and LiNbO₃, which are used in rigid-band modeling. Panels (a1) and (a2) show the crystal structure of cubic BaTiO₃ (space group Pm3m) and tetragonal BaTiO₃ (space group P4mm). Insulating ferroelectrics have a spontaneous polarization [45]. However, in doped ferroelectrics, partially filled bands may lead to conduction, and polarization becomes ill-defined [46–48]. Therefore, we use cation displacements to characterize the extent of being "polar." In n-doped BaTiO₃, we calculate both Ba-O and Ti-O cation displacements along the c-axis, denoted by $\delta_{\text{Ba-O}}$ and $\delta_{\text{Ti-O}}$, as a function of electron concentration. $\delta_{\text{Ba-O}}$ and $\delta_{\text{Ti-O}}$ are explicitly shown in Fig. S1 in the Supplemental Material [49]. Panels (b1) and (b2) show the crystal structure of centrosymmetric LiNbO₃ (space group R3c) and noncentrosymmetric LiNbO $_3$ (space group R3c). We calculate both Li-O and Nb-O displacements $\delta_{\text{Li-O}}$ and $\delta_{\text{Nb-O}}$. In the centrosymmetric structure $R\overline{3}c$, each Li atom is surrounded by three oxygen atoms, and all four atoms form a plane that is perpendicular to the c-axis. In the noncentrosymmetric structure R3c, the three oxygen atoms still form a plane that is perpendicular to the c-axis but the Li atom deviates from

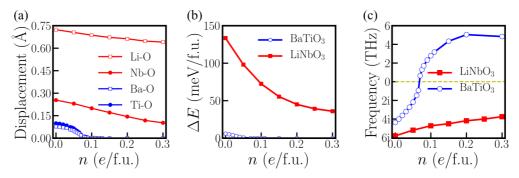


FIG. 2. (a) Ba-O, Ti-O, Li-O, and Nb-O displacements in noncentrosymmetric structures of BaTiO₃ and LiNbO₃ as a function of electron doping. (b) Energy difference between the centrosymmetric and the noncentrosymmetric structures of BaTiO₃ and LiNbO₃ as a function of electron doping. (c) Phonon frequency of the zone-center ferroelectric mode of cubic BaTiO₃ and $R\overline{3}c$ LiNbO₃ as a function of electron doping.

that plane. The distance between the Li atom and the plane that the three oxygen atoms form is defined as the Li-O displacement $\delta_{\text{Li-O}}$. In the centrosymmetric structure $R\overline{3}c$, each Nb atom is at the center of an NbO₆ oxygen octahedron. In the noncentrosymmetric structure R3c, Nb atoms move off the center of the NbO₆ oxygen octahedron. The distance between the Nb position and the center of the oxygen octahedron in the R3c structure is defined as $\delta_{\text{Nb-O}}$. $\delta_{\text{Li-O}}$ and $\delta_{\text{Nb-O}}$ are explicitly shown in Fig. S2 in the Supplemental Material

Figure 2 summarizes the key results from rigid-band calculations. Panel (a) shows the cation displacements of tetragonal BaTiO₃ (space group P4mm) and noncentrosymmetric LiNbO₃ (space group R3c). In the undoped case, $\delta_{\text{Ba-O}} = 0.077 \text{ Å and } \delta_{\text{Ti-O}} = 0.099 \text{ Å in BaTiO}_3, \text{ and } \delta_{\text{Li-O}} =$ 0.723 Å and $\delta_{\text{Nb-O}} = 0.261 \text{ Å}$ in LiNbO₃, both of which are in good agreement with previous calculations and experiments [7,50–52]. Upon doping, all of the cation displacements decrease with increasing electron concentration. $\delta_{\text{Ba-O}}$ and $\delta_{\text{Ti-O}}$ in *n*-doped BaTiO₃ vanish at $n_c \simeq 0.1 \ e/\text{f.u.}$, which is consistent with previous calculations [26]. However, $\delta_{\text{Li-O}}$ and $\delta_{\text{Nb-O}}$ in *n*-doped LiNbO₃ persist up to 0.3 e/f.u. Furthermore, in *n*-doped BaTiO₃, $\delta_{\text{Ba-O}}$ and $\delta_{\text{Ti-O}}$ decay at approximately the same rate. But in *n*-doped LiNbO₃, $\delta_{\text{Li-O}}$ decays more slowly than $\delta_{\text{Nb-O}}$. With 0.3 e/f.u. electron doping, Nb-O displacements are reduced by about 50% from the undoped value, while Li-O displacements are reduced by only about 10%. This indicates that the off-center movements of Li atoms are very robust and more persistent than Nb-O displacements in a metallic environment. This helps to create an approximate polar metallic phase when LiNbO₃ is electron-doped.

Panel (b) of Fig. 2 shows the energy difference between the centrosymmetric structure and the noncentrosymmetric structure of BaTiO₃ and LiNbO₃. Specifically, for BaTiO₃, $\Delta E = E(Pm\overline{3}m) - E(P4mm)$ and for LiNbO₃, $\Delta E = E(R\overline{3}c) - E(R3c)$. $\Delta E > 0$ indicates that the noncentrosymmetric structure is favored. In the undoped case, the noncentrosymmetric structure is favored in both BaTiO₃ and LiNbO₃, i.e., they are both ferroelectric. Upon doping, BaTiO₃ is polar until $n_c \simeq 0.1e/f.u.$, consistent with the critical concentration found for $\delta_{\text{Ba-O}}$ and $\delta_{\text{Ti-O}}$. For n-doped LiNbO₃, ΔE quickly decreases but it stays positive (up to 0.3 e/f.u.). This is consistent with $\delta_{\text{Li-O}}$ and $\delta_{\text{Nb-O}}$, which do not vanish with electron doping (up to 0.3 e/f.u.).

Panel (c) of Fig. 2 shows the zone-center phonon frequency of the ferroelectric mode for centrosymmetric BaTiO₃ (space group $Pm\overline{3}m$) and LiNbO₃ (space group $R\overline{3}c$). For cubic $Pm\overline{3}m$ BaTiO₃, the ferroelectric mode has imaginary phonon frequency with small electron doping, indicating ferroelectric instability. Around the critical doping of $n_c \simeq$ 0.1 e/f.u., the phonon frequency of the ferroelectric mode becomes positive and the cubic structure is stabilized. For centrosymmetric $R\overline{3}c$ LiNbO₃, the ferroelectric mode always has imaginary phonon frequency (up to 0.3 e/f.u.), indicating that ferroelectric instability persists in *n*-doped LiNbO₃. For both materials, the phonon property of the centrosymmetric structures is consistent with the results of the noncentrosymmetric structures shown in panels (a) and (b). We note that the magnitude of the imaginary phonon mode indicates how unstable the high-symmetry structure is subject to a collective atomic distortion. However, the energy difference between the distorted and undistorted crystal structures reflects not only the instability of the high-symmetry structure, but also other factors. From our calculations, we find that for BaTiO₃, the volume of its undistorted structure is 0.5% smaller than that of the distorted structure; in contrast, for LiNbO₃, the volume of its undistorted structure is 1.5% larger than that of the distorted structure. The elastic energy change from the high-symmetry structure to the low-symmetry structure is very different between BaTiO₃ and LiNbO₃. This information is embodied in the total energy difference but is not directly reflected in the imaginary phonon modes.

We also use the PBEsol functional to check the key results in Fig. 2, and we do not find significant changes (see Fig. S4 in the Supplemental Material [49]). Our finding that polar displacements of LiNbO₃ are persistent in the presence of conduction electrons is related to the fact that LiNbO₃ is hyperferroelectric [53,54], i.e., a ferroelectric material whose polarization does not get suppressed by depolarization fields. This implies that doping a hyperferroelectric material is a viable approach to generating an approximate polar metallic phase.

Next, we study the electronic structure and screening length obtained from rigid-band calculations. Panels (a1) and (a2) of Fig. 3 show the density of states of undoped and doped BaTiO₃ (with $0.2 \ e/f.u.$ doping). With electron doping, the Fermi level is shifted from the band gap into Ti d states. Panels (b1) and (b2) of Fig. 3 show the density of states of undoped

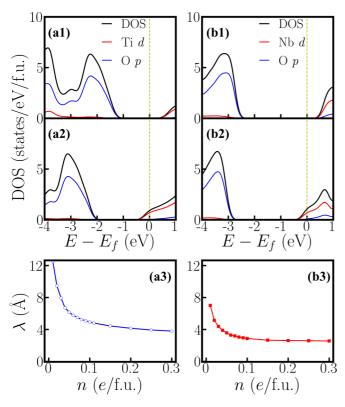


FIG. 3. (a1) Density of states of undoped BaTiO₃. (a2) Density of states of doped BaTiO₃ with 0.2~e/f.u. doping. The black, red, and blue are total, Ti d, and O p projected densities of states, respectively. (b1) Density of states of undoped LiNbO₃. (b2) Density of states of doped LiNbO₃ with 0.2~e/f.u. doping. The black, red, and blue are total, Nb d, and O p projected densities of states, respectively. (a3) Thomas-Fermi screening length λ of doped BaTiO₃ as a function of electron doping n. (b3) Thomas-Fermi screening length λ of doped LiNbO₃ as a function of electron doping n.

and doped LiNbO₃ (with 0.2 e/f.u. doping). Similarly, with electron doping, the Fermi level is shifted from the band gap into Nb d states. With the density of states of n-doped BaTiO₃ and n-doped LiNbO₃, we can estimate the screening length λ by using the Thomas-Fermi model [26]:

$$\lambda = \sqrt{\frac{\epsilon}{e^2 \times D(E_f)}},\tag{1}$$

where ϵ is the dielectric constant of undoped materials and $D(E_f)$ is the density of states at the Fermi level. For dielectric constants, we use experimental values $\epsilon \approx 44\epsilon_0$ for BaTiO₃ [55] and $\epsilon \approx 24\epsilon_0$ for LiNbO₃ [56]. Panel (c) of Fig. 3 shows the screening length of n-doped BaTiO₃ and n-doped LiNbO₃. We find that for both materials upon electron doping, the screening length is on the order of a few Å. Given an electron concentration, n-doped LiNbO₃ even has a screening length slightly smaller than n-doped BaTiO₃, implying a stronger screening property. The stronger screening property of electron-doped LiNbO₃ is due to the fact that undoped LiNbO₃ has a smaller dielectric constant than that of BaTiO₃, while the density of states at the Fermi level plays a minor role [the ratio of $D(E_f)_{\text{LiNbO}_3}$ to $D(E_f)_{\text{BaTiO}_3}$ ranges from 0.9 to 1.1 as n changes from 0 to 0.3 e/f.u.].

B. Supercell calculations

Our rigid-band calculations show that polar displacements and conduction can coexist in both n-doped BaTiO3 and n-doped LiNbO₃, but the overall polar property (magnitude of polar displacements, polar instability, etc.) is much more enhanced in n-doped LiNbO₃ than in n-doped BaTiO₃. However, rigid-band calculations do not specify the origin of electron doping, and also they imply that all carriers are uniformly distributed. In real experiments, oxygen vacancies are commonly seen in complex oxides, and each oxygen vacancy nominally donates two electrons. However, an isolated oxygen vacancy may form a defect state, which can localize conduction electrons [57,58]. Some experiments show that in oxygen-reduced BaTiO_{3- δ}, phase separation occurs. Cation displacements δ_{Ti-O} only occur in the insulating region and vanish in the metallic region. The overall sample may be considered as a mixture of two different phases [22]. To test whether the results from the rigid-band calculations remain valid in real materials, we perform supercell calculations and consider charge-neutral oxygen vacancies as the electron doping source. We use a 119-atom cell of BaTiO_{3- δ} and LiNbO_{3- δ}. In both cases, the oxygen vacancy concentration is 4.2%/f.u. A charge-neutral oxygen vacancy donates two electrons to the system, therefore it is an electron doping of $0.084 \ e/f.u. \ (\simeq 1.5 \times 10^{21} \ cm^{-3})$, close to the critical doping in *n*-doped BaTiO₃ obtained from rigid-band calculations.

Figure 4(a1) shows the crystal structure of a 119-atom BaTiO_{3- δ} supercell that contains one oxygen vacancy. For clarity, Ba atoms are not explicitly shown and the oxygen vacancy is highlighted by the orange open circle. Figure 4(a2) shows the cation displacement $\delta_{\text{Ti-O}}$ for each Ti atom in the BaTiO_{3- δ} supercell (the definition of $\delta_{\text{Ti-O}}$ is identical to that in the rigid-band calculations). Displacements along the c-axis of each Ba atom are explicitly shown in Fig. S3 in the Supplemental Material [49]. We find that while there is some small variation in $\delta_{\text{Ti-O}}$ due to an inhomogeneous chemical environment, $\delta_{\text{Ti-O}}$ on average is reduced to zero. For comparison, we also show the δ_{Ti-O} in pristine BaTiO₃ in panel (a2), and the suppression of polar displacements by electron doping is evident. Figure 4(a3) shows an isovalue surface of conduction electron density in oxygen-reduced BaTiO_{3- δ} with $\delta = 4.2\%$. Conduction electrons reside on Ti atoms. Because the polar displacements are suppressed and the material is close to a cubic structure, conduction electrons occupy three Ti t_{2g} orbitals with approximately equal occupancy. This leads to an isovalue surface of a dicelike shape. Figure 4(a4) shows the number of conduction electrons on each Ti atom by integrating the Ti d states from the band gap to the Fermi level. We find that in the presence of oxygen vacancy, while there is non-negligible variation in conduction electron distribution, insulatingmetallic phase separation does not occur in our first-principles calculations. Each Ti atom in the supercell has a sizable amount of conduction electron. The results of oxygen-reduced BaTiO_{3- δ} from supercell calculations are very consistent with rigid-band calculations. We also use the LDA + U method and change the supercell size to test the robustness of this conclusion (see the Supplemental Material for details [49]). We find that in oxygen-reduced BaTiO_{3- δ}, conduction electrons on each Ti atom are almost uniformly distributed.

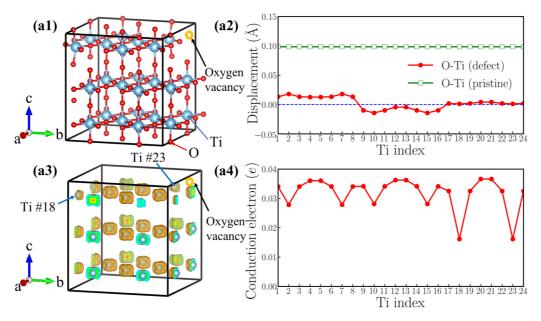


FIG. 4. (a1) Atomic structure of a 119-atom BaTiO_{3- δ} supercell that contains an oxygen vacancy. For clarity, Ba atoms are not shown. The blue and red balls represent Ti and O atoms. (a2) Polar displacements of each Ti atom. The red circles are calculated from the 119-atom cell. The green squares are bulk $\delta_{\text{Ti-O}}$ of pristine BaTiO₃. (a3) An isovalue surface of conduction electron distribution in oxygen-reduced BaTiO_{3- δ} with δ = 4.2%. The two nearest-neighbor Ti atoms are highlighted. (a4) Conduction electrons on each Ti atom in the 119-atom cell (the number of conduction electrons on each Ti atom is obtained by integrating Ti d states from the band gap to the Fermi level).

However, supercell calculations of oxygen-reduced LiNbO_{3- δ} show more complicated results than rigid-band calculations. Figure 5(a1) shows the crystal structure of a 119-atom LiNbO₃ supercell that contains one oxygen vacancy. The oxygen vacancy is highlighted by the orange open circle. Figure 5(a2) shows $\delta_{\text{Li-O}}$ for each Li atom

and $\delta_{Nb\text{-}O}$ for each Nb atom in the LiNbO_{3-\delta} supercell (the definitions of $\delta_{\text{Li-}O}$ and $\delta_{\text{Nb-}O}$ are identical to those in the rigid-band calculations). We find that while there is non-negligible variation in $\delta_{\text{Li-}O}$ and $\delta_{\text{Nb-}O}$, the cation displacements on each Li and Nb atoms are nonzero throughout the supercell. For comparison, we also show

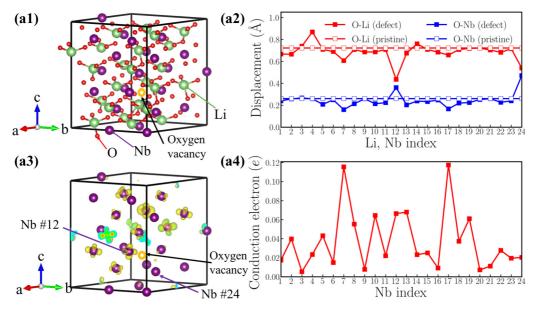


FIG. 5. (a1) Atomic structure of a 119-atom LiNbO₃ supercell that contains an oxygen vacancy. The green, purple, and red balls represent Li, Nb, and O atoms, respectively. The orange circle highlights an oxygen vacancy. (a2) Polar displacements of each Li (red square) and Nb atom (blue square). The solid squares are calculated from the 119-atom cell. The open squares are bulk $\delta_{\text{Li-O}}$ and $\delta_{\text{Nb-O}}$ of pristine LiNbO₃. (a3) An isovalue surface of conduction electron distribution in oxygen-reduced LiNbO_{3- δ} with δ = 4.2%. The two nearest-neighbor Nb atoms are highlighted. (a4) Conduction electrons on each Nb atom in the 119-atom cell (the number of conduction electrons on each Nb atom is obtained by integrating Nb d states from the band gap to the Fermi level).

the $\delta_{\text{Li-O}}$ and $\delta_{\text{Nb-O}}$ in pristine LiNbO₃ in panel (a2). We find that in the presence of oxygen vacancy in LiNbO_{3- δ}, the cation displacements are still substantial compared to undoped LiNbO₃.

The average value of $\delta_{\text{Li-O}}$ is 0.68 Å and the average value of $\delta_{\text{Nb-O}}$ is 0.24 Å, both of which are close to the results of rigid-band calculations with the same electron concentration (in the rigid-band approximation, $\delta_{\text{Li-O}}$ is 0.69 Å and $\delta_{\text{Nb-O}}$ is 0.21 Å). Figure 5(a3) shows an isovalue surface of conduction electron distribution in oxygen-reduced LiNbO_{3- δ} with δ = 4.2%. Different from oxygen-reduced BaTiO_{3- δ}, which has almost uniform conduction electron distribution, some of the Nb atoms have negligible conduction electrons, indicating that those Nb sites are almost insulating. This phenomenon can be more clearly seen from Fig. 5(a4), which shows the number of conduction electrons on each Nb site by integrating Nb d states from the band gap to the Fermi level. Nb no. 3, no. 9, and no. 20 have less than 0.01 e per atom, while Nb no. 7 and no. 17 have more than 0.12 e per atom. With electron doping in LiNbO₃, the conduction electrons on Nb sites are far from uniformly distributed. This implies that the charge disproportionation of conduction electrons on Nb atoms occurs in real materials. Such charge disproportion can be suppressed with a higher electron concentration. We calculated oxygen-reduced LiNbO_{3- δ} with $\delta = 8.4\%$. Cation displacements and conduction electron distribution on Nb d states are shown in Fig. S9 in the Supplemental Material [49]. While there is non-negligible variation in the electron distribution, all Nb atoms have conduction electrons with a higher concentration of oxygen vacancies, as expected.

Finally, we estimate the formation energy of a charge-neutral oxygen vacancy in BaTiO_{3- δ} and in LiNbO_{3- δ} using a supercell calculation. We study a charge-neutral oxygen vacancy by removing an oxygen atom from a charge-neutral supercell. The definition of formation energy of a charge-neutral oxygen vacancy in the oxygen-rich limit is

$$\Delta E_{\rm O}^f = E_T(V_{\rm O}) - E_{T0} + \frac{1}{2}E_{\rm O_2},\tag{2}$$

where $E_T(V_O)$ is the total energy of a supercell with one oxygen vacancy, and E_{T0} is the total energy of a pristine supercell. E_{O_2} is the total energy of an oxygen molecule (obtained in a spin-polarized calculation).

Figure 6 shows the oxygen vacancy formation energy in oxygen-reduced BaTiO_{3- δ} and oxygen-reduced LiNbO_{3- δ} as a function of oxygen vacancy concentration. Red points and blue triangles are the formation energies of oxygen vacancy in BaTiO_{3- δ} and LiNbO_{3- δ}, respectively. The blue cross is a reference value from previous works [59].

We use different supercells to test different concentrations of oxygen vacancies. The formation energy of an oxygen vacancy does not have a strong dependence on vacancy concentration, implying that the vacancy concentration is low enough such that vacancy-vacancy interaction is negligible. The formation energy of a charge-neutral oxygen vacancy in LiNbO_{3- δ} is larger than that in BaTiO_{3- δ} by about 0.9 eV per vacancy. This is reasonable considering the fact that the gap of LiNbO₃ is larger than that of BaTiO₃ by about 1 eV (see Fig. 3). While the formation energy of oxygen vacancy

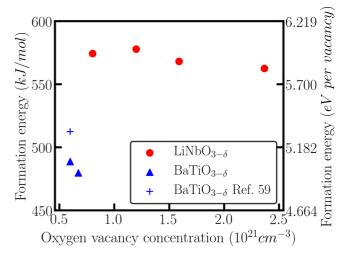


FIG. 6. Oxygen vacancy formation energy in oxygen-reduced BaTiO_{3- δ} (blue triangles) and in oxygen-reduced LiNbO_{3- δ} (red circles) as a function of oxygen vacancy concentration. The blue cross is a reference value from previous works [59].

in LiNbO_{3- δ} is higher, oxygen vacancy has been widely observed in LiNbO_{3- δ} in experiments [60–63].

IV. CONCLUSION

In conclusion, we perform first-principles calculations to study the possible coexistence of conduction electrons and polar distortions in *n*-doped BaTiO₃ and *n*-doped LiNbO₃, using both rigid-band modeling and more realistic supercell calculations. From rigid-band modeling, we find that upon electron doping, cation displacements in BaTiO₃ are quickly reduced and completely vanish at a critical electron concentration of 0.1 e/f.u. In contrast, in n-doped LiNbO₃, Li-O and Nb-O displacements are significantly larger than cation displacements in n-doped BaTiO₃, and more importantly they are much more robust and can persist even at a concentration of 0.3 e/f.u.In *n*-doped LiNbO₃, Li-O displacements decay more slowly than Nb-O displacements, while in *n*-doped BaTiO₃, Ba-O and Ti-O displacements decay approximately at the same rate. From supercell calculations (using oxygen vacancy as electron donors), we find that in BaTiO_{3- δ} with $\delta = 4.2\%$, cation displacements in BaTiO₃ are almost completely suppressed, which is consistent with the result of rigid-band modeling. Conduction electrons on Ti atoms are uniformly distributed, underlying rigid-band calculations. On the other hand, the results of oxygen-reduced LiNbO_{3- δ} ($\delta = 4.2\%$) from supercell calculations are more complicated than rigidband calculations. Substantial polar displacements $\delta_{\text{Li-O}}$ and $\delta_{\text{Nb-O}}$ occur throughout the supercell, but strong variations are found in conduction electron distribution. This implies that the rigid-band approximation should be used with caution in simulating electron-doped LiNbO₃ and related oxides.

Our work indicates that electron doping of LiNbO₃-type ferroelectrics is a simple and feasible approach to approximately creating the rare polar metallic phase. Incorporating doped ferroelectric semiconductors (in particular LiNbO₃-type ferroelectrics) into devices may lead to new functionality and applications.

ACKNOWLEDGMENTS

H.C. is supported by the National Natural Science Foundation of China under Project No. 11774236, Shanghai Pujiang Talents Program (Grant No. 17PJ1407300) and Seed grant of NYU-ECNU Research Institute of Physics. Y.C. and C.X.

are supported by Research Grants Council of Hong Kong under Projects No. 17200017 and No. 17300018, and the National Natural Science Foundation of China under Project No. 11874313. NYU Shanghai HPC and HKU-ITS provided computational resources.

- [1] D. Puggioni and J. M. Rondinelli, Nat. Commun. 5, 3432 (2014).
- [2] Y. Cao, Z. Wang, S. Y. Park, Y. Yuan, X. Liu, S. M. Nikitin, H. Akamatsu, M. Kareev, S. Middey, D. Meyers *et al.*, Nat. Commun. 9, 1547 (2018).
- [3] P. V. Balachandran, J. Young, T. Lookman, and J. M. Rondinelli, Nat. Commun. 8, 14282 (2017).
- [4] K. Page, T. Kolodiazhnyi, T. Proffen, A. K. Cheetham, and R. Seshadri, Phys. Rev. Lett. 101, 205502 (2008).
- [5] J. A. Bock, S. Lee, S. Trolier-McKinstry, and C. A. Randall, Appl. Phys. Lett. 107, 092902 (2015).
- [6] L. S. McCarty and G. M. Whitesides, Angew. Chem., Int. Ed. 47, 2188 (2008).
- [7] K. M. Rabe, C. H. Ahn, and J.-M. Triscone, *Physics of Ferroelectrics: A Modern Perspective* (Springer Science & Business Media, Berlin, 2007), Vol. 105.
- [8] A. Mooradian and G. Wright, Phys. Rev. Lett. 16, 999 (1966).
- [9] J. Bowlan, Ph.D. thesis, Georgia Institute of Technology (2010).
- [10] N. A. Hill, J. Phys. Chem. B 104, 6694 (2000).
- [11] P. W. Anderson and E. Blount, Phys. Rev. Lett. 14, 217 (1965).
- [12] Y. Shi, Y. Guo, X. Wang, A. J. Princep, D. Khalyavin, P. Manuel, Y. Michiue, A. Sato, K. Tsuda, S. Yu *et al.*, Nat. Mater. 12, 1024 (2013).
- [13] H. Xiang, Phys. Rev. B 90, 094108 (2014).
- [14] G. Giovannetti and M. Capone, Phys. Rev. B 90, 195113 (2014).
- [15] H. M. Liu, Y. P. Du, Y. L. Xie, J. M. Liu, C. G. Duan, and X. Wan, Phys. Rev. B 91, 064104 (2015).
- [16] E. I. P. Aulesti, Y. W. Cheung, Y.-W. Fang, J. He, K. Yamaura, K. T. Lai, S. K. Goh, and H. Chen, Appl. Phys. Lett. 113, 012902 (2018).
- [17] I. Lo Vecchio, G. Giovannetti, M. Autore, P. Di Pietro, A. Perucchi, J. He, K. Yamaura, M. Capone, and S. Lupi, Phys. Rev. B **93**, 161113(R) (2016).
- [18] H. Sim and B. G. Kim, Phys. Rev. B 89, 201107(R) (2014).
- [19] H. Padmanabhan, Y. Park, D. Puggioni, Y. Yuan, Y. Cao, L. Gasparov, Y. Shi, J. Chakhalian, J. M. Rondinelli, and V. Gopalan, Appl. Phys. Lett. 113, 122906 (2018).
- [20] Z. Fei, W. Zhao, T. A. Palomaki, B. Sun, M. K. Miller, Z. Zhao, J. Yan, X. Xu, and D. H. Cobden, Nature (London) 560, 336 (2018).
- [21] T. Kim, D. Puggioni, Y. Yuan, L. Xie, H. Zhou, N. Campbell, P. Ryan, Y. Choi, J.-W. Kim, J. Patzner *et al.*, Nature (London) 533, 68 (2016).
- [22] I.-K. Jeong, S. Lee, S.-Y. Jeong, C. J. Won, N. Hur, and A. Llobet, Phys. Rev. B 84, 064125 (2011).
- [23] J. Hwang, T. Kolodiazhnyi, J. Yang, and M. Couillard, Phys. Rev. B 82, 214109 (2010).
- [24] T. Kolodiazhnyi, M. Tachibana, H. Kawaji, J. Hwang, and E. Takayama-Muromachi, Phys. Rev. Lett. **104**, 147602 (2010).
- [25] T. Kolodiazhnyi, Phys. Rev. B 78, 045107 (2008).

- [26] Y. Wang, X. Liu, J. D. Burton, S. S. Jaswal, and E. Y. Tsymbal, Phys. Rev. Lett. 109, 247601 (2012).
- [27] S. Raghavan, J. Y. Zhang, O. F. Shoron, and S. Stemmer, Phys. Rev. Lett. **117**, 037602 (2016).
- [28] C. Won, Y. Park, K. Lee, H. Ryu, and N. Hur, J. Appl. Phys. 109, 084108 (2011).
- [29] D. Bohm and D. Pines, Phys. Rev. 92, 609 (1953).
- [30] W. Cochran, Adv. Phys. 9, 387 (1960).
- [31] V. M. Galitski and S. Das Sarma, Phys. Rev. B **70**, 035111 (2004)
- [32] Q. Zhang, T. Cagin, and W. A. Goddard, Proc. Natl. Acad. Sci. USA 103, 14695 (2006).
- [33] R. E. Cohen, Nature (London) 358, 136 (1992).
- [34] Y. Furukawa, K. Kitamura, A. Alexandrovski, R. Route, M. Fejer, and G. Foulon, Appl. Phys. Lett. 78, 1970 (2001).
- [35] G. Nataf, P. Grysan, M. Guennou, J. Kreisel, D. Martinotti, C. Rountree, C. Mathieu, and N. Barrett, Sci. Rep. 6, 33098 (2016).
- [36] K. Nakamura, J. Kurz, K. Parameswaran, and M. Fejer, J. Appl. Phys. 91, 4528 (2002).
- [37] Y. Noguchi, R. Inoue, and M. Miyayama, Adv. Condens. Matter Phys. 2016, 2943173 (2016).
- [38] P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).
- [39] W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).
- [40] M. C. Payne, M. P. Teter, D. C. Allan, T. Arias, and A. J. Joannopoulos, Rev. Mod. Phys. 64, 1045 (1992).
- [41] G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).
- [42] D. M. Ceperley and B. J. Alder, Phys. Rev. Lett. 45, 566 (1980).
- [43] J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E. Scuseria, L. A. Constantin, X. Zhou, and K. Burke, Phys. Rev. Lett. 100, 136406 (2008).
- [44] Y. Zhang, J. Sun, J. P. Perdew, and X. Wu, Phys. Rev. B **96**, 035143 (2017).
- [45] S. Abrahams, S. Kurtz, and P. Jamieson, Phys. Rev. **172**, 551 (1968).
- [46] X.-L. Wang, S. X. Dou, and C. Zhang, NPG Asia Mater. 2, 31 (2010).
- [47] M. Stengel, P. Aguado-Puente, N. A. Spaldin, and J. Junquera, Phys. Rev. B 83, 235112 (2011).
- [48] J. Fujioka, A. Doi, D. Okuyama, D. Morikawa, T. Arima, K. Okada, Y. Kaneko, T. Fukuda, H. Uchiyama, D. Ishikawa et al., Sci. Rep. 5, 13207 (2015).
- [49] See Supplemental Material at http://link.aps.org/supplemental/ 10.1103/PhysRevMaterials.3.054405 for additional discussions (details of crystal structures, comparison of LDA and PBEsol calculations, comparison of two type electrons in oxygen reduced $BaTiO_{3-\delta}$ and $LiNbO_{3-\delta}$, and some tests of oxygen reduced supercells.).
- [50] Landolt-Bornstein Table, edited by K.-H. Hellwege and A. M. Hellwege (Springer, Berlin, 1969).

- [51] A. M. Prokhorov and Y. S. Kuz'Minov, *Physics and Chemistry of Crystalline Lithium Niobate* (CRC, Boca Raton, FL, 1990).
- [52] H. H. Nahm and C. Park, Appl. Phys. Lett. 78, 3812 (2001).
- [53] K. F. Garrity, K. M. Rabe, and D. Vanderbilt, Phys. Rev. Lett. 112, 127601 (2014).
- [54] P. Li, X. Ren, G.-C. Guo, and L. He, Sci. Rep. 6, 34085 (2016).
- [55] G. Rupprecht and R. Bell, Phys. Rev. 135, A748 (1964).
- [56] A. Mansingh and A. Dhar, J. Phys. D 18, 2059 (1985).
- [57] B. Magyari-Köpe, S. G. Park, H.-D. Lee, and Y. Nishi, J. Mater. Sci. 47, 7498 (2012).

- [58] C. Lin, D. Shin, and A. A. Demkov, J. Appl. Phys. 117, 225703 (2015).
- [59] M. Choi, F. Oba, and I. Tanaka, Appl. Phys. Lett. 98, 172901 (2011).
- [60] Y. Li, W. G. Schmidt, and S. Sanna, Phys. Rev. B 91, 174106 (2015).
- [61] G. G. DeLeo, J. L. Dobson, M. F. Masters, and L. H. Bonjack, Phys. Rev. B 37, 8394 (1988).
- [62] D. Smyth, Ferroelectrics **50**, 93 (1983).
- [63] K. Sweeney and L. Halliburton, Appl. Phys. Lett. 43, 336 (1983).