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Topological and superconducting properties in YD; (D = In, Sn, T, Pb)
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Using first-principles calculations, we explore the electron properties of YD3 (D = In, Sn, T1, Pb) and predict
that YIns, YTI3, and YPb; are topological superconductor candidates. In the presence of spin-orbit coupling
effect, continuous band gaps for YIns;, YSn;, and YPb; are opened between their highest occupied bands
(N) and the lowest unoccupied bands (N + 1), where the different Z, invariants are obtained. Differently and
specially, there are type-II Dirac points (DPs) at the high-symmetry lines in YTIs, indicating one possibility of
topological Dirac semimetal. Furthermore, the nontrivial Rashba-like topological surface states are achieved at
the X point on the (001) surface for YIns, YTIs, and YPbs, as well as the Fermi arcs in YTI; connecting the
DPs. In addition to the topological properties, our electron-phonon coupling calculations indicate clearly that
these four intermetallics are all phonon-mediated superconductors. The calculated superconducting transition
temperatures of 7. = 0.96, 6.34, 2.17, and 4.37 K respectively for YIns, YSn;, YPbs, and YTI; agree well with

experiments.
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I. INTRODUCTION

Topological materials have attracted much attention after
the quantum spin Hall state (QSHS) being proposed theo-
retically [1-3] and revealed in the HgTe quantum wells [4]
experimentally. These materials can be detected the nontrivial
topological surface states (TSSs) protected by the symmetry
of their bulk. For example, topological insulators (TIs) [5—-10]
have gapped band structures in bulk around the Fermi level
but gapless TSSs at surface protected by time-reversal sym-
metry. Same as the Chern number defined in the whole two-
dimensional (2D) Brillouin zone (BZ) for three-dimensional
(3D) insulators, the topological invariants in 3D metals can
also be defined on a closed 2D manifold, such as the Fermi
surface [11].

To date, topological semimetals (TSMs) and topological
superconductors (TSs) have been suggested to extensively
possess potential applications in transport [12—15] and topo-
logical quantum computation [9,16-19]. TSMs [13,20,21]
have band crossings at the Fermi level, such as DPs protected
by additional crystal symmetry in bulk, and the nontrivial
TSSs with Fermi arcs [22,23]. Different from Dirac semimet-
als, Weyl semimetals [24-26] have paired Weyl points with
opposite chirality. Breaking time-reversal or inversion sym-
metry lifts the Kramers degeneracy of bands. Hence a pairwise
crossing of bands leads to a twofold instead of a fourfold de-
generacy. These twofold degeneracy points are protected and
topologically stable against any perturbation. To annihilate a
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pair of Weyl points with opposite chirality, the only way is to
move them to the same point in BZ. In nodal line semimetals
[21,27,28], the cross points constitute a line or a closed curve,
and the drumheadlike TSSs can be observed at the surface.
TSs [9,29-32] are distinguished by a superconducting gap
in bulk and Majorana fermions, a sort of exceptional quasi-
particle that is its own antiparticle and obeys non-Abelian
statistics, at boundary. Theoretically, a spinless p + ip type
superconductor can hold Majorana zero modes at the vortices.
The previous work by Fu et al. [7,9,33] has proposed that the
topological superconductivity can be realized on the interface
between a TI and a Bardeen-Cooper-Schrieffer (BCS) super-
conductor. Very recently, Zhang et al. [34] proposed a kind of
single-compound TS candidate 8-RhPb, that has nontrivial
spin-helical TSSs. The superconductivity in TSMs and the
corresponding interpretation [35-37] have also been proposed
in Cd3As; [38], PbTe, [39], and MoTe, [40]. These inspire us
to explore topological features in superconductors.

AG;3 (A =La, Y; G = Sn, In, Pb, TI) compounds [41-46],
crystallized in the AuCus-type cubic structure, have been
explored extensively and intensively. Much interest in these
systems is due to their abundantly physical phenomena, such
as superconductivity, heavy fermion behavior, and other novel
quantum properties [45-48]. The superconducting transition
temperature 7, = 6.25 and 7.0 K for LaSn; and YSnj, repec-
tively, are higher than Lalns and YInj that were reported with
T, lower than 1.0 K [43,49]. Other compounds, for instance,
PrSn; and NdSnj, hold antiferromagnetic order at the Néel
temperatures Ty of 8.6 and 4.5 K [50], respectively. CeSns,
exhibiting valence fluctuations, has been categorized as a
dense Kondo compound [51]. A few years ago, Ram et al.
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FIG. 1. Lattice structure (a) and BZ (b) of YD;. The green and
blue balls represent Y and D atoms, respectively. The red lines mark
out the high-symmetry paths for the bulk and the (001) surface. The
blue solid circles show the locations of the DPs in YTIs.

[52] systematically studied the Fermi surface properties of
AG3; (A = La, Y; G = Sn, In, Pb, TI) intermetallics under
pressure.

In the present work, we propose that the AuCus-type
intermetallics of YIns, YTI3, and YPb; are not only supercon-
ductors [53] but also topological materials. When considering
spin-orbit coupling (SOC) effect, by the evidences of the
band inversions and the nontrivial Z, invariants as well as the
Rashba-like gapless TSSs on the (001) surface, the nontrivial
topological properties are inferred to exist. On the basis of full
gaps between N and N + 1 bands, the Z, indices as (0; 111)
and (1; 111) are calculated for YIns and YPbs, respectively.
For YTI3, according to crystal symmetry, there are 24 type-1I
DPs with fourfold degeneracy at the high-symmetry lines.
The Fermi arcs linking two DPs are also observed at surface.
For YSnj3, it is a topologically trivial system. This paper is
organized as follows. First, we introduce the details of crystal
structure and first-principles calculations in Sec. II. Next, in
Sec. III, the calculation results are presented. Finally, Sec. IV
contains the discussion and conclusion.

II. CRYSTAL STRUCTURE AND
COMPUTATIONAL DETAILS

The face centered cubic structure of YD3 with space group
of Pm3m (No. 221) and holding apparent inversion symmetry
are shown in Fig. 1(a). Figure 1(b) displays the corresponding
BZ and the high-symmetry paths for electron and phonon-
related calculations. To investigate the electronic structures,
phonon spectra, and electron-phonon coupling (EPC), the
first-principles calculations are performed using the QUAN-
TUM ESPRESSO package [54] based on the density functional
theory [55,56] and the density functional perturbation theory
[57]. The generalized gradient approximation of Perdew-
Burke-Ernzerhof [58] type and the projector augmented wave
potentials are used for interactions between electrons and
nuclei [59,60]. An unshifted 18 x 18 x 18 k-point mesh are
adopted in the 3D BZ. The kinetic-energy cutoffs of the
plane wave expansion are 60, 75, 80, and 50 Ry, and the
energy cutoffs for charge density are 480, 600, 640, and
400 Ry for YIns, YSns, YTI3, and YPbs, respectively. The
optimized lattice constants are a = 4.709, 4.729, 4.809, and
4.899 A, respectively, closing to experimental values [49,61].
In the electronic structure calculations, the full relativistic
pseudopotentials are employed when taking the SOC effect
into account. In calculating the phonon dispersions with a
6 x 6 x 6 q mesh, since the effect of SOC is less important in
describing the vibrational properties [62-66], we neglect this
effect. The maximally localized Wannier functions for all Y d
and D sp orbitals are generated to construct the tight-binding
Hamiltonians. With the help of WannierTools codes [67], we
calculate the TSSs, Fermi surfaces, and spin textures.

II1. DETAILS OF RESULTS

A. Band structures and topological invariants

The orbital-resolved band structures of YD3; with
SOC effect are plotted along the high-symmetry path in
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FIG. 2. Orbital-resolved band structures with SOC effect of YIn; (a), (e), YSn;3 (b), (f), YTI;(c), (g), and YPbs (d), (h). (a)—(d) The red,
blue, and green bubbles represent the contributions of Y s, Y d, and D s orbitals, respectively. (e)—(h) The continuous band gaps between N
and N + 1 bands are daubed by yellow-green color. The DP in YTI; and the locations of the narrowest band gaps in three other materials are

highlighted by the ellipses.

054202-2



TOPOLOGICAL AND SUPERCONDUCTING PROPERTIES IN ...

PHYSICAL REVIEW MATERIALS 3, 054202 (2019)

TABLE 1. Parity products at TRIMs and the Z, indices of YD;.

YIl’l3 YSI‘l3 YT13 Ysz
TRIMs Parity products
r + + + +
X x3 - - - +
M x3 - + +
R + - + -
Plane (i = x, y, 2) Z, values
k=0 1 0 1 0
ki=m 1 0 1 1
(vo; V1Vav3) 0; 111) (0; 000) O; 111) (1;111)

Figs. 2(a)-2(d). Around the Fermi level (+3 eV), the D p (In,
Sn 5p; T1, Pb 6p) orbitals (not shown in Fig. 2) dominate the
bands and spread over the whole BZ while the contributions
from the Y 4s4d and D s (In, Sn 5s; Tl, Pb 6s) orbitals are
not that visible. In the vicinity of energy level at 2 eV, the
Y 4d orbital is predominant and the Y 4s orbital can only
be found near the R point. One can discover clearly that
there are band inversions [13,28,68], a remarkable signal for
topological materials, induced by Y 4 and In (Tl) s orbitals
around the M point in YIn; (YTI3). Nevertheless, in YSn3 and
YPbs, the band inversions are caused by Y d and Y s orbitals
around the R point.

Since time-reversal and inversion symmetries can lead to
spin degenerate bands, the tilted band crossing between the
N and N + 1 bands below the Fermi level about 0.7557 eV
at (0.5,0.5,0.19) [red ellipse in Fig. 2(g)] and along the
R-M direction for YTI; is fourfold degeneracy. Actually, we
checked the magnetic moments of these four systems. The d
orbitals of Y atoms don’t introduce local magnetic moments
in the cell so ensuring the time-reversal symmetry. In terms
of crystal symmetry, there are a total of 24 type-II DPs in BZ
and each of them is protected by C,4 rotational symmetry. If
the time-reversal or inversion symmetry is broken, one DP
will split into two Weyl points, and the crossings will move
away from the high-symmetry lines. Also, if conserving time-
reversal and inversion symmetries but breaking C4 rotational
symmetry or doping electrons/holes to gap out the DPs, we
can get a TI-like material. Thus the nontrivial Z, indices (0;
111), as shown in Table I, can be calculated via parity criterion
[69,70] because of the existence of inversion symmetry.

The eight time-reversal invariant momentum points
(TRIMs) in 3D BZ are defined as Iy, »,0 = %(mGl +
nGy + n3G3), where n; 23 = 0 or 1 and Gy 3 are the prim-
itive reciprocal lattice vectors. Then we can calculate the
strong topological index vy by (—1)* = ]_[?:, 3(T";), where
6(T";) is the product of parity eigenvalues of the occupied
bands below the gap at the TRIM I';. The weak topological
indices v 3 are defined as the products of parity eigenvalues
of four TRIMs in a plane (K., . = 7) offset from the I" point.

Different with YTI3, as marked by the yellow-green color
in Figs. 2(e), 2(f), and 2(h), there are continuous band gaps
between N and N + 1 bands for the other three materials on
which we focused. The narrowest gaps, highlighted by the
pink ellipses, are 35, 1, and 5 meV at (0.5, 0.5, 0.25), (0.32,
0.0, 0.0), and (0.31, 0.31, 0.31) for YIns, YSns, and YPbs,
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FIG. 3. Bright-colored red lines mean the TSSs on the (001)
surface of YIn; (a), YTl; (b), and YPb; (c). The purple dotted
lines show the chemical potentials at the energy levels of E — Ex =
+0.325, 40.29, and —0.10 eV for depicting Fermi surfaces of YInj,
YTI;, and YPb;, respectively.

respectively. Because such a global SOC gap exists in the
whole BZ, the topological Z, invariants can be defined. In
Table I, we show the parity eigenvalues at eight TRIMs and
give the Z, indices (vp; vivpv3) as (0; 111), (0; 000), and
(1; 111) for YIns, YSn3, and YPbs, respectively. It is clear
that YPbs is a strong topological material but YSnj isn’t and
YIn; is a weak topological material. Supposing that a plane
has nontrivial Z, indices, the QSHS can be revealed on that
plane. A Kramers pair of surface states connecting valence
and conduction states has to appear in the gap in this case
[24]. Therefore, we can obtain TSSs on the (001) surface,
which will be discussed at the next section. For details, in
Table II, we show the parity eigenvalues of each occupied
band at TRIMs for the four systems.

B. Surface states and Fermi surfaces

In addition to Z, invariants, the existence of TSSs is
another prominent hallmark of topological materials. Fortu-
nately, even though the fully gapped bands (as shown in
Fig. 2) are weird and unsatisfactory, the TSSs (as shown in
Fig. 3) are not overlapped and distinguished obviously from
the bulk bands on the (001) surface for YInsz, YTI3, and YPbs.
The Rashba-like TSSs protected by time-reversal symmetry,
closing the bulk band, are observed at the X point around
0.3 eV for YIns and YTI3, but —0.3 eV for YPbs. Note that the
crossing around —0.1 eV at the X point in YTI3, reflecting the
properties between N — 1 and N bands, is out of the scope of
our present work. Another mentionable thing is that the TSS in
YPbjs crosses over the Fermi level. This feature can contribute
to its transport properties and will be observed easily in angle-
resolved photoemission spectroscopy (ARPES) experiments
[34]. Figure 4 shows the Fermi surfaces at the chemical
potentials of 0.325, 0.29, and —0.1 eV, as highlighted by
the purple dotted lines in Fig. 3, and corresponding spin
textures for YIns, YTI3, and YPbs, respectively. Once YInj
and YPb; become superconductors below superconducting
temperature, the TSSs around the X point will be guided into
superconducting phase by the proximity effect and possess the
equivalent p + ip type superconductivity [31,33].

Besides the closed Fermi surfaces (Fig. 4), the discon-
nected open Fermi arcs, lines that originate and terminate at
the same DP or connect two different DPs together [20], can
give rise to the edge modes of the QSHS [24]. Theoretically,
there are twelve projected DPs (green solid circles) at (£0.5,
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TABLE II. Parity eigenvalues of 25 (27) occupied bands at eight TRIMs of YIn; and YTI; (YSn; and YPbs).

TRIMs Yln, YSn; YTI, YPb;,

r +———++++ +———+++++ +———++++ o ——FH+++
+4+++++++ +4++++++++ ++++++++ +++++++++
++++++-—- R +4+++++-—- ++++-——++

X x3 +-———- ++ +-———- ++- +-———+—+ +————+—+-
————++—+ ———tt+—+-=- - ———= +++ —— =t —++——
————t++—++ ——t+—++-- ————t+—+++ ——t—++++-

M x3 e +- +-———- +—+ +-———= ++ -+ -+
-+ ———++-—+- ————t—4- ———++-—+-
+-—F+——+++ —+——++++- +-—t+——+++ -ttt

R +-—— 4+ ++ ottt +-——++++ -+ttt
+4+++++++ +++++++++ +4+++++++ +H++++++++
+4+4++++-—- +4+++-———+ +4++++-— +4+4++-————+

Products +-—+ +—+- +-—+ +++-

40.19), (£0.19, £0.5), and (£0.5, £0.5) on the (001) surface
in YT, as shown in Fig. 5. Owing to the interference of
the bulk bands along the X-M and the R-M directions, the
DPs are hidden, which results in difficult observation of the
Fermi arcs. Even so, we could find clearly the ropelike Fermi
arcs connecting two DPs in Fig. 5(b). A previous work [71]
discussed that the Fermi arcs on Dirac semimetal surface are
not topologically protected, unlike the Fermi arcs in Weyl
semimetals, and can be continuously deformed into a closed
Fermi contour by a small bulk perturbation.

C. Phonon dispersions and superconductivity

In this section, we focus on the conclusions of the EPC
properties in YDs (see the Supplemental Material [72] for
more details). As we can see from the purely positive phonon
spectra (Fig. S1), these four materials are all dynamically
stable. To enhance the total EPC, one can see from the
phonon spectra weighted by the EPC A, that the soft phonon

(a) (b) ©

modes make critical contributions. Furthermore, combining
the phonon dispersions weighted by the atomic vibrations as
well as by the EPC A, we can find that the main contribution
to the EPC is from the D atoms at Cu sites, whereas the Y
atoms only make limited contributions to the EPC. Finally,
the superconducting transition temperature of 7, = 0.96, 6.34,
2.17, and 4.37 K, respectively for YIns, YSn3, YTls, and
YPbs, are very close to the experimental values of 7, = 0.78,
7,1.52, and 4.72 K [49,61], and also in good accordance with
one recent DFT result [53]. This indicates that our results
are reliable and all the YD; systems are phonon-mediated
superconductors.

IV. DISCUSSION AND CONCLUSION

Some previous proposals of TS candidates, such as Cu/Nb-
doped Bi,Se; [73,74], In-doped SnTe [75], B-RhPb, [34],
and TaSes [76], have been theoretically predicted or exper-
imentally verified. Searching for intrinsic TSs, introducing
superconductivity by doping in TIs or adding pressure, and
building heterostructures by TIs and superconductors are the
major approaches to realize topological superconductivity

in real materials. Recently, superconductivity has also been
observed in TSMs PdTe, [39,77], MoTe, [40], and YPtBi
©
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FIG. 4. Fermi surfaces and corresponding spin textures of YIns
(a), (d), YTI3 (b), (e), and YPbs (c), (f) at the chemical potential of
0.325, 0.29, and —0.1 eV, respectively. The yellow arrows mean the
directions of spin at TSSs.
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FIG. 5. (a) Fermi surface of YTI; at a chemical potential of
—0.7557 eV where the DPs (green circle) are located. (b) The Fermi
surface filtered out the bulk bands.
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[78]. Hashimoto et al. [39] proposed that the orbit-momentum
locking is the key in TSMs to interpret the superconducting
gap structure of the possible superconducting state.

Here we show theoretically that three promising candidates
of YIns, YTIs, and YPbs, whose superconductivity and other
interesting physical properties have been reported for many
years, are topologically nontrivial. Compared to the above
reported TS candidates, these three systems have simple
AuCus-type cubic structure that avoids the effect of impurity,
disorder, and distortion caused by doping. Along the X-M
path, the SOC effect opens visible band gaps so that the inside
TSSs can be distinguished cushily, easy to observe in ARPES
experiments, especially for YPbs.

In conclusion, we have predicted three TS candidates of
YIns, YTI;, and YPbs by first-principles calculations. The
superconductor YTIs is a topological type-II Dirac semimetal
with 24 tilted DPs at boundary. The nontrivial topological
invariants Z, are (0; 111) and (1; 111) for YIn; and YPbs,
respectively. The Rashba-like gapless TSSs and the Fermi arcs
on (001) surface confirm our results. The intrinsic supercon-
ductivities are found using the framework of the BCS micro-
scopic theory, proving that all these four systems are phonon-
mediated superconductors. Based on our work, more materials
of the AuCuj-type structure could be explored for searching
the semimetallic properties and Majorana fermions in experi-
ment and theory, such as LaSnj3, Lalns, LaTls, and LaPbs.
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