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We propose a framework for optimization of the chemical composition of multinary compounds with the aid of
machine learning. The scheme is based on first-principles calculation using the Korringa-Kohn-Rostoker method
and the coherent potential approximation (KKR-CPA). We introduce a method for integrating datasets to reduce
systematic errors in a dataset, where the data are corrected using a smaller and more accurate dataset. We apply
this method to values of the formation energy calculated by KKR-CPA for nonstoichiometric systems to improve
them using a small dataset for stoichiometric systems obtained by the projector-augmented-wave method.
We apply our framework to optimization of RFe12-type magnet compounds (R1−αZα )(Fe1−βCoβ )12−γ Tiγ , and
benchmark the efficiency in determination of the optimal choice of elements (R and Z) and ratio (α, β, and γ )
with respect to magnetization, Curie temperature, and formation energy. We find that the optimization efficiency
depends on descriptors significantly. The variables β, γ , and the number of electrons from the R and Z elements
per cell are important in improving the efficiency. When the descriptor is appropriately chosen, the Bayesian
optimization becomes much more efficient than random sampling.
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I. INTRODUCTION

Machine learning is attracting much attention these days,
and its application to data obtained by first-principles cal-
culation is a promising way to accelerate the exploration of
novel materials. The basic idea is as follows: (i) introduce a
numerical representation x for the materials, which is called
a descriptor, (ii) calculate a property y for materials from the
search space of the descriptor by first-principles calculation,
and (iii) infer a relation y = f (x) between x and y from the
thus obtained data by modeling f . Many efforts have been
made to develop models and descriptors that work in materials
discovery [1–9]. These models can be used to identify promis-
ing candidates by predicting the property f (x′) for unknown
materials x′. It is also possible to perform the modeling and
the sampling alternately to obtain the optimal x as quickly as
possible, which is called optimization.

Bayesian optimization (BO) is a powerful technique to
find the maximum (or the minimum) of an unknown function
along this idea. It is based on Bayesian modeling using a
dataset collected in the previous sampling-modeling itera-
tions, and it does not require an explicit form of the function
y = f (x). This method is efficient because it takes account
of the uncertainty of a model in addition to the mean value.
Figure 1 illustrates a typical situation in which BO is efficient.
The dashed line is the true model. Suppose we have four
sampled points that are denoted by black circles. By Bayesian
modeling, we obtain the mean value (solid line) and the
uncertainty (gray region). In this situation, the mean value
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does not give good prediction for the highest-score point.
However, by considering the information of the uncertainty,
one can find a significant probability that the true model has
the maximum between the two rightmost data points.

BO has been recently applied in various problems in mate-
rials science [10–12]. It has also a potential for application
to optimization of a chemical composition [13], but there
were no reports on quantitative estimation of efficiency in
such a problem, avoiding possible overestimation by mere
luck to the best of our knowledge. In such applications,
we need to properly choose a search space, a descriptor for
the candidate systems, and a score to describe the performance
that are suitable for the problem. Otherwise, the efficiency of
the scheme is deteriorated. A descriptor—a form to which the
input data are encoded—is especially crucial [2,5–8,14].

Accuracy of the first-principles calculation is also of great
importance in the computer-aided materials search. How-
ever, conventional methods are often insufficient to achieve
enough accuracy, while sophisticated schemes are too time-
consuming for the purpose. For example, the magnetic tran-
sition temperature is overestimated in the mean-field ap-
proximation. Systematic errors also come in from numerical
factors, such as a limited number of basis functions.

It is a promising idea to improve the data by using a
smaller dataset from more accurate calculations or experi-
ments [15,16]. This idea is also seen in the notion of transfer
learning, which uses referential datasets that are different
from the target dataset, and transfers the knowledge from the
reference to the target [17,18]. However, there is no method
that works for any purposes, and we need to devise a method
that is suitable for each of the problems on the basis of
knowledge about the origin of the error.
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FIG. 1. Schematic illustration of a typical situation in which
Bayesian optimization works efficiently. The dashed line represents
the true model, the black circles denote sampling points, the solid
line shows a model obtained from the sampling points, and the gray
region shows a confidence interval of the model.

In this paper, we propose a practical framework for op-
timizing nonstoichiometric composition of multinary com-
pounds based on Bayesian optimization and first-principles
calculation. We perform a benchmark of our scheme and
discuss its efficiency in the optimization using a dataset ob-
tained by first-principles calculation with the Korringa-Kohn-
Rostoker method and the coherent potential approximation
(KKR-CPA) for systems with nonstoichiometric composi-
tions. We investigate the performance of descriptors, and we
discuss how we can choose an efficient one for problems.
To set up a pragmatic problem, we deal with an issue from
the cutting edge of the materials study on hard magnets. We
also present a method for correcting systematic errors in the
formation energy by using a smaller but more accurate dataset.
Our idea is to construct a model of errors on the basis of our
understanding of it.

This paper is organized as follows: In Sec. II, we de-
scribe our problem setup for the benchmark, providing the
background. In the first part of Sec. III, we present a brief
summary of the whole framework. We then provide details
of Bayesian optimization and the first-principles calculation
in the subsequent subsections. Section III C is devoted to the
method for integrating datasets that we use to improve the
formation energy. We present the results of the benchmark and
the data integration in Sec. IV. Finally, we conclude the paper
with a summary in Sec. V.

II. PROBLEM SETUP AND ITS BACKGROUND

RFe12-type compounds having ThMn12 structure have been
considered as a possible main phase of a strong hard-magnet
because they are expected to have high magnetization due
to its high Fe content, and to have high magnetocrystalline
anisotropy if the R element is properly chosen [19–37]. The
magnetic properties of NdFe12N were evaluated theoreti-
cally a few years ago [38], and its high magnetization and
anisotropy field were confirmed by a successful synthesis of
NdFe12Nx film [39,40].

Unfortunately, NdFe12N and its mother compound NdFe12

are thermally unstable. They cannot be synthesized as a bulk

without substituting another element for a part of the Fe
elements. Titanium is typical of such a stabilizing element
[41,42]. Introduction of Ti, however, reduces the magnetiza-
tion significantly. Co also has a potential to work as a stabiliz-
ing element according to a prediction by first-principles calcu-
lation [43]. Compared to Ti, Co is favorable in terms of mag-
netization. In fact, a recent experiment on Sm(Fe0.8Co0.2)12

film showed that it has superior saturation magnetization and
anisotropy field to Nd2Fe14B, the main phase of the current
strongest magnet [44]. Chemical substitution at the R site also
affects structural stability. Zirconium has attracted attention
as a stabilizing element at the rare-earth site [45–48]. Recent
first-principles calculation predicted that Dy also works as a
stabilizer [49]. Therefore, optimization of the chemical com-
position of RFe12-type compounds in terms of stability and
magnetic properties is an important issue for the development
of next-generation permanent magnets.

Bearing these in mind, we set RFe12-type magnet com-
pounds as target systems. In particular, we optimize the chem-
ical formula of (R1−αZα )(Fe1−βCoβ )12−γ Tiγ (R = Y, Nd, Sm;
Z = Zr, Dy) so that it maximizes magnetization, the Curie
temperature, or minimizes the formation energy from the
unary systems in the benchmark. Therefore, the problem is a
combination of optimization with respect to the compositions
(α, β, and γ ) and optimization with respect to the choice
of elements for R and Z . We discuss the efficiency of the
optimization by comparing a number of iterations required
in Bayesian optimization with that in random sampling. We
also study how the efficiency is affected by the choice of
descriptor.

III. METHODS

Figure 2 shows the workflow in our optimization frame-
work. At the beginning of the scheme, the user prepares a
list of candidate compounds. The candidates are expressed
in the form of a descriptor. In this study, we prepare
11 types of descriptors for the (R1−αZα )(Fe1−βCoβ )12−γ Tiγ
(R = Y, Nd, Sm; Z = Zr, Dy) systems, which we discuss in
Sec. III A.

Then, the candidate list is passed to the optimizer. The role
of the optimizer is to pick one system from the candidate
list so that a system with a high score is quickly found in
the whole scheme. Because it does not have enough data to
perform Bayesian optimization at the beginning, it randomly
chooses a system from the list. It receives feedback from a
scorer later in the scheme, and records it. When the record
reaches a certain size, the sampling method is switched to
Bayesian optimization. To cover the role of the optimizer, we
use a Python module called “COMmon Bayesian Optimiza-
tion library” (COMBO) [10,50]. We present the parameters
used in our benchmark in Sec. III A.

In the next stage, a quantum simulator calculates physical
properties for the system chosen, which is the most time-
demanding process in the scheme. The details in our simu-
lation are described in Sec. III B.

Then, the scorer integrates the calculated properties to a
score. It also improves the estimated values by using the
referential data before generating the score. In our application,
we use the value of magnetization, Curie temperature, or the
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FIG. 2. The workflow of the proposed scheme for materials search. The solid squares denote activities; the dashed squares with round
corners represent datasets. BO stands for Bayesian optimization, and CL stands for candidate list.

formation energy as a score. As for the formation energy, we
improve it by the method for integrating datasets presented in
Sec. III C. The preparation of the referential data is described
in Sec. III B. The score is fed back to the optimizer to increase
the size of the data used in Bayesian optimization.

The iteration loop is repeated until the number of iterations
reaches a criterion. Otherwise, the workflow goes back to the
optimizer. After the loop has ended, the candidate with the
best score found in the iterations is output.

A. Bayesian optimization

As mentioned above, we use COMBO [10,50] to cover
the role of the optimizer in Fig. 2. We use Thompson sam-
pling as a heuristic to the exploration-exploitation problem
in optimization. The dimension of the random feature maps,
which determines the degree of approximation for the Gaus-
sian kernel, is set to 5000. The first 10 samples are chosen
randomly without using Bayesian optimization. The number
of iterations is set to 100, including the first 10 iterations with
the random sampling.

The candidate list consists of (R1−αZα )(Fe1−βCoβ )12−γ Tiγ
systems for all combinations of R = Y, Nd, Sm; Z = Zr, Dy;
α = 0, 0.1, . . . , 1; β = 0, 0.1, . . . , 1; γ = 0, 0.5, . . . , 2.
There are duplicates on the list (e.g., YZr0Fe12 and
YDy0Fe12), and the number of unique items is 3245 out
of the 3 × 2 × 11 × 11 × 5 = 3630 systems.

We use 11 different sets of descriptors listed in Table I. The
descriptors consist of the number of electrons per cell (N),
the number of electrons from the R element per cell (NR),
the number of electrons from the Z element per cell (NZ ),
NR + NZ (≡ N2a), the number of electrons from the transi-
tion elements—namely Fe,Co,Ti—per cell (NT), the atomic

number of the R element (ZR), the atomic number of the
Z element (ZZ ), an index for the R element (nR = 0, 1, 2
corresponding to R = Y, Nd, Sm), an index for the Z element
(nZ = 0, 1 corresponding to Z = Zr, Dy), the Z content per
cell (α), the Co/(Fe+Co) ratio (β), the Ti content (γ ), and
the values of α1, α2, α3, and α4 when the chemical formula is
expressed in the form of (Y1−α1−α2−α3−α4 Ndα1 Smα2 Zrα3 Dyα4

)
(Fe1−βCoβ )12−γ Tiγ .

B. First-principles calculation

In the “Simulator” block in Fig. 2, we perform first-
principles calculation based on density functional theory with
the local density approximation [51,52]. We use the open-core
approximation [53–55] to the f -electrons in Nd, Sm, and Dy
and apply the self-interaction correction [56].

We assume the ThMn12 structure (Fig. 3) for the
(R1−αZα )(Fe1−βCoβ )12−γ Tiγ systems. The lattice parame-
ters are determined by linear interpolation from those for
RFe12, RFe11Ti, ZFe12, ZFe11Ti, and RCo12. These values
for the stoichiometric systems were calculated with the

TABLE I. 11 Descriptors used in the Bayesian optimization. See
the text for a description of the variables N , NR, NZ , N2a, NT, ZR, ZZ ,
nR, nZ , α, β, γ , α1, α2, α3, and α4.

no. 1 N
no. 2 N2a, NT no. 7 N2a, β, γ

no. 3 NR, NZ , NT no. 8 NR, NZ , β, γ

no. 4 ZR, ZZ , α, NT no. 9 ZR, ZZ , α, β, γ

no. 5 nR, nZ , α, NT no. 10 nR, nZ , α, β, γ

no. 6 α1, α2, α3, α4, NT no. 11 α1, α2, α3, α4, β, γ
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FIG. 3. The 2a, 8j, 8i, and 8f Wyckoff positions in the ThMn12

structure. Some bonds are shown as guides to the eye to illustrate the
three-dimensional structure.

projector-augmented-wave (PAW) method [57,58] using a
software package QMAS [59]. We use the Perdue-Burke-
Ernzerhof (PBE) exchange-correlation functional [60] of the
generalized gradient approximation (GGA) to obtain adequate
structures. The values for ZFe11Ti and RCo12 are presented
in Appendix A. Those for RFe12, RFe11Ti, and ZFe12 are in
Refs. [49,61,62].

In the treatment with the CPA [63–65], we assume
quenched randomness for random occupation of the elements:
the element R and Z are assumed to occupy the 2a site (see
Fig. 3 for the Wyckoff positions). Titanium is assumed to
occupy the 8i site. Iron (cobalt) is assumed to occupy the 8f,
8i, and 8j sites with a common probability of 1 − β (β) to
these sites.

We calculate the magnetization, the Curie temperature, and
the formation energy from the unary systems. We use the
raw value of magnetization from KKR-CPA. To estimate the
Curie temperature, we calculate intersite magnetic couplings
by using Liechtenstein’s method [66], and we convert them
to the Curie temperature using the mean-field approxima-
tion [61]. Although this procedure overestimates the Curie
temperature, we can expect from previous results that it can
capture material trends because theoretical values within the
mean-field approximation had a significant correlation with
experimental Curie temperatures [67].

The best value among the candidates is 1.76 T (DyFe12) for
magnetization, 1310 K [Sm(Fe0.2Co0.8)12] for Curie tempera-
ture, and −2.85 eV (SmCo10Ti2) for the formation energy. It
should be noted, however, that the values on the list cannot
be directly used as information for experimental synthesis
because the data do not include information of phase competi-
tion (especially with Th2Zn17-type and Th2Ni17-type phases),
magnetic anisotropy, and contribution to the magnetization
from the f -electrons. We cover this subject in Appendix D,
and we provide lists of some of the best systems with the
physical properties there.

As for the formation energy, KKR needs too many com-
putational resources to obtain an accurate energy difference
between systems when they have far different structures from
each other. We use the method that we describe in the follow-

ing subsection to correct the energy difference calculated by
KKR-CPA with referential data of total energy obtained by
PAW.

C. A method for integration datasets

Let us consider the formation energy from the unary sys-
tems defined as follows:

�E ≡ E [(R1−αZα )(Fe1−βCoβ )12−γ Tiγ ]

− E [(the unary systems)], (1)

where “(the unary systems)” is defined as

(the unary systems)

= (1 − α)R + αZ

+ (1 − β )(12 − γ )Fe + β(12 − γ )Co + γ Ti, (2)

and E [·] denotes the total energy of the system
in the square brackets. Because the structures of
(R1−αZα )(Fe1−βCoβ )12−γ Tiγ and each of the unary systems
are much different from one another, it is not efficient
to directly calculate this formation energy with the KKR
method, although it can deal with nonstoichiometric systems
with CPA. Our idea is to calculate the formation energy of
stoichiometric systems more accurately by another method,
and use calculated energies as reference data.

We construct a stochastic model for the total energy of
(R1−αZα )(Fe1−βCoβ )12−γ Tiγ based on the expectation that
the smaller the structural difference is between the two sys-
tems, the more accurate is the energy difference given by
KKR-CPA. To quantify the difference between the systems,
we consider a descriptor with which the difference between
the systems (�x and �y) is well-described by the distance (|�x −
�y|). Let us denote the reference systems in the form of the
descriptor by �x R

1 ,�x R
2 , . . . ,�x R

M , where M is the number of the
reference systems. The descriptor here does not have to be
identical to the descriptor used in the Bayesian optimiza-
tion. In the demonstration, we use a set of (α′, β ′, γ ′) ≡
(α, β(12 − γ )/12, γ /12) with which the search space can be
expressed as (R1−α′Zα′ )(Fe1−β ′−γ ′Coβ ′Tiγ ′ )12 irrespective of
the choice of the descriptor in the optimization.

For each of the reference points �x R
i , we construct a stochas-

tic model Ẽi[�y] for the total energy of a system �y (see also the
graphs outside the box in Fig. 4):

Ẽi[�y] − E
[�x R

i

] = E ′[�y] − E ′[�x R
i

] + εi. (3)

The two E ’s on the right-hand side (to which primes are
attached) are the total energy calculated with KKR-CPA,
whereas E [�x R

i ] on the left-hand side is evaluated by a more
accurate method, for which we use PAW in the present work.
εi is a random variable whose distribution is N (0, S2

i ), i.e.,
the normal distribution whose mean is zero and variance is
S2

i , where S2
i ≡ σ 2|�y − �x R

i | and σ 2 is a parameter we will
estimate later. This model describes the expectation that the
deviation of the energy difference (the first two terms on the
right-hand side) from the true difference (the left-hand side)
tends to be large when the difference, |�y − �x R

i |, is large. The
graphs outside the box in Fig. 4 depict how Ẽi behave: there
are three models corresponding to the three reference systems
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FIG. 4. A schematic diagram of the procedure for constructing
an integrated model. The three graphs outside the box denote the
models defined by Eq. (3). They are integrated into the model
described by Eq. (10).

(�xR
1 ,�xR

2 ,�xR
3 ), and the error εi in each model is large when the

distance of the reference point from �y is large.
We then integrate these models, Ẽ1, . . . , ẼM , into a single

model Ẽ by imposing the following condition to the distribu-
tion of εi:

Ẽ1[�y] = Ẽ2[�y] = · · · = ẼM[�y] ≡ Ẽ [�y]. (4)

This condition can be rewritten as follows:

εi = Ẽ [�y] − E
[�x R

i

] − E ′[�y] + E ′[�x R
i

]
. (5)

Therefore, the conditional probability distribution of Ẽ is

Pr(Ẽ [�y] = t ) =
∏

i Pi
(
t − E

[�x R
i

] − E ′[�y] + E ′[�x R
i

])
∫

dt ′ ∏
i Pi

(
t ′ − E

[�x R
i

] − E ′[�y] + E ′[�x R
i

]) ,

(6)

where Pi denotes the probability distribution function of
N (0, S2

i ). It is straightforward to see that this conditional
distribution is the normal distribution whose mean μ̃ and
variance S̃2 are

μ̃ = E ′[�y] + 1

�

∑
i

ωi
{
E

[�x R
i

] − E ′[�x R
i

]}
, (7)

S̃2 = σ 2

�
, (8)

where ωi is a weight and � is a normalization factor that are
defined as

ωi ≡ 1∣∣�y − �x R
i

∣∣ , � ≡
∑

i

ωi. (9)

In another expression, our integrated model is

Ẽ [�y] = E ′[�y] + 1

�

∑
i

ωi
{
E

[�x R
i

] − E ′[�x R
i

]} + ε̃, (10)

where ε̃ is a random variable whose distribution is N (0, S̃2).
Algorithm 1 summarizes the construction of the model ex-

FIG. 5. A schematic plot of ẼLOO,i for i = 1 and M = 3.

plained so far in the form of a pseudocode. Note that the value
for the input variable σ 2 has not yet been determined. The
characteristics of Ẽ [�y] is illustrated in the right-bottom panel
in Fig. 4. Although Ẽ [�y] is singular at �y = �xR

i , it is easy to see
that this is removable and lim�y→�xR

i
Ẽ [�y] = E [�xR

i ].

Algorithm 1 A pseudocode of the algorithm for determination
of μ̃ in Eq. (7) and S̃2 in Eq. (8). This needs σ 2 and �i as inputs,
which are calculated by the algorithm shown in Alg. 2.

Input: �xR
i (i = 1, . . . , M), �y �∈ {�xR

i } : descriptor; σ 2;
E ′[�y]: energy estimation; �i ≡ E [�xR

i ] − E ′[�xR
i ]

Output: μ̃, S̃2

Initialize μ̃ ← 0, � ← 0
for i = 1 to M do

� ← � + 1/|�y − x �R
i |

μ̃ ← μ̃ + �i/|�y − x �R
i |

end for
Average: μ̃ ← μ̃/� + E ′[�y] [Eq. (7)]
Variance: S̃2 ← σ 2/� [Eq. (8)]

The formation energy from the unary systems can be
calculated as �E 	 Ẽ [�y] − E [(the unary systems)], where
E [(the unary systems)] is calculated by an accurate method.

To complete the formulation, we discuss estimation of
σ 2 based on the data for the reference systems. We use
the maximum likelihood estimation. However, it cannot be
directly applied to our model because the distribution of ε̃

becomes the δ function in the limit of �y → �x R
i , regardless of

the value of σ 2. To avoid this singularity, we consider a model
ẼLOO,i that is constructed from all reference systems but �x R

i .
Figure 5 depicts the construction of such a model. Now, we
consider the probability of ẼLOO,i[�y] at �y = �x R

i . Regarding the
probability for ẼLOO,i[�y = �x R

i ] = E [�x R
i ] as a likelihood Li, we

select the value of σ 2 that maximizes L = ∏
i Li. We then

obtain

σ 2 = 1

M

∑
i

�LOO,i
(
E

[�x R
i

] − E ′[�x R
i

])2
, (11)

where

�LOO,i ≡
∑
j �=i

1∣∣�x R
i − �x R

j

∣∣ . (12)

The determination of σ 2 is summarized in a form of a pseu-
docode in Alg. 2. The output values of σ 2 and �i correspond
to those in the algorithm described in Alg. 1.
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Algorithm 2 A pseudocode of the algorithm for determination
of σ 2 in Eq. (8). The energy difference �i is also output to be used
in the algorithm described in Alg. 1.

Input:�xR
i (i = 1, . . . , M): descriptor;

E [�xR
i ], E ′[�xR

i ]: energy estimation
Output: �i(i = 1, . . . , M), σ 2

Initialize σ 2 ← 0
for i = 1 to M do

�i ← E [�xR
i ] − E ′[�xR

i ]
σ 2 ← σ 2 + �2

i

∑
j �=i 1/|�xR

i − �xR
j |

end for
σ 2 ← σ 2/M [Eq. (11)]

In the actual application, we calculate E ′[�x R
i ] with the

KKR-LDA method and E [�x R
i ] with the PAW-GGA method.

We need to calibrate E [�x R
i ] with a linear term because the

difference in the treatment of the core electrons is another
major source of error in the total energy, which is described
well by a linear function. We deal with it by extending our
model to include an adjustable linear term, and we use it in
the actual calculation. We discuss this extension of the model
in Appendix B.

IV. RESULTS AND DISCUSSION

A. Integration method

We show how the integration model explained in Sec. III C
works before we present the benchmark of the whole scheme
in the next subsection. Let us take a simple example first:
we consider a one-dimensional function E [x] = sin(πx) as
a true model. Assume that we have many data about E ′[x],
which is an approximate function and actually obeys E ′[x] =
sin(πx) + 2x. Because their derivatives differ from each other
by 2, the difference E ′[x] − E ′[xR

i ] deviates from E [x] −
E [xR

i ] roughly by 2(x − xR
i ). The assumption of the model

described in Sec. III C was that the error in E ′[x] is large when
|x − xR

i | is large. This is correct in the magnitude of the errors,
but there is a bias in its sign. In this example, we prepare a
dataset of E ′[x] for x = −0.5 to 0.5 with an interval of 0.02.
We choose five reference points xR

i (i = 1, . . . , 5) from the
x-values, and we prepare a dataset of E [xR

i ].
The result of the prediction is shown in Fig. 6. The original

points of E ′[x] are shown as points in cyan. The purple points
show the mean value of the model; the light purple region
shows the values of the standard deviation. The green curve
shows E [x], the true model, and the green circles are the
reference points used in the prediction.

The mean values, which may be used as values of a point
estimation, are improved from the original data in most of the
region. The error region also covers the line of the true model
except in the region x > 0.26.

It is noteworthy that the bias in the sign of the error men-
tioned above makes the uncertainty of the model large. This
would be improved if we assumed an asymmetric distribution
for εi in Eq. (3). However, the resultant form of the integrated
model becomes more complicated.

Next, let us see the results of the formation energy obtained
by this method. Figure 7 shows the formation energy of
(Sm1−αZrα) (Fe1−βCoβ )12−γ Tiγ from the unary systems for
γ = 0 (left) and γ = 0.5 (right). The mean values are shown
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3

-0.5 -0.25 0 0.25 0.5

E

x

Prediction

Reference

Original

FIG. 6. Results of the integration scheme when E [x] = sin(πx)
(green line) and E ′[x] = sin(πx) + 2x (cyan points). The green
circles denote the points of reference, E [xR

i ]. The mean value of the
improved model, Ẽ [x], is denoted by the purple points. The standard
deviation is denoted by the region in light purple.

in the top two figures, and the standard deviations are shown
in the bottom two figures. In each figure, the horizontal axes
show values of the Co/(Fe+Co) ratio (β), and the vertical
axes show values of the Zr concentration (α).

The standard deviation of the model is zero at the corners
of the figure in γ = 0 (left bottom) because they correspond
to the reference points, namely SmFe12, ZrFe12, SmCo12, and
ZrCo12. Therefore, the mean values at the corners of the left
top figure are identical with the reference data (obtained by
PAW-GGA). Because the other reference points are SmFe11Ti
and ZrFe11Ti (both at β = 0, γ = 1), the contours are placed
slightly to the right in γ = 0. This is more obvious in the plot
for γ = 0.5 (the right bottom panel).

Although we used the mean values (μ̃) in the Bayesian
optimization in Sec. IV B, it is important to check how the
model has uncertainty in its prediction, which is typically
represented by the standard deviation S̃: the model needs
more reference points when S̃ is too large compared with the
value of μ̃. One can also make use of the upper (lower)
confidence bound μ̃ + kS̃ (μ̃ − kS̃)—where k is a positive
adjustable parameter—instead of μ̃ to take account of the
uncertainty in a pessimistic (optimistic) manner.

B. Bayesian optimization

In this subsection, we show the performance of the
Bayesian optimization and discuss the results. Figure 8 shows
one of the optimization processes with respect to magnetiza-
tion using the descriptor no. 8. The highest magnetization
found in the first i iterations, max j�i μ0M( j), is plotted
against the number of iterations, i. In this run, the highest μ0M
in all 3630 systems was found at the 30th iteration, where we
define the zeroth iteration as that with the first sample. This
process depends on a random sequence that is used in the
sampling from the candidate lists. To take statistical profiles,
we repeat the optimization scheme (which we call a session)
1000 times.
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FIG. 7. The mean values (top) and the standard deviations (bottom) of the integrated model for Sm(Fe, Co)12 (left) and Sm(Fe, Co)11.5Ti0.5

(right). The intervals of the contours are 0.2 eV for the mean values and 0.02 eV for the standard deviations.

To analyze the efficiency as a function of the number of
iterations, we consider a cumulative distribution Di(s) that is
defined as the number of sessions in which a system with a
higher score than s is found in the first i iterations. We show
a plot of Di(s) in Bayesian optimization of magnetization

FIG. 8. The best magnetization found in the loop of a session as
a function of the number of iterations. The first result in a session
corresponds to the point at the zeroth iteration.

using the descriptor no. 8 as the left figure in Fig. 9, where
the horizontal axis shows the number of iterations, i, and the
vertical axis shows the score variable, s. We also show a plot
of the cumulative probability Pi(s) in the random sampling
that is analytically obtained at the right-hand side. Because
we took a sufficient number of sessions, there is a negligible
difference between the two figures for the first 10 iterations.
The efficiency in the left figure suddenly improves when the
Bayesian optimization is switched on.

Figure 10 shows the success rate of finding the systems
with the top 10 values of the target properties—magnetization
(μ0M), Curie temperature (TC), and formation energy from
the unary systems (�E )—within 50 steps. The results with
Bayesian optimization (BO) are compared with the search
by the random sampling (RS). The numbers with “#” in the
figure denote the descriptors listed in Table I. We find that
the efficiency depends significantly on the choice of the de-
scriptor. It is obvious from the figure that the descriptors nos.
7–11 are very efficient in Bayesian optimization and much
superior to those with nos. 1–6 and the random sampling. This
clearly shows that β and γ are important factors because the
descriptors nos. 7–11 differ from nos. 2–6 only by β and γ

used instead of NT.
This example demonstrates how we can incorporate do-

main knowledge into machine learning. It is known that
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FIG. 9. Left: The cumulative distribution of frequency Di(s) in the optimization of magnetization using the Bayesian optimization with
the descriptor no. 8. Right: The cumulative probability of probability Pi(s) that is analytically calculated for the optimization of magnetization
with the random sampling.

the magnetization of ferromagnetic random alloys of Fe and
another transition metal is usually a well-behaved function of
the number of valence electrons. It is called the Slater-Pauling
curve. This curve can be reproduced well by first-principles
calculation with CPA [68], and so it is the Slater-Pauling-like
curve for the Curie temperature [69]. These effects have also
been observed in ThMn12-type compounds experimentally
[27,44], and explained theoretically [38,43,49,61,70]. On the
basis of these previous studies, we were able to expect that
including β [the Co/(Fe+Co) ratio] and γ (the Ti content) in

the descriptor would improve the efficiency of the search in
advance.

However, we also find that β and γ alone do not work as an
efficient descriptor. The results of the Bayesian optimization
using β, γ , and the pair of them as descriptors are also shown
in Fig. 10. Those success rates are significantly lower than
the rates with the descriptors nos. 7–11. This is because there
are 66 [=3 (for R) × 2 (for Z) × 11 (for α)] candidates that
have common values of β and γ on the list, and 50 steps are
not enough to obtain an adequate Bayesian model and draw

FIG. 10. Success rate of finding the systems with the top 10 values of magnetization (μ0M), Curie temperature (TC), and formation energy
from the unary systems (�E ) among the 3630 candidates within 50 steps. RS stands for the random search, and BO stands for the Bayesian
optimization. The descriptors used in the search are shown along the horizontal axis: the numbers denote the descriptors listed in Table I; the
label β, γ , and β, γ denote the results with using β, γ , and β, γ as descriptors, respectively. The horizontal dashed line (green) is a guide to
the eye to show the height of the bars for the random sampling.
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FIG. 11. The 95% contours of the cumulative distribution Di(s)
in the random sampling (gray dashed) and in the Bayesian opti-
mizations with the descriptor no. 1 (black), the descriptors nos. 2–6
(green), and the descriptors nos. 7–11 (blue). The horizontal axis
shows i; the vertical axis shows s. The top, middle, and bottom
figures show results in the optimization of the magnetization, the
Curie temperature within the mean-field approximation, and the
formation energy from the unary systems, respectively.

one of the top 10 systems by chance. It is noteworthy that the
efficiency of the Bayesian optimization is largely improved by
adding only N2a, as in the descriptor no. 7.

Figure 11 shows the 95% (950 sessions) contour of Di(s)
obtained with the descriptors nos. 1–11. The best 95% of the
data points are laid above those curves. The panels show

FIG. 12. The 95% contours of the cumulative distribution Di(s)
in the Bayesian optimizations with the descriptor β (cyan), the
descriptor γ (purple), and the descriptor (β, γ ) (orange). Those in
the random sampling and in the Bayesian optimization with the other
descriptors are also shown as gray lines. The horizontal axis shows
i; the vertical axis shows s. The top, middle, and bottom figures
show results in the optimization of the magnetization, the Curie
temperature within the mean-field approximation, and the formation
energy from the unary systems, respectively.

results with the random search and the Bayesian optimization
with the descriptors nos. 1–11. As shown in these graphs, the
efficiency of the search depends much on the target property
to optimize. The descriptors nos. 7–11, which are with β and
γ , have a satisfying efficiency, with which even 20 iterations
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are enough to obtain a nearly best score regardless of the target
property. The situation is quite different with the descriptors
nos. 1–6. In the optimization of the Curie temperature, these
descriptors work efficiently. However, the optimizations of the
magnetization and the formation energy progress even more
slowly than the random sampling.

This difference between the Curie temperature and the
other targets is also seen in Fig. 12, where the pair of β

and γ are used as descriptors. The pair descriptor works as
efficiently as the descriptors nos. 7–11 in the optimization
of the magnetization and the formation energy. However, a
discernible difference in efficiency exists in the optimization
of the Curie temperature. This suggests the importance of
information about elements at the 2a site (R and Z), which is
consistent with Dam et al.’s observation that the concentration
of rare-earth elements is important in explaining the Curie
temperature of binary alloys composed of a rare-earth element
and a 3d transition metal [6].

The dependence of the search efficiency on the dimension
of the descriptor is also noteworthy. When the dimension of
a descriptor is large, the descriptor can accommodate a large
search space on the one hand. However, modeling tends to be
difficult with a higher dimensional space, which is referred to
as “curse of dimensionality,” on the other hand. Note that we
have descriptors with four different dimensions in the groups
of the descriptors nos. 1–6 and nos. 7–11. Figure 11 shows that
the dimension has only a minor effect on the efficiency. This
dependence is magnified by the more stringent criterion of the
top 10 benchmark as shown in Fig. 10, especially in the results
with the descriptors nos. 1–6. However, the difference among
the descriptors nos. 7–11 is still subtle. Therefore, we expect
that it would be safe to include six or a little more variables in
the descriptor when we optimize for another target property.

V. CONCLUSION

In this paper, we presented a machine-learning scheme
for searching high-performance magnetic compounds. Our
scheme is based on Bayesian optimization, and it has a much
higher efficiency than random sampling. We demonstrated its
efficiency by taking the example of optimization of magneti-
zation, Curie temperature, and formation energy for the search
space of magnet compounds having the ThMn12 structure.
One of the typical results is the success rate of finding the
top 10 systems with the highest properties when 50 systems
are sampled from a candidate list of 3630 systems (Fig. 10).
The success rate is more than 90% with our scheme when the
descriptor is appropriately chosen, while it is approximately
10% in the random sampling.

The efficiency is maximized when we include the Co
content (β), the Ti content (γ ), and the information of the R
and Z elements (e.g., N2a) in the descriptor. This improvement
is what we could expect from the previous studies of magnet
compounds. We stressed that it is important to incorporate
domain knowledge into the choice of a descriptor. We also
discussed how many variables a descriptor can accommodate
without deteriorating the search efficiency. Although an ex-
cessive addition of variables to the descriptor can lose the
efficiency of the search, there was not a significant loss when
we doubled the dimension of the optimal descriptor.

TABLE II. Optimized lattice parameters for RCo12 (R =
Y, Nd, Sm). See Table III for definitions of p8i and p8j.

R a (Å) c (Å) p8i p8j

Y 8.282 4.659 0.3585 0.2738
Nd 8.336 4.677 0.3590 0.2695
Sm 8.309 4.669 0.3587 0.2715

We also proposed an integration scheme of two datasets
to improve the accuracy of an inexpensive large-sized dataset
with use of an accurate and small-sized dataset (reference
dataset). The algorithm (Algorithms 1 and 2) is easy to
implement and fast. Prediction with a confidence bound (or
the standard deviation S̃) is another feature of the scheme.
We have also shown how it worked in the calculation of the
formation energy (Fig. 7).
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APPENDIX A: LATTICE PARAMETERS

Table II lists the lattice parameters for RCo12 that we used
in the calculations. We assumed the ThMn12 structure [space
group I4/mmm (no. 139)] for the system. The definitions of
p8i and p8j are summarized in Table III with representable
atomic positions of the atoms.

In our KKR-CPA calculations for RFe11Ti (R =
Y, Nd, Sm) and ZFe11Ti (Z = Zr, Dy), we assumed that
they also have the ThMn12 structure. The lattice parameters
are reduced from the structure obtained in Ref. [62] and the

TABLE III. Representable atomic positions in the ThMn12 struc-
ture. The variables x, y, and z denote the point (ax, ay, cz) in
Cartesian coordinates.

Element Site x y z

Th 2a 0 0 0
Mn 8f 0.25 0.25 0.25
Mn 8i p8i 0 0
Mn 8j p8j 0.5 0
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TABLE IV. Inner coordinates (x, y, z) of Fe and Ti in DyFe11Ti and ZrFe11Ti where Dy and Zr are placed at (0, 0, 0). The position of
Ti is denoted by a parenthesis. These values correspond to the point (ax, by, cz) in Cartesian coordinates where a = 8.455, b = 8.262, and
c = 4.715 in ZrFe11Ti, and a = 8.518, b = 8.410, and c = 4.727 in DyFe11Ti.

Fe(8f) Fe(8i) Fe(8j)

x y z x y z x y z

DyFe11Ti 0.255 0.251 0.251 (0.375 0.000 0.000) 0.272 0.500 0.000
0.255 0.749 0.749 −0.348 0.000 0.000 −0.266 0.500 0.000
0.755 0.249 0.751 0.005 0.355 0.000 0.506 0.286 0.000
0.755 0.751 0.249 0.005 −0.355 0.000 0.506 −0.286 0.000

ZrFe11Ti 0.256 0.250 0.251 (0.381 0.000 0.000) 0.276 0.500 0.000
0.256 0.750 0.750 −0.342 0.000 0.000 −0.264 0.500 0.000
0.756 0.250 0.751 0.007 0.352 0.000 0.507 0.300 0.000
0.756 0.750 0.250 0.007 −0.352 0.000 0.507 −0.300 0.000

structure given in Table IV. The value of
√

ab is used as the
a parameter for the reduced cell to keep the cell volume.
The inner parameters are determined so that they minimize
the deviation in the space of the coefficients (x, y, z) of the
unit vectors, which corresponds to the point (ax, by, cz) in
the Cartesian coordinates. The reduced values are listed in
Table V.

APPENDIX B: INTEGRATION MODEL
WITH A LINEAR TERM

In this Appendix, we incorporate an adjustable linear term
into the relation of E [�x] and E ′[�x], which appear in Sec. III C:
we consider E ′[�x] as an approximate function of E [�x] + �a ·
�x + b in this Appendix.

This changes Eq. (3) to

Ẽi[�y] − E
[�x R

i

] = E ′[�y] − E ′[�x R
i

] + �a · (�y − �x R
i

) + εi. (B1)

Therefore, our model does not depend on the variable b.
Equation (7) is modified as follows:

μ̃ = E ′[�y] + 1

�

∑
i

ωi
{
E

[�x R
i

] − E ′[�x R
i

] + �a · (�y − �x R
i

)}
,

(B2)
while Eq. (8) is left unchanged.

The estimation by the maximum likelihood method with
ẼLOO,i described in Sec. III C is applicable to the variable �a

TABLE V. Reduced values of the lattice parameters for RFe11Ti
(R = Y, Nd, Sm) and ZFe11Ti (Z = Zr, Dy). See Table III for defini-
tions of p8i and p8j.

Z a (Å) c (Å) p8i p8j

Y 8.476 4.730 0.3606 0.2764
Nd 8.560 4.701 0.3596 0.2703
Sm 8.523 4.713 0.3590 0.2728
Zr 8.358 4.715 0.3565 0.2850
Dy 8.464 4.727 0.3584 0.2776

and σ 2. The equation for �a is(∑
i

1

�LOO,i

�ξi ⊗ �ξi

)
�a =

∑
i

(
E

[�x R
i

] − E ′[�x R
i

]

− 1

�LOO,i

∑
k �=i

ωk
{
E

[�x R
k

]−E ′[�x R
k

]}⎞⎠,

(B3)

where �ξi is defined as

�ξi ≡
∑
k �=i

ωk
{�x R

i − �x R
k

}
(B4)

and the symbol ⊗ denotes the dyadic product, with which
(α1, α2, α3) ⊗ (β1, β2, β3) is defined as the matrix whose
(i, j) component is αiβ j . This equation can be solved for �a
without determining σ 2.

The equation for σ 2 is modified as

σ 2 = 1

M

∑
i

�LOO,i

(
E

[�x R
i

] − E ′[�x R
i

]

−
∑

k �=i ωk
{
E

[�x R
k

] − E ′[�x R
k ] + �a · (�x R

i − �x R
k

)}
�LOO,i

)2

.

APPENDIX C: DIMENSIONS FOR R AND Z

We prepared dimensions to include information of the R
and Z elements in our design of the descriptors in Table I.
Because the corresponding choice is only 6 in combination
(R = Y, Nd, Sm; Z = Zr, Du) while it is known that high-
dimensionality often causes problems in modeling, readers
may doubt its necessity. We compare the efficiency of the
search for the smaller space in which those elements are fixed
to R = Y and Z = Zr in Fig. 13. The solid line along the
cross symbols in the figures denote the frequency of finding
the system with the best score out of 1000 sessions in the
restricted space when we use the set of α, β, and γ as a
descriptor. We also show the curve elongated six times along
the x-axis (the dotted line) because one has to optimize also
for the other combinations of R and Z to obtain the optimal
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FIG. 13. Frequency of finding the system with the highest mag-
netization (top), Curie temperature (middle), and the lowest forma-
tion energy (bottom) among 1000 sessions. Those in the search for
the small space where R and Z are fixed to R = Y and Z = Zr are
denoted by the solid line along the cross symbols. The dotted line
along the cross symbols shows the curve elongated six times along
the x-axis. The line along the circle symbols shows the result of the
search in the full space using the descriptor no. 9 in Table I.

system for the full space, which takes approximately six times
larger. For comparison, we show the result of optimization for
the full space using the descriptor no. 9 by the line along the
circle points. We set the number of iterations before Bayesian

TABLE VI. The top 10 systems with the highest values of
the magnetization. The magnetic moment from the f -electrons is
assumed to be 3.27 μB for Nd, 0.71 μB for Sm, and −10 μB for
Dy. The variable μ0M denotes the magnetization, TC is the Curie
temperature, and �E is the formation energy from the unary systems.
The values for Nd(Fe0.7Co0.3)12, which has the highest magnetization
among the systems with a negative formation energy, and the values
for (Sm0.7Zr0.3)(Fe0.9Co0.1)12, which has the highest magnetization
among the systems having Sm in them with a negative formation
energy, are also shown.

Formula μ0M (T) TC (K) �E (eV)

NdFe12 1.95 844 0.405
Nd(Fe0.9Co0.1)12 1.94 1012 0.230
Nd(Fe0.8Co0.2)12 1.93 1111 0.095
(Nd0.9Zr0.1)Fe12 1.93 835 0.443
(Nd0.9Zr0.1)(Fe0.9Co0.1)12 1.92 1011 0.272
(Nd0.9Zr0.1)(Fe0.8Co0.2)12 1.91 1098 0.140
(Nd0.8Zr0.2)Fe12 1.91 841 0.446
(Nd0.8Zr0.2)(Fe0.9Co0.1)12 1.91 1009 0.272
(Nd0.7Zr0.3)Fe12 1.89 845 0.385
(Nd0.8Zr0.2)(Fe0.8Co0.2)12 1.89 1086 0.143

Nd(Fe0.7Co0.3)12 1.89 1143 −0.142
(Sm0.7Zr0.3)(Fe0.9Co0.1)12 1.77 1002 −0.008

optimization to 5, which is smaller than the number we use
above (=10), because we know that the full-space search is
so fast that the search in the smaller space cannot catch up if
it starts 60 (=10 × 6) iterations behind (Figs. 10 and 11). We
see from Fig. 13 that the search with the full space is more
efficient, even with this setup, than repeating the search for
the small space six times. Therefore, the dimensions for R and
Z actually contribute to the search efficiency.

APPENDIX D: DATA FROM THE FIRST-PRINCIPLES
CALCULATIONS

In this Appendix, we list systems with the predicted
highest values of magnetization and Curie temperature in
order to make a comparison with available experimental data

TABLE VII. The top 10 systems with the highest values of the
Curie temperature. The variable μ0M denotes the magnetization, TC

is the Curie temperature, and �E is the formation energy from the
unary systems.

Formula TC (K) μ0M (T) �E (eV)

Sm(Fe0.2Co0.8)12 1310 1.47 −0.631
(Sm0.9Dy0.1)(Fe0.2Co0.8)12 1309 1.39 −0.654
(Sm0.8Dy0.2)(Fe0.2Co0.8)12 1307 1.32 −0.676
(Sm0.7Dy0.3)(Fe0.2Co0.8)12 1305 1.24 −0.696
(Sm0.6Dy0.4)(Fe0.2Co0.8)12 1304 1.17 −0.715
(Sm0.5Dy0.5)(Fe0.2Co0.8)12 1302 1.09 −0.733
(Sm0.4Dy0.6)(Fe0.2Co0.8)12 1300 1.01 −0.752
(Nd0.7Dy0.3)(Fe0.2Co0.8)12 1300 1.37 −0.553
(Nd0.6Dy0.4)(Fe0.2Co0.8)12 1299 1.27 −0.594
(Nd0.8Dy0.2)(Fe0.2Co0.8)12 1299 1.46 −0.510
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and to serve as guiding information for future experimental
synthesis.

In Table VI, we show the top 10 systems of the high-
est magnetization. Here we add the contribution of the f -
electrons of Nd, Sm, and Dy with the assumption that those
have gJJ of 3.27μB, 0.71μB, and −10μB. Due to this ad-
ditional magnetic moment, the systems with Nd have an
advantage over the other systems, and all the top 10 systems
have Nd in them.

It should also be noted that the values for the formation
energy are positive for all the top 10 systems, and violate a
necessary condition for the thermodynamic stability. The
highest magnetization among the systems with a neg-
ative value of the formation energy is obtained by
Nd(Fe0.7Co0.3)12. Note also that this does not ensure the
stability against the other phases. We also show the values for
(Sm0.7Zr0.3)(Fe0.9Co0.1)12 because the magnetic anisotropy of

Nd tends not to be uniaxial in ThMn12-type systems in the
absence of a third element.

The best system, NdFe12, has already been synthesized by
Hirayama et al. [39]. From the results of our calculations, this
system seems to be near the upper limit of magnetization at
absolute zero.

In Table VII, we show the top 10 systems with the highest
values of Curie temperature. Although the formation energy
is negative for all the systems in the table, it should be noted
again that those incorporate only the competition with the
unary phases, and it does not ensure stability against the other
phases.

The best system in the list is Sm(Fe0.2Co0.8)12. Although
Hirayama et al. have reported that they could synthesize
Sm(Fe0.8Co0.2)12 as a film, to our knowledge there is no
experimental report for a successful synthesis of compounds
with a higher concentration of Co.
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