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Thermodensity coupling in phase-field-crystal-type models for the study of rapid crystallization
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We self-consistently derive a formalism that couples a phase field crystal (PFC) density field to thermal
transport. It yields a theory for nonuniform transient temperature and density evolution, and includes local latent
heat release during atomic rearrangements of the PFC density field. The basic formalism is applied to the original
PFC model, demonstrating its capacity to capture heat transfer and recalescence in solidification. With an aim
towards consistently incorporating temperature and other thermodynamic variables into PFC modeling, a new
classical density field theory for solid/liquid/vapor systems is then derived. It presents a different approach to
those used in the PFC literature while retaining the major advantages that have become the hallmark of PFC
modeling; the new model is also based entirely on physical density, temperature, and pressure scales. We end the
paper by applying the thermal-density coupling formalism to this new multiphase density functional theory/PFC
model.
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I. INTRODUCTION

Solidification is a classic paradigm for understanding mi-
crostructure and phase formation in materials. The competi-
tion between thermodynamic driving forces, mass, and heat
transfer and interface energy control the scale and morphology
of microstructure in materials [1]. Beyond its fundamental
importance to self-assembly and nonequilibrium thermody-
namics, solidification is thus also of practical importance
as it establishes many important properties of engineering
materials [2]. Traditional theories of solidification are typi-
cally designed around the assumption that the interface is in
local equilibrium, an assumption that is valid in processes
operating at low solidification rates. Emerging technologies,
such as those using local laser welding to additively assemble
components, typically operate at rapid solidification rates
[3,4]. Here, the cooling rates involved can be so large that
the notion of interface equilibrium is no longer valid. This
leads to the production of metastable solidified states due to
solute and density trapping, and kinetic-limited morphologies
that are very different from the standard dendritic forms in
slow-cooling processes. Moreover, thermally induced stresses
can lead to exotic atomic-scale effects such as defect migra-
tion, void formation, and precipitation of second phases near
stressed interfaces [2,5,6].

Modelling the wide scope of phenomena involved in rapid
solidification self-consistently is challenging due to the mul-
tiple length and time scales involved. Molecular dynamics
is typically limited to times scales that preclude processes
active on diffusional time scales, and in systems covering
several microns. On the other end of the spectrum, traditional
phase field (PF) models can capture diffusional time scales
over many hundreds of microns. Their use in quantitative
modeling of solidification microstructure is well documented
in the literature, where matched asymptotic analysis is used
to map PF models onto quantitative sharp interface theories
that are quantified by a few a priori known microscopic

parameters [7–9]. However, traditional PF theories lack an
atomic-scale structure, thus precluding an explicit connection
to polycrystalline solidification, grain boundary energy, inter-
face anisotropy, void formation, and vacancy trapping, among
others. Also, adding elasticity and defect flow is challeng-
ing, requiring the introduction of multiple added fields and
assumed couplings between them.

Classical density functional theory (CDFT) provides an
alternate route for studying crystallization and solid state
transformations [10]. CDFT models are formulated in terms
of a coarse grained mass density and employ multipoint
correlations in the excess free energy to model interactions
that govern the properties of solid phases. This makes it
possible to model a wide range of metallic and nonmetallic
materials. CDFT theories also naturally give rise to grain
boundaries and interface kinetics arising from the atomic
structure of the interface. The recent offshoot of CDFT, phase
field crystal (PFC) theory, is a type of phase field theory with
an atomic-scale order parameter related to the atomic mass
density [11,12]. PFC models are rotationally invariant and
do not need multiple fields to model different crystal orien-
tations, elastic fields, or dislocations. In this paradigm grain
boundaries and anisotropies are naturally captured [13–15]
within the purview of a single order parameter field. These
models also naturally (and with relative computational ease)
give rise to a wide range of defect phenomena that are relevant
to metals [16,17]. When coupled with noise, PFC models have
also been used to elucidate nucleation in rapid solidification,
as well as pathways for the formation of metastable phases
[18–21].

An important aspect relevant to rapid solidification that
has been lacking in previous PFC studies is the incorpora-
tion of thermal transport alongside the diffusive dissipative
dynamics of the PFC density order parameter. At slow rates
of solidification, this is a negligible effect. For example,
at moderate rates of solidification relevant to laser welding
of steel alloys (interface speed v ∼ 10−3 m/s and thermal
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gradient G ∼ 105K/m [22]) the thermal diffusion length
(lT = α/v ∼ 1 cm, where α ∼ 1 × 10−5 m2/s [23]) is much
larger than the scale of microstructure (λ ∼ 10 μm [22]), and
the thermal diffusion time (tD = α/v2 ∼ 10 s) is much longer
than the ∼10−2 s solidification time of a typical 50-μm sample
area. At higher solidification rates, however, thermal transport
cannot be neglected. For example, at higher solidification
rates used in laser welding (v ∼ 10 m/s and G ∼ 106 K/m
[22]) the thermal diffusion length (lT = α/v ∼ 1 μm) is on
the same order as the scale of the microstructure [22], and
the thermal diffusion time tD ∼ 10−7 s is about two orders of
magnitude smaller than the ∼10−5 s solidification time of a
50-μm sample. Even higher solidification rates are achieved
in plasma sprayed Zirconia coatings (e.g. v ∼ 1 m/s and
G ∼ 108 K/m [24]). At the rapid solidification rates described
above, thermal transport associated with latent heat of solid-
ification is important to incorporate in a microscopic model
of solidification. This is particularly crucial in determining
nucleation undercooling conditions that are so critical to rapid
cooling of small metal powders. It is also relevant to rapid
crystallization of thin films, where it has been conjectured
that the delicate balance of latent heat release and thermal
dissipation drives the amorphous to crystalline transformation
[25,26].

This paper derives a self-consistent formalism for coupling
PFC models of a pure material to temperature transport and
thermal fluctuations. We start in Sec. II by coupling the
thermodynamic driving forces for mass and energy to their
corresponding conservation laws, thus deriving two transport
equations that couple thermal transport to microscopic mass
density. This formalism is then specialized to two models in
Sec. III. The first is the classical CDFT model of [10]. The
second is the recent PFC model of Kocher, et al. [27], arriving
at a model that couples the PFC order parameter to an equation
for the effective PFC temperature scale. Section IV examines
the properties of the latter thermal-PFC model, demonstrating
thermal diffusion and latent heat release in one dimension,
as well as early stage nucleation, kinetic undercooling and
recalescence in rapid solidification of two-dimensional (2D)
films. Section V introduces a new PFC type theory of a single
component material that generalizes the work of Kocher et al.
[27]; this decomposes the free energy into a modified Van der
Waals contribution that controls the long wavelength proper-
ties of phases, and two excess contributions that, respectively,
control crystallographic and other short-range properties of
a crystallizing system. The aim of this model is to unify
previous PFC models of solidification under a more general
PFC type model that can consistently represent the properties
of pure materials. Section V demonstrates the equilibrium
properties of this unified model and some of its approximate
forms. Section VI ends by deriving the coupling of the unified
model to thermal transport by applying the formalism of
Sec. III.

II. THERMODYNAMIC FLUXES
AND CONSERVATION LAWS

Most formalisms of nonequilibrium thermodynamics
start by relating changes in entropy to the fundamental

thermodynamic fields of an evolving system. One manifes-
tation is

ds = 1

T
de − μ

T
dρ, (1)

where s is the entropy density of a volume element, T is
temperature, e is the internal energy density, ρ is the local
average mass density, and μ is a chemical potential. Equation
(1) can be taken to imply, in the mean field sense, that a
volume element in a system is in local equilibrium, although
it can vary from volume to volume such as to allow spatial
variations of the relevant fields. We perform a functional
generalization of Eq. (1) to model the spatial variation of the
fields, giving

δS[e, ρ] =
∫

V
d�x3 1

T (x, t )
δe +

∫
V

d�x3 1

T (x, t )

δF [T, ρ]

δρ
δρ,

(2)

where F [T, ρ] is the free energy of the system, which depends
on the temperature (T ), density (ρ), and their gradients.
As conserved fields, internal energy and density satisfy the
conservation laws

∂e

∂t
= −∇ · �Je

(
δS

δe
,
δS

δρ

)
,

(3)
∂ρ

∂t
= −∇ · �Jρ

(
δS

δe
,
δS

δρ

)
,

where �Je and �Jρ are, respectively, the energy and den-
sity fluxes. We postulate that these are linear func-
tions of the thermodynamic driving forces, ∇[1/T (x, t )]
and ∇[1/T (x, t ) · δF [T, ρ]/δρ]. We aim to derive a self-
consistent form of this theory using experiments and symme-
try to guide us where appropriate.

As a minimal description, we start by assuming that the
cross effects in mass and energy diffusion can be neglected.
We also choose the phenomenological Onsager coefficient for
energy diffusion as Luu = KT 2/2, where K is the thermal
conductivity. This form is chosen to recover Fick’s law,

Je = 1

2
KT 2∇ 1

T
= −K∇T . (4)

Writing the Onsager coefficient for density diffusion as �ρ,
where � may depend on temperature, gives the classic CDFT
density flux for Jρ . Combining these fluxes we can now write
two conservation equations [Eqs. (3)] for energy and mass
transport as

∂e

∂t
= K∇2T,

∂ρ

∂t
= ∇

(
�(T )ρ∇

(
1

T

δF

δρ

))
. (5)

To arrive at a closed form model with thermal coupling, we
must specify the free energy and its temperature and density
dependencies. The details of this process for the PFC model
are reserved for the next section. Here, we just mention that in
general an expression for the energy density e can be derived
from the free energy density by using the functional general-
ization of s = −df /dT |ρ that allows for gradient dependence
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in the free energy density, i.e.,

e = f (T, ρ,∇ρ) − T
δF [T, ρ,∇ρ]

δT
. (6)

Note that the density equation in Eq. (5) is analogous
to the one used in density functional theory (DFT). In its
original derivation [28], ρ was interpreted as an ensemble
averaged quantity, which is why formally no noise is added
to this equation. When applied to PFC modeling (or phase
field modeling), noise will be added to account for stochastic
events like nucleation and interface fluctuations.

III. TEMPERATURE COUPLING FOR THE BASIC CDFT
AND PFC MODELS

This section specializes the formalism of the last section
first to the classical CDFT model of [10], and then to the PFC
model of Kocher et al. [27].

A. Application to CDFT theory of freezing

We consider the general free energy functional of a simple
CDFT type theory of the form

F =
∫

dx f

=
∫

dx kBT

{
ρ ln

ρ

ρ̄
−δρ − 1

2

∫
dx′δρ(x′)C2δρ(x)

}
, (7)

where C2 is the two point density-density correlation function
of the theory. It is nominally taken at the reference density
ρ̄ of the liquid at coexistence, but we tacitly assume that
the correlation function has some T dependence away from
the reference. The free energy density f varies on the length
scale of the density ρ. Temperature, however, varies much
more slowly than density. As a result, a sensible energy
conservation equation of the form appearing in Eq. (5) should
consider e coarse grained on the same length scale as the
variation in the temperature. This is done by applying a
smoothing operator χ on the microscopic internal energy e,
or any quantity that involves the microscopic free energy
functional f .

With the above considerations, we begin by computing the
right-hand side of Eq. (6) using Eq. (7), which gives,

∂F

∂T
= f /T +

∫
dx′

[
−1

2
kBT δρ(x)C ′

2 (x, x′, T )δρ(x′)
]
, (8)

where the notation ()′ = ∂ ()/∂T is introduced for functions of
T . Substituting Eq. (8) into Eq. (6) and coarse graining gives

e = χ∗
[

f − T
δF

δT

]

= 1

2
kBT 2χ∗

[∫
dx′[δρ(x)C′

2(x, x′, T )δρ(x′)]
]
, (9)

where ∗ denotes the convolution operation with the smoothing
function χ . Equation (9) is a suitable form for internal energy
to use in Eq. (5). Note that we have pulled the smoothing
operation through the field T because we assume temperature
is a smooth variable on the scale of atomic variations inherent

in the PFC density ρ. The time derivative of Eq. (9) gives

ė = kBṪ χ∗
[∫

dx′δρ(x)

(
TC′

2 + 1

2
T 2C′′

2

)
δρ(x′)

]

+ kBT χ∗
[∫

dx′δρ̇(x)TC′
2δρ(x′)

]
, (10)

substituting Eq. (10) into the first of Eq. (5) gives a heat
equation for the general CDFT model,

χ∗
[∫

dx′δρ(x)

(
TC′

2 + 1

2
T 2C′′

2

)
δρ(x′)

]
∂T

∂t

= K

kB
∇2T − χ∗

[∫
dx′δρ̇(x)TC′

2δρ(x′)
]

T .

B. Specialization to the vapor-PFC model

We next proceed to specialize the above general PFC
temperature equation to the recent vapor PFC model derived
in [27]. The vapor PFC model was illustrated using the same
two point correlation of the original PFC model,

ρ̄C2(x, x′, T ) = [
1 − r − Bx

(
1 + R2∇2

x

)2]
δ(x − x′), (11)

where R tunes the lattice constant of the PFC solid phase
and ∇x refers to differentiation with respect to dimensional
variables. Here, Bx and r are dimensionless constants. The
parameter r is the effective temperature parameter of the
original PFC model [29]. The addition of the new third and
fourth order low-k mode correlation terms introduced in [27]
yields the following free energy functional:

F =
∫

dx kBT ρ̄

{
n
(
r + Bx

(
1 + R2∇2

x

)2)n

2

− n3

6
+ n4

12
+

(
a

n̄2

3
+ b

n̄3

4

)
n

}
, (12)

where a and b are constants, and where we have transformed
to the dimensionless density n(x, t ) = (ρ(x, t ) − ρ̄)/ρ̄, while

n̄ = χ ∗ n ≡
∫

dx′χ (x − x′)n(x). (13)

It is noted that in this minimal model the effective 3- and
4-point terms do not depend on temperature. This form will
serve to illustrate most of the physical features of density-
temperature coupling, although it is not as robust as if were
to assume that these terms also depend on the temperature
(more on this in Sec. V). In this derivation of a heat equation
coupled to the PFC equation, we assume that only the PFC
temperature scale r depends on physical temperature. One
may additionally assume a temperature dependence for R, but
we neglect this effect here.

To proceed with the first of Eq. (5), we start by scaling
the right-hand side. We first assume a mapping from T to r
of the form T (x, t ) = T0θ (r(x, t )), where T0 is a reference
temperature, and where the dependency on x is written here
to emphasize the spatial variation of r. It is noted that like
T , the PFC temperature r is smooth at the atomic scale. This
gives

K∇2T = KT0∇2
x θ (r) = KT0

R2
∇2θ (r), (14)
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where the last expression in Eq. (14) assumes length is
rescaled according to r = x/R, and ∇ denotes dimensionless
derivatives with respect to r (not to be confused with r). Using
the chain rule gives

∇2θ (r) = ∇ · (∇θ (r)) = ∇ · (θ ′ · ∇r) = θ ′∇2r + ∇θ ′ · ∇r,

(15)

where θ ′ denoted differentiation with r. Substituting these
gradients back into the internal energy equation of Eq. (5)
gives

ė

ρ̄kBT0
= K

ρ̄R2kB
(θ ′∇2r + ∇θ ′ · ∇r)

= C∗(θ ′∇2r + ∇θ ′ · ∇r), (16)

where C∗ = K/(ρ̄R2kB) has units of s−1. Next, we coarse
grain the local internal energy density, taking Eq. (12) as
input, i.e.,

e = χ∗
(

f − T
δF

δT (�x, t )

)

= −χ∗
(

ρ̄kBT 2 r′

2
n2

)
. (17)

This leads to

e/
(
ρ̄kBT 2

0

) = −χ∗{θ (r)2r′n2/2}. (18)

A formal expression for r′ can be found by differentiating

∂

∂T
T = T0

∂

∂T
θ (r(T )) = T0

∂θ

∂r

∂r

∂T
= T0θ

′r′ = 1, (19)

giving

r′ = 1

T0θ ′ . (20)

Thus, Eq. (18) becomes

e/(ρ̄kBT0) = −θ2/θ ′χ∗{n2/2}, (21)

where functions of θ (r) were taken out of the smoothing
operations as they vary on long wavelengths by hypothesis.
Taking the time derivative of Eq. (21) gives

ė/(ρ̄kBT0) = (θ2θ ′′ − 2θθ ′2)

2θ ′2 χ∗[n2/2]
∂r

∂t

− θ2/θ ′ ∂

∂t
{χ∗[n2/2]}. (22)

Equating the right-hand sides of Eqs. (22) and (16) finally
gives

(θ2θ ′′ − 2θθ ′2)

2θ ′2 χ ∗ [n2/2]
∂r

∂t
= C∗(θ ′∇2r + ∇θ ′ · ∇r)

+ θ2/θ ′ ∂

∂t
{χ∗[n2/2]}. (23)

To study a minimal model of the PFC heat equation, Eq. (23),
we neglect the ∇θ ′ · ∇r term in Eq. (23). Also, one must
determine the form of θ (r). We assume that θ (r) needs to
satisfy θ ′ > 0 (r is an increasing function of temperature)
and we also assume that F (T ) is a concave functional of

temperature δ2F/δT 2 < 0 for thermodynamic stability. To see
the constraint that this condition sets, we calculate

δ2F/δT 2 = ρ̄kB
n2

2
(2r′ + Tr′′). (24)

Since r′ = 1/(T0θ
′) and r′′ = −1/T 2

0 θ ′′/θ ′3, the condition
δ2F/δT 2 < 0 amounts to (2θ ′2 − θθ ′′) < 0, or just (θ2θ ′′ −
2θθ ′2) > 0, assuming θ > 0. This is exactly the prefactor of
the term on the left-hand side of Eq. (23), and confirms that
the diffusion and source prefactors remain positive given the
right θ function.

The lowest order θ (r) function that satisfies the two con-
straints is a quadratic function. For different materials, dif-
ferent fitting functions should be found to match T to r. To
proceed here we will take the factors that involve θ (r), θ ′(r)
and θ ′′(r) in Eq. (23) as constants as we are not particularly in-
terested in the quantitative details of how temperature affects
them; varying these parameters changed results by 5–10%
over the range of model temperature range simulated, and
their form is only of quantitative interest once such a model is
applied to a specific material. We therefore simplify Eq. (23)
to a minimal heat equation for the PFC model given by

χ∗[n2/2]
∂r

∂t
= Cd∇2r + Cs

∂

∂t
{χ∗[n2/2]}, (25)

where Cd (units s−1) and Cs (dimensionless) are parameters
of the theory. It is noteworthy that Equation (25) has terms
accounting for latent heat release and a susceptibility term,
both directly linked to changes in the PFC density field.

IV. SIMULATIONS OF HEAT TRANSFER IN THE
PFC FORMALISM

The objective of this section is to demonstrate the con-
sistency of Eq. (25) when used with free energy F given by
Eq. (12). We thus couple heat transfer to the standard PFC
density dynamics [30],

∂t n(r) = �∇2 δF[n(r, t )]

δn(r, t )
+ η(r), (26)

where F = F/(kBT0ρ̄Rd ) and space has been rescaled accord-
ing to r = x/R. The term η(r) is a stochastic noise term used
to model thermal fluctuations. It follows Gaussian statistics
with its amplitude scaled by a factor Na, and is wavelength-
filtered as prescribed in [31] to assure that interface fluctua-
tions are consistent with capillary fluctuation theory. In these
units, [�] = s−1, and so we define a characteristic time t̄ =
1/�, and scale time in our equations as t → t/t̄ . This amounts
to setting � = 1 in Eq. (26). Also, for simplicity, we will
demonstrate the operation of Eq. (25) here for the free energy
of the standard PFC model, hence setting the a, b coefficients
of the vapor PFC model to zero, i.e., a = b = c = 0. The PFC
equation Eq. (26) is coupled to the heat equation

χ∗[n2/2]
∂r

∂t
= Cd∇2r + Cs

∂

∂t
{χ∗[n2/2]}+Cb, (27)

which is the same as Eq. (25) except with an added term Cb

to account for heat extraction out of the simulation domain. In
the remainder of this section, we promote Cd , Cs and Cb to be
simple constants of the model. We will return to the question
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FIG. 1. Growth of a solid slab in the PFC model coupled to thermal transport. (a) shows the density field after 10 596 numerical time steps,
while the other three show plots of local quantities at y/dx = 50 as a function of x. (b) is the effective source term ∂t{χ ∗ [n2/2]}/χ∗[n2/2].
(c) is the effective diffusion coefficient 1/χ∗[n2/2], while (d) shows the temperature field at different times. Model parameter values: Bx = 1.5,
quench temperature r0 = 0.176, average density 〈n〉 ≡ n0 = 0.21, Cs = 0.001, Cd = 0.02, Cb = 0, noise amplitude Na = 0, dt = 0.25, and
dx = 0.7256.

of a more quantitative PFC theory, and its corresponding
coupling to heat transfer int the last two sections.

We demonstrate our formalism by considering a simulation
of a small 2D solidifying slab. As a first test, we consider the
case where Cb = 0 and shut off the microscopic fluctuations in
the PFC density equation. A quenched liquid phase is brought
in contact with a solid slab of lateral width 100dx (out of a
total 2000dx in the x direction). After initial equilibration, the
slab of solid grows, consuming the liquid [see Fig. 1(a)]. Due
to the rearranging density, a nonzero source term is generated
in the temperature equation by the term ∂t {χ ∗ [n2/2]}. This
term is peaked around the regions of high density changes, i.e.,
the moving interface in this case. This leads to a temperature
increase in and behind the interface. Some PFC temperature
profiles are shown in Fig. 1(d), for early, intermediate and
late time. Since Cb = 0, the heat generated remains inside the
system, and, after the interface advances through the system,
the temperature reaches a plateau higher than the starting
temperature of the liquid. The model’s effective temperature
diffusion term is scaled by 1/(χ∗[n2/2]), which is spatially
dependent. This term is shown in Fig. 1(c), and is seen to take
on very different values in the liquid and in the solid. It also

reacts to smaller density and amplitude differences inside the
solid phase, as seen by the slight dip in the center. Fig. 1(b)
shows the last term in Eq. (27). which accounts for latent heat.

We tested the effect of nucleation on temperature in an
adiabatic system. We ran a simulation of a supersaturated
liquid, perturbed by density fluctuations. While the full sim-
ulation was performed in a 2000dx × 2000dx box, only a
small portion of this domain is shown in the insets of Fig. 2.
As expected physically, several seeds eventually nucleate and
grow, while releasing latent heat at interfaces. This can be
seen in the insets of Fig. 2, where the thermal source term is
overlaid as a color map on top of the PFC density field. This
is also reflected in the main part of Fig. 2, which shows the
average system temperature versus time; since the system is
adiabatic, the average temperature of the system increases.

As a more stringent test of the robustness of our
temperature-density PFC formulation, we proceed with a
nucleation simulation in a constantly cooled system in a
2000dx × 2000dx domain. A supersaturated liquid system is
initialized at a high temperature (in the solid region to expedite
the simulation time), and uniform heat extraction is modelled
by activating the Cb term in Eq. (27). Density fluctuations are
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FIG. 2. The average temperature versus time, during a nucleation
simulation shown in insets (a) to (d), which correspond, respectively,
to 5000, 14 000, 15 000, and 25 000 dt . The density field in the
insets is coloured to show the magnitude of the temperature source
term, where red is a positive source term while blue is a negative
source term. No colouring corresponds to nearly zero source term.
Parameter values: Bx = 1.5, r0 = 0.174, n0 = 0.225, Cs = 0.001,
Cd = 0.005, Na = 0.04, dt = 0.5, λ = 0.1.

again incorporated. The resulting average temperature field is
shown in Fig. 3, and the inset shows the corresponding density
field during the nucleation process. The figure shows a strong
temperature spike during nucleation, followed by a decrease
in temperature as the system continues to cool.

The above simulations show the consistency of the pro-
posed approach for coupling the PFC density order param-
eter to thermal transport through the PFC model’s effective
temperature field r(x, t ). We have demonstrated that in the
absence of noise, behavior very close to those of more tradi-
tional model C type dynamics are observed, with an effective
diffusion coefficient and latent heat source that couple directly
to the microscopic density field. We have also shown that
the formulation is robust to density noise, making this tech-
nique useful in the study of thermal traces on microstructure
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4

0.171

0.1715

0.172

0.1725

0.173

0.1735

0.174

0.1745

0.175

t /dt

r

FIG. 3. Nucleation and recalescence in the thermal PFC model,
with constant heat extraction of Cb = 10−6. The figure shows the
average system temperature as a function of time, while the inset
show a crop of the density field at t/dt = 21661. The color map
shows the intensity of the source term in the temperature equation.
Parameter values are the same as in Fig. 2.

rearrangements. One experimentally relevant example is the
process of recalescence in rapidly cooled melts.

Latent heat: Mesoscopic limit of thermal PFC model

A key feature of Eq. (25) [or Eq. (23)] is that latent heat is
self-consistently coupled to the PFC density. It is instructive to
derive an expression for the latent heat of the thermodensity
PFC model by studying its long wavelength, or phase field,
limit analogously to the analyses done in [9] on model C [32].

We first consider a planar solidification front. We start by
rewriting Eq. (25) in a one-dimensional (1D) co-moving ref-
erence frame by making the substition ∂t → ∂t − v∂x, where
v is the normal velocity of the front. This gives

∂t r − v∂xr = 2
Cd∂

2
x r + Cs(∂t − v∂x )χ ∗ [n2]

χ ∗ n2
. (28)

Assuming a stationary situation, all explicit time varying
terms can be neglected, giving

−v∂xr = 2Cd
∂2

x r

χ ∗ n2
− 2vCs

∂x(χ ∗ [n2])

χ ∗ n2
. (29)

We now consider a 1-mode approximation of the density,

n(r) = n0(r) +
∑

G

φ(r)eiG·r + c.c., (30)

where no(r) and φ(r) are assumed to vary on length scales
much larger than the atomic scale implied by 2π/|G|. Substi-
tuting this form into χ ∗ n2 and coarse graining using standard
box-averaging techniques [14] gives

χ ∗ n2 = n2
0 + ν |φ|2, (31)

where ν = 2 in one dimension and ν = 6 in two dimensions.
Substituting the above coarse grained expression into Eq. (29)
gives

−v∂xr = 2Cd
∂2

x r

n2
0 + ν|φ|2 − 2vCs

∂x
(
n2

0 + ν|φ|2)
n2

0 + ν|φ|2 . (32)

It is reasonable to assume that the temperature field is much
smoother than both the average density and the amplitude,
which vary on the scale of the solid-liquid interface width 2ε

(∼ a few nm in metals). Assuming the interface is centered on
0, we integrate across the interval from −ε to +ε yielding

−v

∫ +ε

−ε

dx ∂xr = 2Cd

∫ +ε

−ε

dx
∂2

x r

n2
0 + ν|φ|2

− 2vCs

∫ +ε

−ε

dx
∂x

(
n2

0 + ν|φ|2)
n2

0 + ν|φ|2 .

Completing the first and last integrals gives

v[r]+ε
−ε =−2Cd

∫ +ε

−ε

dx
∂2

x r

n2
0 + ν|φ|2

+ 2vCs
[

ln
(
n2

0 + ν|φ|2)]+ε

−ε
. (33)

In the limit of ε → 0, r(r) remains a smooth function across
the interface in comparison to n0(r) and φ(r), which become
step functions to lowest order on the scale of variation of r(r).
Taking −ε to be the solid side of the interface interval and
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+ε the liquid side, and integrating the remaining integral in
Eq. (33) by parts gives,∫ +ε

−ε

dx
∂2

x r

n2
0 + ν|φ|2 = 1

n2
l

∂r

∂x

∣∣∣∣
ε+

− 1

n2
s + ν|φs|2

∂r

∂x

∣∣∣∣
ε−

−
∫ ε

−ε

dx
∂

∂x

(
1

n2
o + ν|φ|2

)
∂r

∂x
, (34)

where φs is the order parameter of the solid phase and ns and
nl are the solid and liquid average densities, respectively. The
derivative in the last integral in Eq. (34) is a sharply peaked
function at the interface on the scale of the smooth function
∂r/∂x. The last integral in Eq. (34) thus remains bounded and
vanishes as ε → 0. This can also be seen by integrating the
last term in Eq. (34) by parts and approximating r ≈ const. at
x = 0. This makes it possible to remove r from the integral,
leaving an odd function around x = 0, which vanishes as ε →
0. Substituting the result of Eq. (34) into Eq. (33) thus yields,
in the limit of small ε,

0 = 2Cd

(
1

n2
s + ν|φ|2

∂r

∂x

∣∣∣∣
ε−

− 1

n2
l

∂r

∂x

∣∣∣∣
ε+

)

− 2vCsln

(
n2

s + ν|φs|2
n2

l

)
. (35)

Rearranging the terms in Eq. (35) gives

2Cd

n2
s + ν|φs|2

∂r

∂x

∣∣∣∣
ε−

− 2Cd

n2
l

∂r

∂x

∣∣∣∣
ε+

= 2v Cs ln

(
n2

s + ν|φs|2
n2

l

)
.

(36)

Equation (36) is the classic heat flux conservation across the
interface. It will be shown below that the logarithmic term is
proportional to the latent heat.

We can also analyze Eq. (32) by integrating both sides from
−∞ to +∞, analogous to projection operator approaches
[33]. This gives

−v

∫ +∞

−∞
dx∂xr = 2Cd

∫ +∞

−∞
dx

∂2
x r

n2
0 + ν|φ|2

− 2vCs

∫ +∞

−∞
dx

∂x
(
n2

0 + ν|φ|2)
n2

0 + ν|φ|2 . (37)

The middle integral in Eq. (37) is zero in the limit of ε → 0.
This can be shown by breaking the integral into three pieces
as follows,∫ +∞

−∞
dx

∂2
x r

n2
0 + ν|φ|2 =

∫ −ε

−∞
dx

∂2
x r

n2
0 + ν|φ|2

+
∫ +∞

+ε

dx
∂2

x r

n2
0 + ν|φ|2

+
∫ +ε

−ε

dx
∂2

x r

n2
0 + ν|φ|2 . (38)

Using the approximations no = ns and φ = φs for x > ε and
no = nl and φ = 0 for x < −ε in the first two integrals on the
right-hand side of Eq. (38), and using the results of Eq. (34),

gives∫ +∞

−∞
dx

∂2
x r

n2
0 + ν|φ|2 ≈ 1

n2
s + ν|φs|2

∂r

∂x

∣∣∣∣
ε−

− 1

n2
l

∂r

∂x

∣∣∣∣
ε+

+
∫ +ε

−ε

dx
∂2

x r

n2
0 + ν|φ|2 = 0 (39)

in the limit of ε → 0. These considerations reduce Eq. (37) to

�r ≡ rs − rL = 2Csln

(
n2

s + ν|φs|2
n2

l

)
. (40)

Equation (40) predicts a temperature rise as an undercooled
liquid orders its density across the solid-liquid interface.
This prediction can directly be compared to the results in
Fig. 1, where we observe �rsimulation = 0.00166. For the given
parameters, the 1-mode approximation calculation from the
phase diagram calculation predicts φs = 0.09466. Substitut-
ing this in Eq. (40) yields �rsimulation = 0.00159, which is a
4% deviation from the simulation result, in excellent agree-
ment with the analytical derivation of Eq. (40).

The PFC temperature change �r can be more closely
related to the latent heat source term in the Model C phase
field theory for thermally controlled solidification [32]. In the
Standard Model C formulation, the starting point is the heat
equation of the form

Ṫ = α∇2T + L
h′(φ)

Cp

∂φ

∂t
. (41)

We rescale this equation to PFC units with T (r) = T0θ (r),
yielding

ṙ = α∇2r + α
∇θ ′ · ∇r

θ ′ + L

T0θ ′
h′(φ)

Cp

∂φ

∂t
. (42)

Neglecting the cross terms and going through a similar proce-
dure that leads to Eq. (32) gives,

�r = L

T0θ ′Cp
. (43)

Identifying this expression with the latent heat expression in
the thermal PFC model [Eq. (40)] gives,

L/(T0Cp) = �rθ ′ = 2Csθ
′ln

(
n2

s + νφs|2
n2

l

)
. (44)

Note that mapping coefficients aside, this expression depends
on both the average density and the amplitude. In the tra-
ditional phase field limit, there is no density change (i.e.,
ns = nl ), and so

L/(T0Cp) = 2Csθ
′ln

(
1 + ν|φs|2

n2
l

)
≈ 2νCsθ

′ |φs|2
n2

l

. (45)

Equation (45) makes manifest that latent heat release is pro-
portional to density change due to ordering of the liquid into
solid.

The approach described in this subsection shows the cor-
respondence of our formalism with model C type dynamics
on long length scales, while incorporating new features in
thermal transport that arise solely from the properties of the
PFC model at the atomic scale (e.g., density re-arrangements,
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defect flows, and other atomic-scale features attainable by the
PFC density field).

To directly apply our modeling formalism to experiments,
the basis of PFC temperature itself still requires more in-
vestigation. In the basic PFC model, temperature is buried
implicitly in the r parameter. It is not clear how the θ func-
tion should relate it to the thermodynamic temperature T .
Moreover, even with an appropriate θ function, due to the
approximated form of the PFC free energy it is not clear if
the model can reproduce the right physics across the extended
phase space from vapour to solid. One solution is to restrict the
investigation to a small part of phase space as has been done in
the past. In what follows, we propose a new and quite different
approach aimed at improving the thermodynamic consistency
of PFC modeling, one that covers a wide range of a material’s
phase space.

V. TOWARDS A UNIFIED STRUCTURAL PFC MODEL
WITH A PHYSICAL TEMPERATURE SCALE

Phase field crystal type models introduced to date have
all contributed to making PFC models and their dynamics
increasingly more consistent with thermodynamics. Two key
features are, however, still lacking. The first deals with re-
lating phenomenological PFC model parameters to thermo-
dynamic temperature. For example, in the last section, we
assumed that the parameter r in the original PFC model can be
mapped to thermodynamic temperature through an unknown
function θ (r), i.e., T = T0θ (r). Several PFC models have
presumed such relationships to interpret results in localized
regions of model-specific phase diagrams with measurable
quantities [11,34–36]. In this section, we go beyond previous
approaches, and derive a general PFC-type formalism that
explicitly relates model parameters to thermodynamic tem-
perature, thus integrating naturally with the thermodensity
formalism introduced in the previous sections. The second
feature lacking in PFC modeling is a form for the free energy
that is both tractable in its implementation and quantitative
enough to incorporate phase changes over a robust range
of density, temperature, and pressure space. Moreover, it is
crucial to address this issue while allowing for the stabiliza-
tion of complex crystalline structures, as well as for efficient
dynamical simulations of phase transformations involving
crystalline and disordered phases.

In the remainder of this section, we propose a new density
functional formalism that addresses the above problems, lead-
ing to a PFC-style model that takes a significant step closer to
a unified and quantitative PFC theory for pure materials.

A. Density functional approach: Expanding around
the Van der Waals fluid

One of the key simplifications in PFC models is the ex-
pansion of the ideal [noninteracting] free energy. This ap-
proach makes the model analytically tractable and efficient
to simulate. However, it severely limits the shape of the
phase diagram, and also precludes a full solid-liquid-vapor
description of a material’s phase space. This is particularly felt
near zero density, where the influence of the logarithm terms
can lead to very low density phases (e.g., voids).

Here, we propose a model that starts with the full Van
der Waals free energy to model long range (mean field)
interactions in a system, complemented with multipoint cor-
relations designed to capture short-range interactions and the
emergence of solid phases. In particular, we break up the
excess interaction energy of standard CDFT as a sum of a Van
der Waals term and other excess effects, namely,

F [ρ, T ] = Fid [ρ, T ] + �V dW [ρ, T ] + �[ρ, T ], (46)

where

Fid [ρ, T ] =
∫

dx ρkBT (ln(λ3ρ) − 1) (47)

and

�V dW [ρ, T ]=−
∫

dx kBT

{
ρ ln(1−b̃ρ) + ã

kBT
ρ2

}
. (48)

The Van der Waals theory works well as its mean field limit is
easy to analyze and can accurately describe disordered phases
[37]. Note that we have named the Van der Waals parameters ã
and b̃ in anticipation that these will be rescaled and renamed to
a and b. The excess term �[ρ, T ] is responsible for all short-
range interactions not captured by Fid [ρ, T ] + FV dW [ρ, T ].
By performing a functional expansion around a uniform ref-
erence density ρ̄ corresponding to an equilibrium fluid phase,
we arrive at the following the free energy,

F = F̄ [ρ̄, T ] + �[ρ̄, T ] +
∫

dx (μ̄ − Vext (x))δρ(x)

+
∫

dxkBT

{
ρ ln

(
ρ

ρ̄

)
− δρ + ρ ln

(
1 − ρ̄b̃

1 − ρb̃

)

− δρ

(
ρ̄b̃

1 − ρ̄b̃

)
− ã

kBT
δρ2

}

− 1

2

∫∫
dx dx′ kBT δρ(x)C̃(2)(x, x′, T )δρ(x′) + · · · ,

(49)

where δρ = ρ − ρ̄, Vext is an external field, μ̄ is the chemical
potential of the reference state, and

F̄ [ρ̄, T ]

=
∫

dxkBT

{
ρ̄ ln(λ3ρ̄ ) − ρ̄ − ρ̄ ln(1 − b̃ρ̄ ) + ã

kBT
ρ̄2

}
(50)

is the free energy at the reference density. At this stage, we
have identified by C̃(2)(x, x′, T ) as the general form of the
direct two-point correlation function generated by the excess
energy. We have denoted by three dots [· · · ] the presence of
higher order correlations which we have not written down as
they are similarly generated by direct correlation functions.
These will be assumed to act only on short wavelengths.

To proceed further, we introduce the reduced density, n =
(ρ − ρ̄)/ρ̄ or ρ = ρ̄(n + 1), and the length scaling r = x/R,
where R is a characteristic length scale, typically a lattice
constant of one of the solid phases. In what follows, we will
only consider the free energy difference relative to the ref-
erence state. Thus, we will work with �F = F − F̄ [ρ̄, T ] −
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�[ρ̄, T ]. For completeness, we keep the terms linear in den-
sity, and define a rescaled chemical potential μ̃ = μ̄/KBT0 and
external potential Ṽext = Vext/kBT0, where To is some reference
temperature. While linear terms have an important role to play
in the system pressure [38], they do not change the essence
of the phase diagram. Combining the above elements gives a
complete form of the proposed density functional,

F =
∫

dr
[
μ̃ − Ṽext −

(
τ

1 − b

)]
n

+
∫

dr τ

{
(n + 1) ln

(
(n + 1)(1 − b)

1 − (n + 1)b

)
− a

τ
n2

}

− 1

2

∫∫
dr dr′τ n(r)C(2)(r, r′, τ )n(r′) + · · · , (51)

where we have defined F = �F/kBT0ρ̄Rd , b = ρ̄b̃, a =
ρ̄2ã/kBT0, the rescaled temperature τ =T/T0 and C(2) =
ρ̄RdC̃(2). The first and second lines in Eq. (51) contain effects
from the ideal gas and the Van der Waals interactions, while
the third line contains all the supplementary correlations
required to stabilize solid phases.

Equation (51) is still incomplete as we are missing a form
for the correlation function C(2) (and higher order terms in
the [· · · ]) to create a full phase diagram. In practice, we
want to affect short range ordering (e.g., solid phases) without
affecting the long-wavelength behavior of the first two lines
of Eq. (51). To proceed, we therefore separate the length
scales of the ideal and Van der Walls terms (hereafter called
“Van der Walls terms”) from the supplemental correlation
terms. Effectively, this amounts to enforcing the Van der Walls
free energy terms only at long wavelengths by making them
explicit functions of nm f (r)≡∫

drχ (r − r′)n(r′), instead of
the microscopically varying n(r) field. This gives,

F =
∫

dr
[
μ̃ − Ṽext −

(
τ

1 − b

)]
nm f

+
∫

dr τ

{
(nm f + 1) ln

(
(nm f + 1)(1 − b)

1 − (nm f + 1)b

)
− a

τ
n2

m f

}

− 1

2

∫∫
dr dr′ τ n(r)C(2)(r, r′, τ )n(r′) + · · · . (52)

Since the first line in Eq. (52) essentially maintains its mean
field form, it will ensure that the long wavelength behavior of
the model follows the correct Van der Walls thermodynamics.
In proceeding as above, we have tacitly assumed that the
short wavelength interactions removed from the original Van
der Walls terms are subsumed into C(2) and the higher order
correlation terms denoted by [· · · ]. This separation approach
also avoids the severe constraint of requiring a positive den-
sity at the atomic scale. which forces the solid peaks to
become very sharp in full CDFT calculations, and effectively
kills the ability for dynamical microstructure simulations, the
quintessential advantage of PFC modelling. In other words,
the long wavelength behavior of the density in Eq. (52) will
follow the correct Van der Walls thermodynamics, but the
model still allows for smooth atomic-scale density oscillations
that go both above and below the reference density, thus
making it possible to model crystalline patterns in a computa-
tionally and analytically tractable manner.

We proceed next to simplify C(2) by breaking it into a struc-
tural term C(2)

struct that is used to stabilize crystalline states, and
the other short-range correlations that now become subsumed
into the [· · · ] terms. Here, we employ an XPFC type kernel
[39]. Namely, we define C(2)

struct as

C(2)
struct (k) = Bxe−T/T0Ĉk =Bxe−T/T0 e−(k−k0 )2/2α2

, (53)

where Bx is a constant, k is the magnitude of k and ko is
the magnitude of k0, which defines the equilibrium reciprocal
lattice vector of the first Bragg reflection of an 2D HCP
lattice or a three-dimensional (3D) BCC lattice. The single
peak XPFC formalism has the advantage of allowing for
independent tuning of the lattice constant, elastic modulus or
surface energetics due to the rapid decay of the correlation
peak. Adding multiple Gaussian-type peaks such as those
in Eq. (53) to C(2)

struct allows the model to describe different
structures. Formally, there is one peak representing the main
Bragg reflection peak from a set of crystal planes; in practice,
only the first few [smallest] k-peaks are retained (e.g., one
for 2D HCP and 3D BCC, two for 2D squares and 3D FCC,
three for 3D HPC 3D [40], etc.). We can also expand to
3-point correlations following the recent work of Seymour
et al. [41,42] and Alister et al. [43] to extend the range of
crystalline structures to nonmetallic materials. It is noted that
the use of higher order correlations typically requires that we
go beyond 1-mode analysis of the free energy to retain the
accuracy of simpler 1-mode approximations used for simpler
structures. In this work, we will demonstrate the new model
and its thermodensity coupling using a 1-peak C(2)

stuct function.
The original XPFC models parametrized temperature by

e−σ 2/σ 2
0 , where σ is used as a phenomenological temperature

parameter. Here, we follow the approach of Alster et al. [44]
who effectively define σ 2 ∼ T/To. This choice is more con-
sistent with the temperature dependence of the Debye-Waller
factor observed in experiments. The reference temperature T0

here can in principle be different from the one used to scale
the density functional expansion above. In this work, we aim
to show that the model proposed in this section is physically
consistent and robust enough to cover a wide range of material
systems quantitatively. Thus, for convenience, we use the
same reference temperature T0 here as previously introduced
to rescale the free energy functional.

The model described by to Eqs. (52)-(53) is still missing
the higher order correlation terms separated out of the Van der
Walls terms and buried in the [· · · ] terms. In terms of a density
expansion of the form n = n0 + φ

∑
G eiG·r the first two lines

in Eq. (52) only give, to lowest order, average density (n0)
contributions. On the other hand, substituting Eq. (53) in the
third line of Eq. (52) also gives a φ2 amplitude contribution
to the mean field of the theory, which only contributes to the
free energy of the solid phase where φ > 0. However, we still
require a φ4 theory to stabilize solid phases, and coupling
terms between n0 and φ to control the average density of
the solidus. Another way to look at this is that we have
enforced Van der Waals Theory (a complete theory), and
crystallographic ordering at short wavelengths, but important
thermodynamic contributions at short wavelengths are still
missing.
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To remedy this, we introduce a series of multipoint correla-
tion functions that only affect the short wavelength behavior.
These emerge from the [· · · ] terms in Eq. (52). For this, we
propose a set of correlations denoted ζ (m), which are defined
as products of two-point functions, given by

ζ (m) =δ(r1 − r2)...δ(r1 − rm) − χ (r1 − r2)...χ (r1 − rm),

(54)

where χ (k) = exp(−k2/(2λ2)) are long-wavelength kernels,
defined in reciprocal space. (For simplicity, in this work we
take the χ (r1−rm) functions in Eq. (54) to be the same as the
χ functions defined previously). In terms of the ζ (m) functions,
the final form of the model is written as

F =
∫

dr
[
μ̃ − Ṽext −

(
τ

1 − b

)]
nm f

+
∫

dr τ

{
(nm f + 1) ln

(
(nm f + 1)(1 − b)

1 − (nm f + 1)b

)
− a

τ
n2

m f

}

− 1

2
Bx

∫
dr τ (r) e−τ n(r)F−1

{∫
dk′Ĉk′n(k′)

}

+
4∑

m=1

am

m

(∫
dr1..drmζ (m)(r1, .., rm )n(r1)..n(rm)

)
,

(55)

where F−1 represents the inverse Fourier transform. The
last line in Eq. (55) comprises a series of correlation func-
tions defined on short wavelengths, each weighted by di-
mensionless τ -dependent coefficients am. As an example,
χ (2)(k) contributes only at long wavelengths, thus acting
as a low pass filter, but ζ (2)(k) = 1 − χ (2)(k) contributes at
short wavelengths, thus essentially acting as high pass filter.
The ζ (m) correlation terms allow for control over the solid
phase density-temperature properties in the phase diagram.
The width of these short-range correlation functions also
impacts the interface energy and solid compressibility. The
Ĉk(k) correlation function selects the crystal structure and
also tunes the elastic modulus and interfacial energy. Long
wavelength correlations are controlled by the Van der Walls
theory. Figure 4 illustrates the shape of all 2-point kernels
appearing in Eq. (55), in reciprocal space. The study of
interface energies predicted by the model in Eq. (55) will be
the topic of future work.

B. Equilibrium properties of the model

Mean field calculations of the model are done by using a
1-mode approximation approach. The long-wavelength corre-
lation kernels χ and ζ are approximated as delta functions in
k space. The phase diagram is computed by the usual common
tangent or Maxwell equal area construction. To focus on
demonstrating the salient features of the model in this work,
we arbitrarily set μ̃ = τ/(1 − b) and Vext = 0, effectively
canceling out all the linear terms. A resulting phase diagram
is shown in Fig. 5. It features both a critical and a triple point,
and a strongly asymmetric vapor/liquid phase separation as
one expects from the Van der Waals theory. In addition, there
are both liquid-solid and vapor-solid coexistence regions,
which can be made quantitive by controlling the a, b, T0,
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FIG. 4. Plot of the 2-point correlation kernels introduced in the
model defined in Eq. (55), in reciprocal space. Blue: XPFC kernel
(53), Orange: χ (2)(k) smoothing kernel used to create the nm f

appearing in Eq. (55), Green: ζ (2)(k) kernel modulating the short
range correlation functions in Eq. (55). Parameter values used in plot:
Bx = 3.5, T/T0 = 2.5, α = 0.1, k0 = 1, λ = 1.

and am parameters. It is also noteworthy that the density axis
for the uniform phases covers a physical range, starting at
no = −1 (i.e., ρ = 0). The phase diagram also contains a
solid phase, which has, for this choice of model parameters,
a density ∼25% higher than the liquid density near the triple
point and approaches the liquid density at high temperature.
To our knowledge this is the first PFC model describing solid-
liquid-vapor phases over broad, and physically consistent,
ranges in both temperature and density.

It is seen in Fig. 5 that using constant am factors rapidly
reduces the solid-liquid density jump rapidly as temperature
is increased. It possible to obtain a larger solid-liquid density
jump and to decrease the divergence of the solid-liquid phase
boundaries by introducing a temperature dependence in the
am coefficients. To demonstrate this, we fit a2 and a3 with a
second order polynomial in τ . We determine the parameters
of the τ -expansion of a2 and a3 by interpolating between their

FIG. 5. Typical phase diagram of the model in Eq. (55). Green,
blue and red are, respectively, the coexistence densities of vapor,
liquid and periodic (solid) phases. Parameter values: a = 7, b = 0.5,
Bx = 3.5, a2 = 5.45, a3 = −2, a4 = 0.1.
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FIG. 6. Phase diagram of the the model in Eq. (55), with tem-
perature dependent a2 and a3 coefficients in the short-range ζ (m)

correlation terms. Green, blue, and red are, respectively, the coex-
istence densities of vapor, liquid, and periodic phases. The dashed
lines show the instability boundary of phases. The parameters are
as in Fig. 5, except a2 = −2.26082 + 2.41018τ + 0.06τ 2 and a3 =
0.689182 − 1.08982τ + 0.06τ 2.

desired values at the lowest considered temperature τl (i.e.,
a2,l , a3,l ) and highest considered temperature τh (i.e., a2,h,
a3,h), while the prefactor Q of the quadratic term is fixed
empirically for demonstration purposes. The specific form of
the expansions for a2 and a3 used in this work are given by,

a2(τ ) = Qτ 2 −
( − a2,h+a2,l +Qτ 2

h −Qτ 2
l

)
τh−τl

τ

− −a2,lτh + a2,hτl −Qτ 2
h τl +Qτhτ

2
l

τh−τl
,

a3(τ ) = Qτ 2 −
( − a3,h+a3,l +Qτ 2

h −Qτ 2
l

)
τh−τl

τ

− −a3,lτh + a3,hτl − Qτ 2
h τl + Qτhτ

2
l

τh−τl
. (56)

A phase diagram with these τ -expanded correlation coef-
ficients in the new PFC model is shown in Fig. 6, where
the addition of this dependence has allowed us to widen the
solid-liquid coexistence region. More careful fitting of τl and
τh and their corresponding a2,l , a3,l , a2,h, a3,h can expand the
density jump further, but the form of the short-range corre-
lations introduced cannot lead to completely parallel solid-
liquid density lines, although not all materials have parallel
solid-liquid coexistent lines.

The limitation in further expanding the solid-liquid density
jump at high temperature arises due to the incompressibility
of phases described by the Van der Waals formalism. In
particular, the logarithm term in Eq. (55) diverges as the av-
erage density approaches n∗ = (1 − b)/b (which corresponds
to n0 = 1.5 in the figures shown). This incompressibility limit
is due to the excluded volume introduced in the Van der
Waals theory, and is beneficial for modeling the uniform
phases in the PFC model, but does not accommodate phases at
arbitrarily higher density phases, namely the periodic (solid)
phases.

FIG. 7. Phase diagram of Eq. (55) with logarithm terms ex-
panded to fourth order. Green, blue, and red are, respectively, the co-
existence densities of vapor, liquid, and periodic phases. The dashed
lines show the instability boundary of phases. Same parameter values
as Fig. 5.

C. Expansion of the Van der Walls terms

To model a larger range of solid-liquid density jumps in the
proposed model, one can either relax the exclusion volume
at higher density, or simply expand the uniform phase free
energy. We proceed by expanding the logarithmic terms in
Eq. (55), to recover a more flexible polynomial expansion of
the free energy functional. The drawback of this approach is
that the sharp cusp of the free energy at low density becomes
less accurate. Higher order expansions or more elaborate
fitting techniques such as a spline fitting could be applied to
both accurately fit the sharp cusp at low density while simulta-
neously allowing a smooth description of liquid at high densi-
ties. These fitting techniques will not be studied here. Our aim
here is to show how to create a complimentary version of the
unified model that offers flexible control of the high density
phases and their properties; the unified model of Eq. (55) can
be used where the accuracy of the vapor phases is required.

We start by Taylor expanding the uniform part of the free
energy in Eq. (55) to fourth order. The expansion is taken
around n0 = 0.05 to match the true free energy versus no of
the full model as closely as possible across the temperature
range we are interested in. Figure 7 shows the corresponding
phase diagram. It features a wider liquid/solid density jump,
but a significantly less asymmetric liquid and vapor coexis-
tence. The parameters used are the same as those in Fig. 5.

To improve on the behavior of Fig. 7, we perform a tenth
order Taylor expansion of the uniform free energy around
n0 = 0.05. Both vapor and liquid free energy wells are now
more accurately captured, and this leads to a low-density part
of the phase diagram very close to the one in Fig. 5, as
shown in Fig. 8, although some discrepancy is still seen at
lower temperatures due to the expanded nature of the uniform
free energy. Note also that the solid-liquid density jump now
becomes wider and more parallel at higher temperatures. To
further expand the solid-liquid density jump, we can again
assume a temperature dependance of a2 and a3 given by
Eqs. (56). This leads to a wider and more parallel liquidus
and solidus coexistence lines. A typical example is shown in

053804-11



GABRIEL KOCHER AND NIKOLAS PROVATAS PHYSICAL REVIEW MATERIALS 3, 053804 (2019)

FIG. 8. Phase diagram corresponding to the system in Fig. 5, but
with a tenth order expansion of the uniform free energy logarithm
terms in Eq. (55). Notice the vapor-liquid phase separation starts to
take a more asymmetric shape.

Fig. 9. Note that the slope of the liquid/solid coexistence line
is smaller than the previous phase diagrams, demonstrating
the model’s flexibility.

Figure 10(a) shows the density-temperature-pressure phase
diagram corresponding to the system in Fig. 9. The units
of [P] = P/kBρ̄ToRd . The figure features solid-liquid, solid-
vapor, and vapor-liquid coexistence regions, and is in excel-
lent qualitative agreement with the expected phase diagram
structure for pure materials. The corresponding pressure-
temperature phase diagram [Fig. 10(b)] also shows experi-
mentally expected behavior for pure substances. Along with
the equilibrium phase boundaries, Fig. 10(b) also shows ana-
lytical estimates for the metastability regions of the different
phases (dashed lines). Transforming from a metastable to sta-
ble phase requires a nucleation event. Crossing the metastable
boundaries is associated in PFC with the appearance of an
unstable wavelength.

In general, once the parameters setting the phase dia-
gram characteristics of the uniform and crystal phases are

FIG. 9. Same system as in Fig. 8 but with a temperature de-
pendance in the a2 and a3 coefficients. The density jump and
slope of the liquid/solid coexistence lines are now more parallel
and have smaller slopes. Here, a2 = −1.3825 + 1.66τ + 0.05τ 2 and
a3 = 0.572045 − 0.885455τ + 0.05τ 2.

(a)

(b)

FIG. 10. (a) Reduced pressure-temperature-density phase dia-
gram corresponding to the system in Fig. 9. The dashed lines show
the instability boundary of phases. (b) Pressure-temperature phase
diagram of the system in Fig. 9, featurig vapor, liquid, and solid
phases as well as coexistence lines. Dashed lines are metastability
lines.

determined, the other parameters of the model can then be
sought to set the elastic modulus (solid), surface energies,
compressibility, and so on. Using a fourth order expansion
provides the barebones structure for a somewhat qualitatively
correct phase diagram. The tenth order expansion provides a
much more accurate description of the entire material system.
Higher order expansions or different fitting techniques can
be used to better match the vapor/liquid phase diagrams
in the regions of interest. It is noteworthy that the use of
the ζ (m) correlation functions gives a new degree of control
of the liquid/solid and solid state thermodynamics, without
affecting the the selection of crystallographic symmetries or
the vapor/liquid properties. Furthermore, making the coeffi-
cients of the ζ (m) functions have temperature dependence can
provide added flexibility to match both the slope and width of
the liquid/solid coexistence in a wide range of materials.

The phase field crystal type of theory derived in this
section, i.e., Eq. (55) and its variants that employ an expanded
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form of the uniform phase free energy lead to an accurate
description of three phase equilibrium in materials whose
triple and critical points are not too far from one another in
temperature. The proposed formalism makes it possible to
model both critical point phenomena and very low density
phases, solidification of crystalline phases from liquid or
vapour, as well as the signature elastic/plastic phenomena
in all PFC phenomenologies. These are important features
for modeling solidification, CVD processes, and solidification
shrinkage.

VI. COUPLING THE UNIFIED PFC MODEL
TO THERMAL TRANSPORT

In this section, we return to the formalism of Sec. III B, and
apply it to the unified model free energy derived in Sec. V.
The main motivation for this is to apply the thermodensity
coupling to a quantitative PFC type model that can be pa-
rameterized in (P, ρ, T ) space. We re-write the free energy of
Eq. (55), making explicit the temperature dependence of the
coefficients am,

F =
∫

dr
[
μ̃ − Ṽext −

(
τ

1 − b

)]
nm f +

∫
dr τ

{
(nm f + 1) ln

(
(nm f + 1)(1 − b)

1 − (nm f + 1)b

)
− a

τ
n2

m f

}

− 1

2
Bx

∫
dr τ (r)e−τ n(r)F−1

{∫
dk′Ĉk′n(k′)

}
+

4∑
m=1

1

m

(∫
dr1, . . . , drmam(τ )ζ (m)(r1, . . . , rm)n(r1), . . . , n(rm)

)
.

We next calculate the rescaled internal energy ẽ = e/ρ̄kBT0, coarse grained on scales larger than the lattice constant, as was done
in Sec. III using the smoothing function χ . This gives,

ẽ = χ ∗
[

f − τ
δF
δτ

]
= −an2

m f + 1

4

4∑
m=2

χ ∗
{ ∫

dr2, . . . , drm[(am − τa′
m)ζ m(r1, . . . , rm)n(r1), . . . , (rm)]

}
. (57)

Using the definition of the ζ m functions and applying the delta functions within the ζ m functions defined in Eq. (54), gives, after
some manipulations and term collecting,

ẽ = −an2
m f + 1

4

4∑
m=2

(am − τa′
m){χ ∗ [nm] − (χ ∗ [n])m}. (58)

We next take the time derivative of ẽ, yielding

∂ ẽ

∂t
= 1

4

{
4∑

m=2

(−τa′′
m)(χ ∗ [nm] − (χ ∗ [n])m)

}
∂τ

∂t
+ 1

4

4∑
m=2

(am − τa′
m)

∂

∂t
{χ ∗ [nm] − (χ ∗ [n])m} − a

∂

∂t
(χ ∗ [n])2. (59)

We next proceed as in Eq. (16) and substitute ẽ into the dimensionless energy transport equation,

∂ ẽ

∂t
= C∗∇2τ, (60)

where C∗ = K/ρ̄R2kB. Namely, substituting 59 for the left-hand side of Eq. (60) yields

1

4

{
4∑

m=2

(−τa′′
m)(χ ∗ [nm] − (χ ∗ [n])m)

}
∂τ

∂t
= C∗∇2τ + a

∂

∂t
(χ ∗ [n])2 − 1

4

4∑
m=2

(am − τa′
m)

∂

∂t
{χ ∗ [nm] − (χ ∗ [n])m}. (61)

Equation (61) is the analog of Eq. (23) for the more general
model of Eq. (55). Here, the source term and susceptibility
factor pick up contributions from the moments of the PFC
density field, highlighting the importance of atomic-scale
variations of the PFC density on the thermal signature of
microstructure evolution. The behavior of this model and its
coupling to temperature will be studied in applications in rapid
solidification in future publications.

VII. CONCLUSION

The first part of this work introduced a self-consistent
formalism for coupling the dynamics of the PFC density
to thermal transport. This makes it possible to model both
atomic-scale structure changes and their effect on local heat
release and diffusion during microstructure evolution. The

formalism was first applied to the original PFC functional,
showing the correspondence with model C type dynamics on
long length scales, while on smaller length scales we demon-
strated how density ordering at the atomic scale directly
impacts the process of latent heat release and recalescence
during early stage nucleation.

The second part of this work addressed two severe short-
comings of traditional PFC models, namely that they are too
simplistic in their free energy construction and their tem-
perature dependance/parameterization to describe the phase
diagrams of pure materials quantitatively over a wide range
of (P, ρ, T ) space. Specifically, we developed a new PFC type
model that decomposes the free energy of a pure material into
a Van der Waals contribution that acts at long wavelengths
and an excess contribution that controls short wavelength
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interactions through the use of two classes of multipoint
correlation functions, one of which includes the XPFC type
correlation kernels used to control crystal structure, and the
other of which controls the solid-liquid density jump and the
solidus and liquidus slopes over a range of temperatures. This
formalism unifies the description of uniform phases at low
densities and over a wide range of temperatures and pressures
with the description of high density solid phases with different
crystallographies, the latter of which was the hallmark of pre-
vious XPFC models. Moreover, its smooth density profile al-
lows for multiscale simulations and is analytically accessible.

The third part of this work applied the temperature-density
coupling formalism discussed in the first part of the paper
to the aforementioned unified PFC model. This leads to a
thermal diffusion equation that, when combined with the usual
Langevin dynamics of the PFC density field can be used to
study thermodensity interactions crucial to processes in rapid
crystallization, as well as in other phase transformations that
occur in pure materials, over a wide range of their (P, ρ, T )
phase space.

The unifying features of the new PFC model introduced
in this work, and it use of a physical thermodynamic tem-
perature and density scales makes it amenable to modeling
the thermodynamic and elastic properties of pure materials
quantitatively. One important future direction is to compare
the properties of this new PFC model to those of a Lennard-
Jones system [45,46]. Another future direction is the develop-
ment of a quantitative binary alloy PFC model whose species
densities ρA and ρB are independently described by Eq. (55)
but are coupled through a suitably chosen A-B correlation
function. Such an alloy model would be applicable to the
study of numerous processes in rapid solidification, including
recalescence, cavitation and void formation, thermal-stress-
induced dislocations, and cell formation.
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ficients Ĉn of the Fourier space expansion of ρ̄C(|�x − �x′|) =
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