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Mesoscopic constitutive law with nonlinear elasticity and phase transformation
for the twinning-buckling of TATB under dynamic loading
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A mesoscopic constitutive law for 1,3,5-triamino-2,4,6-trinitrobenzene (TATB), an ultra-anisotropic energetic
molecular crystal, is proposed and validated on molecular dynamics (MD) simulations. The two dominant
deformation mechanisms observed at nanometric scale and limited stress (less than 1 GPa) are a buckling
instability and a nonsymmorphic twinning (irreversible) transformation. A thermodynamically consistent
continuum model is detailed, with nonlinear elasticity in pressure constructed to reproduce a cold equation
of state. The twinning-buckling phase transition observed in MD is modeled by using a phase field by reaction
pathway (PF-RP) formalism. In order to validate the present constitutive law, we first study the response of
the single crystal under constant-strain-rate uniaxial compressions for various directions in the basal plane and
present one-to-one comparisons between MD and PF-RP simulations. As an upscale case for the constitutive law,
a large polycrystal is subjected to a shock compression at low velocity and the activation of the twinning-buckling
mechanism is discussed.
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I. INTRODUCTION

Ultra-anisotropic materials, characterized by differences
of the directional Young modulus by at least one order of
magnitude, possess an unusual mechanism of deformation, an
elastic instability called buckling. Although purely of elastic
nature, this instability remains challenging to model, mainly
due to the need of strongly nonlinear elastic behavior for
the compression in the hard directions as well as large strain
formalism to accurately represent the elastic rotations induced
by the buckling. This instability generates large deformations
localized in thin strips, which, in the case of molecular crys-
tals, could modify the local molecular order and thus induce
a phase change or a twinning. The overall behavior could
therefore be a complex compound of nonlinear elasticity and
twinning, both in large-strain formalism.

Such coupling has been found to be the predominant mech-
anism at small scale for 1,3,5-triamino-2,4,6-trinitrobenzene
(TATB), an ultra-anisotropic molecular crystal [1]. The TATB
crystal is centrosymmetric and crystallizes in a triclinic unit
cell of space group P1̄ [2,3] containing two molecules, with a
hexagonal-like stacking of planar molecules (see Fig. 1). This
layered structure, as well as the important contrast between
interplanar interactions (governed by van der Waals interac-
tions) and the strong hydrogen-bond network present in the
molecular layers, confers some ultra-anisotropic properties
[4,5] to this crystal. Indeed, various computational studies of
the second-order stiffness tensor C [1,6–8] have highlighted
a ratio of 12 for the elastic shear components. Despite its
great importance in the field of energetics materials, very few
experiments at the single-crystal scale have been performed,
mainly due to its poor solubility making it difficult to obtain
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high-quality single crystals, as well as for security constraints,
fostering the need of an accurate modeling.

At a more macroscopic scale, experimental observations
have shown that TATB grown single crystals contain many
defects such as porosity, wormhole networks, and twinned
structures [9–12] that may have consequences on their me-
chanical behavior and their sensitivity, i.e., the ability of
energetic materials to remain stable during shock loading.
This sensitivity depends on complex mechanisms such as
deformation localization [13] involved in the process of hot
spots [14–17]. The latter are known to be activated with
local plastic activity, dislocation pileup [18], void collapse
[19,20], localized heating due to the nucleation of defects
[15], or friction of cracks (present in polycrystalline TATB,
as suggested by [21], and induced by its strong anisotropy).
A very detailed review of shock and detonation properties
of high explosives has been recently proposed by Hand-
ley et al. [22], in which the authors discuss the build-
ing of mesoscale models and their application to explosive
phenomena.

A few experimental studies have been conducted to char-
acterize the behavior of a TATB-based plastic bonded explo-
sive (PBX) under pressure through the measurements of its
equation of state (EOS): Olinger and Cady [23] obtained x-ray
powder diffraction (XRD) patterns up to 7 GPa using a loosely
inserted powder in the diamond anvil cell (DAC) leading to
hydrostatic pressure conditions. Stevens et al. [24] performed
XRD experiments using a DAC on grounded TATB crystals
immersed in a methanol/ethanol leading to similar pressure
conditions. In a recent study, Plisson et al. [3] determined
the EOS of TATB up to 66 GPa using synchrotron XRD
experiments with a DAC using a few TATB single crystals
surrounded by neon as a pressure-transmitting medium. These
three experiments reflect that the hydrostatic pressure condi-
tions were mainly respected even if different samples were
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FIG. 1. Crystal structure. TATB unit cell with lattice vec-
tors a, b, c and cell angles α, β, and γ . (a) 3D representation.
(b) x+ view. (c) z+ view. (d) y+ view. Atom colors are white for
hydrogen, gray for carbon, blue for nitrogen, and red for oxygen.

used (i.e., powder vs multiple single crystals). An interesting
result is that TATB did not undergo any phase transformation
during these loadings and remained stable while conserving
its high anisotropy. A few computational studies involving
ab initio calculations [3,8] and classical molecular dynamics
(MD) simulations [1,6] have been performed and proved to be
in good agreement with the experiments.

MD simulations of the TATB single crystal have been
widely used recently and play a crucial role in predicting
its mesoscopic behavior. The thermal properties and ideal-
ized hot spot relaxation have been studied by Kroonblawd
et al. [4,5,14], while Mathew et al. calculated the generalized
stacking fault energies of TATB basal planes [7], their elastic-
plastic response under displacement-controlled nanoindenta-
tion [18], and more recently their liquid-transport properties
[25]. The results on the response under nanoindentation are
found to be in good agreement with the recent experiments of
Taw et al. [26], which is the only TATB single crystal mechan-
ical experiment performed up to date. Long and Chen also
studied interfacial properties for PBX and explosive/additive
materials [27,28] as well as hot-spot formation in energetic
materials [29]. Dislocations are known to be responsible for
plasticity in crystalline materials; such defects have been
studied by Lafourcade et al. [1], who presented results on
dislocation core structures in the TATB basal plane in tem-
perature and pressure. They concluded that dislocations split
into three or more partials, leading to large stacking fault
ribbons of approximately 50–100 unit cells. More recently,
Lafourcade et al. [30] computed a directional nucleation stress
surface under pure shear for the TATB single crystal through
MD simulations, leading to the identification of three distinct
behaviors: (i) Basal shear is very easy to activate due to
the low stacking fault energies in the basal plane, (ii) nucle-
ation of nonbasal dislocations occurs at a yield stress around
1.5 GPa leading to a very complex core structure with a local
dilatancy, and (iii) an instability (termed in the following
the “buckling instability”) is shown to occur for moderate
compression (a few percent) in the basal plane. This instability
can be accompanied by a twinning irreversible deformation
for some directions of compression. The latter deformation
mechanism can be activated at a longitudinal strain of �5%
and at a nucleation stress much lower than the one required
for nonbasal dislocation nucleation. Furthermore, they found
that a perfect twinning mechanism could be obtained by
applying pure shear to the basal plane with a maximum von
Mises shear stress around 150 MPa along the transformation
pathway.

In this paper, we address the lack of continuum modeling
of the TATB single crystal by presenting a constitutive law
that includes two important features: a nonlinear elasticity
to model the high compliance of the soft directions, and a
large-strain formalism to allow for large rotations involved
in the resulting wavelike structure. Moreover, the nonlinear
elasticity formalism presented in this paper is built to repro-
duce the cold equation of state (EOS) obtained through MD
simulations. A coupling is proposed with a phase field by
reaction pathway (PF-RP) formalism to model the twinning
transition, described in [30] as a consequence of the buckling,
as a dissipative process. This PF-RP formalism was first
introduced by Denoual [31] to model martensitic transfor-
mations and subsequently applied to the polymorphisms or
iron at high pressure [32,33]. Finally, two assumptions were
made prior to the construction of the present constitutive law.
First, dislocations in the basal plane were not considered
in the constitutive law as they result in large stacking fault
ribbons that exceed the resolution of the following contin-
uum model. Second, nonbasal dislocations were not taken
into account since they require a nucleation stress much
higher than the stress needed to activate the twinning-buckling
mechanism, which is thought to be predominant in a first
approximation [30]. In addition, during all the MD simula-
tions presented in this work, nucleation of dislocations was
never observed, therefore justifying the exclusion of crystal
plasticity in our model, which aims to reproduce the presented
MD simulations.

The theory used in this work is based on a coupling
between the Landau free energy description [34] and elastic
deformations via a thermodynamically consistent finite-strain
formalism. Inelastic energies (see, e.g., [32]) of the reac-
tion pathway that links TATB phases (stable and twinned)
are inferred by MD simulations as well as the pressure-
dependent elastic properties. Continuum mechanics equa-
tions of motion as well as transformational strains based
on time-dependent Ginzburg-Landau equations [35] are de-
rived in a Lagrangian formulation and the model is im-
plemented into an element-free Galerkin (EFG) Lagrangian
code.

The paper is organized as follows. The first section is
dedicated to the nonlinear elasticity formalism to define
a pressure-dependent second-order stiffness tensor from an
equation of state computed through MD simulations. The
second section aims at presenting the PF-RP model applied
to the shear-induced twinning transformation, inferred by MD
results from Lafourcade et al. [30]. One-to-one comparisons
between classical MD and continuum mechanics simulations
are presented in the third section. Both uniaxial and spherical
(i.e., triaxial) compressions on a single crystal are simulated
in order to validate the constitutive law, leading to a complex
microstructure that couples simple buckling and twinning
transitions. Finally, the last section is dedicated to the use
of the constitutive law to simulate a TATB polycrystal under
shock loading, at a scale not reachable by classical molecular
dynamics. As notations, we use “·” for the matrix product,
“:” for the matrix inner product (the inner product takes
precedence over the simple product), a′ for the derivative
of a, ȧ for the time derivative, and ä for the double time
derivative.
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II. EQUATION OF STATE AND NONLINEAR ELASTICITY

A. Kinematics

Let X be a material point in a homogeneous reference
configuration �0 ⊂ R3. The evolution over time of �0 is
governed by the mapping x = χ (X , t ) : �0 −→ � ⊂ R3 with
respect to time t ∈ R+. The current configuration is described
by the total deformation gradient tensor F, which is expressed
using a multiplicative decomposition [33,36–39]:

F = ∂χ

∂X

∣∣∣∣
t

= ∇χ = Fe · F t, (1)

with ∇ the material derivative with respect to X . The reference
configuration represents the initial defect-free TATB single
crystal, and as the crystal undergoes deformation, the shear-
induced twinning is described by the transformation defor-
mation gradient tensor F t . Finally, the current configuration
is reached by elastic distortion and rigid-body rotation, both
included in the elastic deformation gradient tensor Fe through
U e and Re, respectively. This polar decomposition reads Fe =
Re · U e, with U2

e = FT
e · Fe and detFe = detU e = je, where

the superscript T is used as the transposition operator. The
volume change conditions used in the present work are the
following:

je = detFe > 0, jt = detF t = 1, (2)

leading to the invertibility of Fe and F t , the latter being a
volume-preserving transformation. According to the conser-
vation of mass, the determinant of F gives the volume change
between current and reference configurations, with respective
volumes V and V0, i.e., detF = j = detFe = je = ρ0/ρ =
V/V0, where ρ and ρ0 are the current and reference mass
density, respectively.

B. Application of thermodynamics laws

Equilibrium equations of total forces must be satisfied
during the deformation evolution in a Lagrangian formulation;
the balance of linear momentum is given by

∇ · P + ρ0b = ρ0ü in �0, (3)

where P is the first Piola-Kirchhoff stress tensor, b is the
external body force density, ü = χ̈ (X , t ) is the material time
acceleration of point X associated with the corresponding
displacement field u = χ (X , t ) − X , and ∇· is the divergence
operator.

The coupling between large elastoplastic deformations
and the phase-field approach derives from a thermodynamic
framework governed by the second law of thermodynamics.
While ignoring thermal effects, the Clausius-Duhem inequal-
ity can be expressed in terms of stress power per unit reference
volume [40] as follows:∫

�0

(P : Ḟ − ρ0ψ̇ ) d�0 � 0, (4)

where “:” is the double inner tensor product and ψ translates
the Helmholtz free energy per unit mass. From Eq. (4), it
follows that the first Piola-Kirchhoff stress tensor P and the
total deformation gradient tensor F are work-conjugate vari-
ables, with P : Ḟ being the mechanical stress power per unit

reference volume. Using the multiplicative decomposition of
Eq. (1), it is ideally proposed that the Helmholtz free energy
reads as follows:

ψ = ψ (Fe, F t ) = ψe(Fe ) + ψt (F t ), (5)

where it is assumed that elastic and transformational distor-
tions are uncoupled events, so that the free energy is additively
decomposed into elastic ψe and transformational ψt contribu-
tions. From Eqs. (1) and (5), the rates of total deformation and
free energy can be obtained, i.e.,

Ḟ = Ḟe · F t + Fe · Ḟ t,

ψ̇ = ∂ψe

∂Fe
: Ḟe + ∂ψt

∂F t
: Ḟ t. (6)

Inserting Eqs. (6) into the Clausius-Duhem inequality (4), the
latter leads to∫

�0

{(
P · FT

t − ρ0
∂ψe

∂Fe

)
: Ḟe

+
(

FT
e · P − ρ0

∂ψt

∂F t

)
: Ḟ t

}
d�0 � 0. (7)

A local formulation of the free-energy imbalance D can be
written as

D =
(

P · FT
t −ρ0

∂ψe

∂Fe

)
: Ḟe + X t : Ḟ t � 0, (8)

where the term X t , conjugated to the dissipative rate Ḟ t , is the
dissipative forces given by

X t = FT
e · P − ρ0

∂ψt

∂F t
. (9)

Thus, a change in F t leads to the thermodynamic displacive
driving forces defined by Eq. (9), acting on a material point
X . A standard assumption consists in considering nondepen-
dency between the rate of dissipation and Ḟe in Eq. (8), i.e.,
the nondissipative property of elasticity. This results in the
following expression of the first Piola-Kirchhoff stress tensor:

P = ρ0
∂ψe

∂Fe
· F−T

t . (10)

C. Constitutive equations

1. Hyperelasticity

The elastic part of the Helmholtz free energy is assumed to
be a function of both the Green-Lagrange strain tensor Ee and
the volume-dependent stiffness tensor D(detF ), i.e.,

ρ0ψe = 1
2 Ee : D(detF ) : Ee, (11)

where Ee = 1
2 (Ce − I) with Ce = FT

e · Fe being the right
Cauchy-Green strain tensor. Inserting Eq. (11) into Eq. (10)
leads to the nonlinear stress-strain relation in terms of the first
Piola-Kirchhoff stress tensor,

P = Fe · D : Ee · F−T
t + 1

2 detFEe : D′ : Ee · F−T , (12)

and Cauchy stress tensor,

σ = j−1PFT . (13)
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2. Volume-dependent elasticity

The EOS, which links volume variations and pressure,
is used in this section to define the evolution of D(detF ),
assumed to be proportional to the fourth-order elastic tensor
at ambient temperature and pressure C0:

D(detF ) = k(detF ) · C0, (14)

where C0 is the stiffness tensor at pressure p = 0 computed
with MD simulations [1], and k a scalar function to be
determined.

Along a prescribed spherical deformation F = (detF )1/3I,
the first Piola stress tensor P reads

P = F · D : E + detF
e2

2
I : D′ : IF−T (15)

with e = 1
2 [(detF )2/3 − 1] and E = eI. Then, by stating that

the pressure p = −trace(σ)/3 follows the cold equation of
state PEOS, we obtain the following first-order differential
equation:

k′(detF ) + 2k(detF )

3e
√

2e + 1
= 2

9Be2
PEOS(detF ) (16)

(with B the bulk modulus at p = 0), solved numerically to
obtain k.

D. MD computation of a spherical deformation EOS

To be consistent with the hypothesis used to set up the
nonlinear elasticity, we calculate in this section an equation of
state (EOS) through MD simulations by using the prescribed
deformation framework introduced by Lafourcade et al. [30]
that allows us to apply any deformation path to a MD simula-
tion box. An orthorhombic simulation cell was built using the
generalized crystal-cutting method presented by Kroonblawd
et al. [14] and the TATB unit cell parameters obtained by
Lafourcade et al. [30]. The resulting optimized orthorhom-
bic cell, containing 1824 molecules with length parame-
ters a = 71.542 Å, b = 47.035 Å, and c = 120.368 Å, was
used to calculate the EOS. A second (and larger) supercell,
built to study the onset of the buckling-twinning microstruc-
ture, consists of a 3D-periodic 14a × 22b × 1c simulation
cell containing 561 792 molecules (length = 100.159 nm,
width = 103.477 nm, and height = 12.037 nm).

The STAMP code [41] was used to perform the MD
simulations with the nonpolarizable force field for TATB de-
veloped by Bedrov et al. [6] using planar and symmetric rigid
molecules. All the interactions were computed with a 13 Å
cutoff and the reaction field approximation [42–44] was used
to compute the long-range electrostatic interactions instead of
using the Ewald sum method. Comparisons have been made
in the past [6] and it has been shown that the reaction-field
approximation with partial charges scaled by 20% reproduces
accurately the results obtained using the Ewald summation,
offering in addition to that a gain in simulation time. This
force field has been used in several recent studies to charac-
terize thermomechanical properties of the TATB single crystal
such as thermal conductivity [4,5], liquid-transport properties
[25], elastic constants [1,6,7], γ surfaces [1,7], response under
nanoindentation [18], hot spots [45], dislocation core struc-
tures [1], response under shock loading [14], and mechanisms
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FIG. 2. Spherical deformation EOS (SD-EOS) for TATB single
crystal. Gray marks: MD data. Green continuous line: Vinet fit on the
compatible part of MD data with KV = 17.87 GPa and K

′
V = 12.75.

Red crosses: Equation of state under spherical deformation using the
nonlinear elasticity (NLE).

of the irreversible deformation [30]. A Langevin thermostat
with a damping constant of 1.0 ps was used and equations
of motion were integrated with a 1.0 fs time step for both
isochoric-isoenergetic (NVE) and isochoric-isothermal (NVT)
simulations. Finally, the rigid-body dynamics was computed
by discretization of the equations of motion following a
velocity-Verlet scheme [46].

In order to ensure equilibrium in pressure and temperature,
TATB cell parameters were obtained using Parrinello-Rahman
isostress-isothermal (NσT ) simulations that were described
in detail in previous studies [1,30]. Then, a 150 ps equilibra-
tion trajectory in the NVT ensemble is performed using the
optimized cell parameters, which leads to perfect hydrostatic
conditions at p = 0 and 300 K; a spherical deformation was
applied to the system through the deformation gradient tensor
F = (detF )1/3I up to detF = 0.65. Thus, in opposition to the
hydrostatic pressure loading, the material undergoes the same
amount of deformation in the three directions of the space.
The resulting pressure-volume curve is reported in Fig. 2 as
gray disks. The relationship between pressure and volume
exhibits three distinct areas.

The section of the curve denoted 1 corresponds to the first
step of the spherical compression (for 0.85 < detF < 1.0)
during which the TATB single crystal undergoes the deforma-
tion while keeping its layered structure. For lower volumes
(0.80 < detF < 0.85; section 2) we observe an instability
leading to the onset of a complex microstructure (stable up
to detF < 0.80) where twinning and buckling are mixed [30]
(section 3). This last microstructure, stable under pressure, has
pressure and volume compatible with a Vinet EOS but with
different parameters. This particular state will be discussed in
Sec. IV.
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TABLE I. Material parameters used for the TATB single-crystal
EOS computation under spherical deformation.

Density in g/cm3, after Lafourcade et al. [1]

ρ0 1.93

Stiffness in GPa, after Lafourcade et al. [1]
C11 49.88
C22 50.07
C33 24.66
C44 2.32
C55 1.92
C66 25.22
C12 11.41
C13 2.39
C23 4.30

Vinet EOS (this work)
KV 17.87 GPa
K

′
V 12.75

A fit with a Vinet equation of state is performed for 0.85 <

detF < 1.0. For this purpose, the bulk modulus KV has been
computed from the elastic tensor obtained at (300 K, 0 GPa)
through MD simulations [1] and the fit performed by looking
for an appropriate value of K

′
V. The Vinet curve is represented

as a green continuous line in Fig. 2 with values for KV and K
′
V

given in Table I. The corresponding pressure-volume curve
validates the nonlinear elasticity formalism [Eqs. (13) to (16)]
with the parameters listed in Table I, down to detF = 0.85,
plotted as red crosses in Fig. 2.

For higher compressions, an instability involving both an
elastic buckling and a twinning of the materials leads to a
complex microstructure, the modeling of which implies addi-
tional deformation mechanisms, described in the next section.

III. PHASE FIELD BY REACTION PATHWAY FORMALISM
FOR IRREVERSIBLE DEFORMATION

The buckling instability, observed when the TATB single
crystal is compressed along a direction lying in its basal plane,
induces strong shear stresses. For directions of compression
parallel to [010], this stress leads to a twinning, an irreversible
nonsymmorphic transformation due to the existence of a sec-
ond energy minimum in addition to the strain-free one in the
so-called “twinning-energy landscape” [30]. This landscape
is calculated in MD by imposing a deformation gradient
F = αe × n + I, with α a scalar, e a direction in the basal
plane, and n the basal plane normal. In Fig. 3 are reported
multiple energy profiles along different homogeneous shear
directions associated with different e vectors. The yellow line
corresponds to a deformation with e = a, while e ⊥ a =⊥
a ∈ (001) is traduced by the black line, where a is one of
the TATB unit cell basal plane vectors. Finally, intermediate
energy profiles, represented by colors smoothly varying from
yellow to black, correspond to intermediate shear deforma-
tions. While the first line has a single minimum, the second
one has two minima of the same energies (denoted in the
following ε and εT ), these two minima being related by the
twinning transformation.

FIG. 3. Energy profiles of the twinning-energy landscape along
different directions passing by the ε-TATB phase strain-free energy
minimum from MD simulations.

A method developed for martensitic transformations
[31,32] and applied to pressure-induced phase transformation
of iron [33] has been used to take into account the shear-
induced twinning phase transition in the TATB single crystal.
The aim of this section is to detail the PF-RP method adapted
to TATB in order to perform EFG simulations with a coupling
between nonlinear elasticity, twinning phase transition, and
buckling instability.

A. Evolution of phase transitions

A linear kinetic equation that links the transformational
distortion rate Ḟ t to the displacive driving forces X t is
adopted:

νḞ t = X t, (17)

where ν > 0 is a viscosity-like parameter (ν = 0 correspond-
ing to a nondissipative evolution). This relation ensures a
positive dissipation, due only to twinning [see Eq. (7)]:
D = X t : Ḟ t � 0.

B. Reaction pathway and inelastic energy landscape

In previous models based on PF-RP [31–33], numerous
pathways, connected in a open tree, were used, each pathway
extremity corresponding to a stable or metastable phase. In
the present study, only two stable states are known (the initial
lattice and its twinned counterpart). We therefore need only
one pathway to represent the twin transformation ε ↔ εT .
The reaction pathway formalism as well as the associated
inelastic energy landscape for one pathway is thus derived in
the following.

1. The ε ↔ εT nonsymmorphic twinning mechanism

Let us consider a centrosymmetric unit cell of TATB
containing two molecules with lengths a, b, and c,
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out-of-plane angles α, β, and basal plane angle γ between
a and b lattice vectors. Applying a pure shear to the basal
plane while keeping the interlayer distance constant leads
to a perfect nonsymmorphic twinning of the unit cell [30],
with a modification of the two out-of-plane angles only: α′ =
180.0 − α and β ′ = 180.0 − β, where the ′ symbol denotes
the angles of the new twinned lattice. By taking Hε and
HεT the second-rank transformation tensors from fractional to
crystallographic coordinates of ε and εT phases, respectively,
the right Cauchy-Green strain tensor for this transformation
reads

Ctwin = H−T
ε · HT

εT · HεT · H−1
ε , (18)

Ctwin =

⎡
⎢⎢⎣

1 0 − 2 cos β

n3

0 1 − 2n2
n3

− 2 cos β

n3
− 2n2

n3

n2
3+(4 cos2 β+4n2

2 )
n2

3

⎤
⎥⎥⎦, (19)

where n2 and n3 are two functions or out-of-plane an-
gles that read n2 = (cos α − cos γ cos β )/ sin γ and n3 =√

sin2 β − n2
2 . This transformation consists of an elongation

along the c direction and a pure shear in the basal plane.

2. Inelastic energy landscape

The inelastic energy ψt related to the twin transformation is
a function of the transformational Cauchy-Green strain tensor
Ct = FT

t · F t , i.e.,

ψt
.= ψt (Ct ). (20)

Two stable states (the initial state, Ct = I, and the twinned
one characterized by the Cauchy-Green tensor Ctwin) are used
to define a pathway through a linear interpolation of starting
and ending phases:

Ĉt (s) =
(

1 − s

stwin

)
I + s

stwin
Ctwin (21)

with s (between 0 and stwin = |Ctwin − I|) the curvilinear
abscissa along the pathway. This abscissa is defined for any
Ct by a projection operation:

s(Ct ) = {0, D : (Ct − I), stwin}, (22)

where D = (Ctwin − I)/stwin is the normalized pathway direc-
tion, and {0, s, stwin} means that the value of s is clamped to
[0, stwin].

We define the inelastic energy ψt (Ct ) as the sum of a
function of s only and a term proportional to the distance to
the pathway:

ψt (Ct ) = ψ̂t[s(Ct )] + σpwd (Ct ), (23)

where d (Ct ) = |Ct − Ĉt[s(Ct )]| and σpw is a phenomenolog-
ical parameter associated with the stress required to take the
phase away from a pathway. Since s is defined as the abscissa
that minimizes d (Ct ) [32], d is the distance to the pathway,
represented as a linear segment. The inelastic energy along
the pathway ψ̂t (s) can be postulated or deduced from classical
MD energy calculations and will be detailed in Sec. III C.

TABLE II. Material parameters for the PF-RP formalism used
for shear-induced twinning transformation in TATB.

Cauchy-Green components (no units)

C11
t 1.0 1.0

C22
t 1.0 1.0

C33
t 1.0 1.272

C13
t 0.0 −0.055

C23
t 0.0 0.519

Energy landscape parameters

τ 0.2

σ (MPa) −85.0

ν (Pas) 0.13

σpw (GPa) 10.0

3. Transformational driving forces

Inelastic driving forces due to transformational distortions
are deduced from the derivative of the inelastic potential ψt

with respect to the transformational part of the deformation
gradient tensor F t :

∂ψt

∂F t
= 2F t · ∂ψt (Ct )

∂Ct
. (24)

According to Eq. (23), the last derivation term reads

∂ψt (Ct )

∂Ct
= ∂ψ̂t(s(Ct ))

∂s(Ct )
D + σpwN, (25)

with N the normal to the pathway pointing towards Ct defined
as N(Ct ) = {Ct − Ĉt[s(Ct )]}/d (Ct ).

Inserting Eqs. (24) and (25) into Eq. (26) leads to the final
expression of the transformational driving forces:

νḞ t = Ce · [D(detF ) : Ee] · F−T
t

− 2ρ0F t

(
∂ψ̂t(s(Ct ))

∂s(Ct )
D + σN

)
. (26)

C. Shear-induced twinning in TATB single crystal with PF-RP

Lafourcade et al. [30] computed the twinning-energy land-
scape under pure shear as well as the minimum energy path
that links the two stable phases. After differentiating this
energy landscape with respect to the appropriate deformation
gradient tensor, they obtained an activation von Mises stress of
around 150 MPa. To reproduce this threshold, we choose for
the parametrization of ψ̂t (s) a third-order polynomial function

ψ̂t (s̄) = s̄σ (s̄ − 1)(1 + τ s̄), (27)

where s̄ = s/stwin, and σ and τ are two parameters used to
fit the threshold of 150 MPa for the twinning and the untwin-
ning transformation. It is straightforward that when s is equal
to its two bounds the inelastic energy equals zero, consistently
with the same equilibrium properties of the two phases. Values
of the threshold, Cauchy-Green strain components, and model
parameters concerning the two stable and twinned phases are
given in Table II.

In order to illustrate the inelastic potential computed on the
reaction pathway for the twinning transformation in TATB, we
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FIG. 4. Green line: Inelastic energy on the single-reaction path-
way. Red line: The von Mises stress for a deformation along the
reaction pathway.

applied an arbitrary isochoric shear deformation correspond-
ing to a Cauchy-Green strain tensor Ct = x(Ct − I) + I with
x ∈ [0, 1], with a very low viscosity so that the thermody-
namic force X t = 0. The resulting von Mises stress profile
as well as the inelastic energy landscape are provided in
Fig. 4.

IV. ONE-TO-ONE COMPARISONS WITH MOLECULAR
DYNAMICS SIMULATIONS

This section is dedicated to one-to-one comparisons be-
tween MD and continuum mechanics simulations in order
to validate the constitutive law presented in the preceding
sections. We first present the computational framework of
both MD simulations and the element-free Galerkin formula-
tion used to challenge our constitutive law. Then, we present
comparisons for uniaxial and spherical compressions of a
TATB single crystal.

A. Computational framework

The response of the single crystal under different types of
loading was characterized by MD simulations using the same
system size as presented in Sec. II D for the EOS computation
as well as the same computational framework (i.e., a system
with lengths of 100.159 nm, 103.477 nm, and 12.037 nm per
side). For each MD simulation discussed hereafter, a 150 ps
trajectory was calculated in the NVT ensemble in order to
reach equilibrium in temperature and hydrostatic pressure
(i.e., 300 K, 0 GPa). The final configuration of this trajectory
is then considered as the initial one for subsequent MD simu-
lations (i.e., t = 0). Then, the system is dynamically strained
using the prescribed deformation framework introduced in
[30], without any thermostat.

For the continuum-level simulations, an element-free
Galerkin (EFG) least-squares formulation code [47] was used
in a 3D Lagrangian framework, with an explicit time inte-
gration. Both a nonlinear elasticity framework (presented in
Sec. II) and the PF-RP formalism (see Sec. III) were coupled
in order to take into account TATB elastic anisotropy in
pressure as well as the shear-induced twinning mechanism.
For the simulation of the TATB single crystal behavior under

different mechanical loadings, the material parameters (listed
in Tables I and II) that have been computed through MD
simulations were used as inputs of the constitutive law. The
simulated material is a plate of TATB single crystals with
the same dimensions as the MD simulation sample containing
7623 (33 × 33 × 7) elements with 3D-periodic boundary con-
ditions. For each deformation investigated in the following,
the final simulation time t f was chosen to be the same as in
MD in order to be able to perform one-to-one comparisons.

B. Uniaxial compressions in the (001) plane

When a uniaxial compression is applied in a direction that
lies in the basal plane of the TATB single crystal, a buckling
of the molecular layers is observed, leading to a chevron-
like microstructure with interfaces nearly perpendicular to the
direction of loading. In the following, the same uniaxial com-
pressions as in [30] were prescribed but with an orthorhombic
supercell, thus with different boundary conditions. In the same
way, we define an orthonormal basis (x, y, z) with x parallel to
a, y parallel to b, z parallel to c (i.e., normal to the molecular
layers), and the direction of compression m = (cos θ, sin θ, 0)
with θ ∈ [0, 2π ] [see Fig. 5(a)].

Three directions of compression were investigated at a
constant strain rate of 4 × 108 s−1 with a compression ratio
R = 10 %. The TATB orthorhombic supercell was strained
along the direction m with θ = 0◦, 75◦, and 90◦. In Fig. 5(c)
are shown the snapshots of the three different MD simula-
tions with θ = 0◦, 75◦, and 90◦ aligned from left to right at
the end of the dynamic loading, i.e., at R = 10 %. A color
coding has been defined to ease the simulation analysis. Since
buckling involves large shear of the basal plane due to the
low friction between molecular layers, the Green-Lagrange
strain tensor components that are the most affected are E13

and E23. The couple (E13, E23) is computed for each molecule
leading to a density map d (E13, E23), such that the number of
molecules with deformation (E13 ± �/2, E13 ± �/2) is given
by d (E13, E23) × �2 for a small deformation amplitude �.
After extraction of the maxima and lumping the remaining
density to the nearest maximum, Lafourcade et al. [30] ob-
tained a simplified histogram as a list of maxima, each one
associated with a fraction of the system affected by the neigh-
boring strain. The deformation signatures fall in the vicinity
of the deepest energy wells in the twinning-energy landscape
presented in Fig. 3. This means that when a compression with
θ = 0◦ is applied to the sample, the maxima are located on the
E13 axis and centered around the origin, due to the quadratic
elastic energy well (see Fig. 3, yellow line). On the other hand,
when a compression with θ = 90◦ is considered, the maxima
are located on the E23 axis but in the vicinity of the two
energy wells (see Fig. 3, black line). These two configurations
represent some sort of bounds in the resulting microstructure,
which means that for intermediate directions of compression,
E13 and E23 will live within these ranges. By considering
a centered blue-black-red RGB color scale between −0.2
and 0.2 for E13, a noncentered black-green RGB color scale
between 0 and 0.25 for E23, and by screening the RGB values
of the two perpendicular color scales, we obtain the two-
dimensional color coding presented in Fig. 5(b). Thus, blue
and red correspond to negative and positive buckling, black
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FIG. 5. (a) Orientation of loading with respect to the single-crystal Bravais vectors. (b) Green-Lagrange color scheme. (c) Snapshots of
the three MD simulations. (d) Snapshots of the three EFG simulations. (e) and (f) Deformation histograms reported on the twinning-energy
landscape for MD and EFG simulations, respectively.

to null xz and yz shear components, green to shear-induced
twinning, while yellow and cyan represent compositions of
buckling and twinning.

When θ = 0◦ and 90◦, pure buckling and pure twinning
are activated, respectively. The case θ = 75◦ involves a com-
position of buckling and twinning but with a dominance for
the latter. In the three cases, small additional deformation
bands appear and are associated with localized basal gliding
of molecular layers due to the arrangement of molecules at
the chevrons interfaces. However, this phenomenon is limited
to a few planes and we consider the twinning-buckling to
be predominant. The deformation histograms [Fig. 5(e)] are
comparable with the ones presented by Lafourcade et al. [30]
with nonorthogonal boundary conditions, with the most of
the deformation histograms in the vicinity of the two deepest
energy wells that span the energy landscape.

Final snapshots of the three different dynamic
compressions (i.e., with θ = 0◦, 75◦, and 90◦) performed
with our model are presented in Figs. 5(c) and 5(d) with the
same color coding as for MD simulations. These simulations
include the nonlinear elasticity and PF-RP formalisms
presented in Sec. II and III. A very good agreement between
both methods is found in terms of intensity of deformation
components and buckling and twinning microstructures.
Additionally, deformation histograms have also been reported
on the twinning-energy landscape in Fig. 5(f) in order to
compare with MD simulations. The histograms of MD
and EFG simulations are found to be very similar, with
however small differences for θ = 75◦, observed both in
the deformation histograms and the microstructure. These
deviations are due to the incapacity of the continuum model
to reproduce very localized features such as local molecular
reorientations or local shift of molecules at the interface
between different buckled regions due to the change of
resolution, inherent to the proposed model.

C. Spherical compression

The EOS computed through MD simulations under spher-
ical compression (hereafter termed “spherical EOS”) leads to
an elastic instability at approximately V/V0 = detF = 0.85
(see Fig. 2). The aim of this section is to compare the mi-
crostructure predicted by the constitutive law with the one ob-
tained through MD calculations in terms of Green-Lagrange
deformation components and deformation histograms.

Due to the high anisotropy of the TATB single crystal, a
spherical compression induces a nonhydrostatic stress large
enough to induce a buckling-twinning transition. Using the
same EFG simulation box as in the uniaxial compressions
case, we performed a spherical compression at V/V0 = 0.80,
equivalent to a longitudinal strain of 7.2 % in each direction
of the space, at a strain rate of 4 × 108 s−1. A snapshot
corresponding to the end of the dynamic loading of the MD
simulation is shown in Fig. 6(a), as well as the matching
deformation histograms in Fig. 6(c). The color scheme used
is the same as in Fig. 5. The tessellation of the sample is char-
acterized by well-defined deformation signatures, with pure
negative and positive buckling as well as composition with
twinning. However the deformation histogram is centered on
the zero deformation minimum, reflecting strain equilibrium.
Similarly to the uniaxial compressions, small additional defor-
mation bands can be observed in the MD microstructure and
are due to basal plane gliding to accommodate the molecular
stacking at the interfaces.

The same spherical compression was performed using the
EFG code and the obtained microstructure and histograms
are reported in Fig. 6 [panels (b) and (d)]. Except for very
narrow deformation bands caused by basal gliding, the pre-
dicted tessellation is comparable to the one obtained by MD
simulations. Additionally, a very good agreement is found for
the deformation histograms which are also centered on the
zero deformation energy minimum.
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FIG. 6. (a) Snapshot of the MD simulation. (b) Snapshot of
the EFG simulation. (c) and (d) Deformation histograms reported
on the twinning-energy landscape for MD and EFG simulations,
respectively.

V. UPSCALING CASE: TATB POLYCRYSTAL UNDER
WEAK SHOCK LOADING

A. Simulation parameters

The present section is dedicated to an upscaling case:
the TATB polycrystal under shock loading. Indeed, classi-
cal molecular dynamics simulations do not allow simulating
TATB polycrystals of reasonable size. Thus, we take advan-
tage of the constitutive law hereby presented to study the
behavior of a TATB polycrystal under weak shock loading.

The materials parameters provided in Tables I and II
were used. In order to create the 2D periodic polycrystal,
we first generate a list of 100 randomly distributed seeds
in the simulation cell, each one being assigned with an
orientation drawn at random in the unit sphere. Finally,
a Voronoï tessellation is performed, leading to the final
TATB polycrystal with a total number of 49 500 000 elements
(150 × 150 × 2200), equivalent to dimensions of 0.46 μm ×
0.46 μm × 6.71 μm. The obtained microstructure is shown in
Fig. 7(c), where the grains are colored according to their seed
number.

The shock simulation on the TATB polycrystal is per-
formed by applying a velocity Up = 150 ms−1 to the z− face
of the sample in the z direction, corresponding to its longest
length. The choice of a relatively low piston velocity has
been made in order to generate moderate pressures, ensuring
that only elastic and transformational regimes of the TATB
single crystal are applied. This is consistent with the fact that
our constitutive law does not include the plastic behavior of
the TATB single crystal by means of nonbasal dislocations
nucleation as introduced by Lafourcade et al. [30].

B. Shock-induced twinning-buckling deformation

1. General behavior

A snapshot of the simulation cell is represented in Fig. 7(a)
and was captured just before the elastic wave reaches the
opposite face of the sample. The color code of Fig. 5 is used to
represent the field of two components of the Green-Lagrange
strain (E13 and E23), defined in the crystal coordinates: red and
blue areas correspond to pure buckling, green to twinning, and
black to small pure shear strain areas. Additionally, yellow
and cyan zones correspond to a composition of twinning and
buckling, as observed in the preceding sections.

Most of the sample is affected by relatively homogeneous
strain, which is consistent with an elastic deformation of the
grains. However, despite the very low velocity of the impact
loading, some localized oscillations of the deformation appear
behind the elastic-wave shock front. These bands are associ-
ated with alternating shear deformation for grain orientations
such that the basal plane is parallel to the shock direction.
This buckling instability nucleates for a moderate compres-
sive stress (below 5 GPa). The higher stresses in the sample
come from grain boundaries with strong misorientation and
not from the buckling instability that could be described as
an accommodation mechanism, driven by elasticity and thus
reversible.

One can see that the entire sample is subjected to this
complex behavior and various areas of pure buckling, pure
twinning, and compositions can be observed. By computing
the projection of the transformational part of the Cauchy-
Green strain tensor onto the reaction pathway considered
in our PF-RP model, we are able to identify the local
phase within the TATB single crystals, i.e., strain-free (ε-
TATB) or twinned (εT -TATB) phases. This is represented in
Fig. 7(b), where the local field varies from 0 (transparent) to 1
(opaque, orange) for ε and twinned εT phases, respectively.
In this image, one can see the layered structure of twins
that passes through some TATB grains. Right behind the
shock front, the density of twins is quite low whereas it
increases with the distance from it. This reflects the viscous
evolution of F t used in the present model, which, in addition
to the inertia needed to accompany the deformation and
material rotation, induces smooth evolution for the twinning
transformation.

One can see that not all ripples are associated with the
twinned phase of TATB. Indeed, although large shear strain
is applied in the basal plane of some grains, if the buckling
shear is not along the pathway (i.e., the deformation produces
no gliding in the twinning direction) then only buckling is
obtained. In Fig. 7(d), we focus on a part of the polycrystal
where multiple grains are subjected to large strains, without
the appearance of twinning transformation. Indeed, we can
see that some grains (e.g., black, cyan, and green grains) are
subjected to homogeneous deformation. The black one has
null E13 and E23 components while the cyan and green ones
have undergone composition of directional shear in their basal
plane. On other grains, very fine layered microstructure are
obtained and correspond to buckling (blue-red) and twinning-
buckling (cyan-black) areas. Some of these very oriented
features are also curved, emphasizing a gradient of directions
for the eigenstress, due to grain interaction. This fine and
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(a)
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(d) (e)

FIG. 7. Snapshot of the shock-loading simulation. (a) Local deformation using the Green-Lagrange color scheme. (b) Representation of
the multiple twins nucleated during the shock loading. (c) Distribution of the 100 different grains in the polycrystal. (d) Focus on a few grains
with a fine buckling microstructure. (e) Focus on a few grains where multiple orientations of twinning-buckling are observed.

smooth microstructure highlights the absence of friction on
the used mesh.

2. In-grain non-uniaxial response

Finally, some grains exhibit twin bands with a small cur-
vature or even multiple orientations (“tweedlike” pattern) as
shown in Fig. 7(e). In this snapshot, the central grain exhibits
a composition of multiple twinning-buckling orientations.
Indeed, we can distinguish different orientations for (green)
thin deformation bands that actually are twins. Also, there
are underlying red and blue patterns that correspond to a pure
buckling mechanism. This behavior reflects nearly hydrostatic
stresses due to the interactions with the grain’s neighbors,
leading to this complex microstructure that could be similar
to the spherical compression results presented in Sec. III.

VI. CONCLUSIONS

In this work, we present a molecular-dynamics-informed
constitutive law for the mechanical behavior of the highly
anisotropic energetic molecular crystal 1,3,5-triamino-2,4,6-
trinitrobenzene. The constitutive law contains two main fea-
tures: the first one is the definition of a pressure-dependent
nonlinear elasticity formalism to model the strong elastic
anisotropy and a cold equation of state. The second fea-
ture of the present constitutive law is the phase field by
reaction pathways (PF-RP) formalism, introduced to model
the twinning mechanism. The PF-RP is defined through a
strain pathway to which is associated an “inelastic” energy,
taken into account in the constitutive law. By applying a

deformation along this pathway, the PF-RP parameters are
adjusted to reproduce the stress levels obtained in the MD
simulations.

Various problems are then chosen to test the constitutive
law. Uniaxial compressions along various directions in the
TATB single crystal basal plane are performed with both
simulation methods and the results are discussed in detail.
A very good agreement is obtained on the one-to-one com-
parisons and both microstructure and deformation histograms
from MD are well reproduced using the mesoscopic model.
Then, the behavior of the single crystal is studied under spher-
ical compression. Again, a very good agreement between
both techniques is observed with the exact reproduction of
both microstructure and deformation histograms. The only
difference between microscopic and mesoscopic simulations
emerges from the ability of the material to accommodate
the deformation at the interfaces of the twinning-buckling
patterns through local slip in the basal plane, which has not
been including in the present model. The role of temperature
has not been extensively discussed in this work since during
the molecular dynamics simulations, no significant increase
in temperature was observed. This is completely consistent
with the mechanical response of TATB, i.e., elastic twinning-
buckling deformation without dislocation nucleation and thus
no dissipation in the system due to plastic activity. No crystal
plasticity formalism was included in the present constitutive
law, which is therefore not able to represent temperature
effects.

Finally, a shock-loading simulation (Up = 150 ms−1) on
a TATB polycrystal containing 100 grains is performed with
sizes nonreachable by using MD simulations. We observe
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that behind the shock front, twin bands are generated in
various grains with sometimes multiple orientations within
the same grain. These results show that even for low-velocity

shocks, the twinning-buckling mechanism is activated, lead-
ing to a strong modification of the initial polycrystalline
microstructure.
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