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Sink strength and dislocation bias of three-dimensional microstructures
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Irradiation induces significant changes in the microstructure of structural materials, many of which are driven
by the preferential capture of point defects at particular sinks, such as dislocations. To quantify the kinetics
of defect absorption at sinks, theoretical models of radiation damage generally rely on the concept of sink
strength. However, analytical approaches to estimating the sink strength of dislocations rely, in turn, on a series
of geometrical assumptions, idealizing the dislocation network as a series of infinite straight dislocations or
isolated loops, often with artificial boundary conditions. In this paper, we use a recently developed technique
to quantify point defect capture in three-dimensional dislocation networks. We integrate this technique with
discrete dislocation dynamics to analyze the sink strengths of realistic dislocation microstructures consisting of
a mixture of edge, screw, and junction segments, complete with an accurate description of the strain fields these
microstructures produce and the resultant energetic interactions experienced by point defects. We show that the
effective kinetics for absorbing point defects can vary significantly with the arrangement of the microstructure
with a strong dependence on the structure and character of its dislocation content and introduce a surrogate
model for sink strength which incorporates these effects.
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I. INTRODUCTION

In radiation environments, atomic scale collisions with
energetic particles populate the lattice of crystalline materials
with point defects and point defect clusters. The fate of such
defects is determined by their ability to migrate and interact
with either other defects and/or sinks, such as dislocations
and grain boundaries. The kinetics and kinematics of point
defect migration are determined both by gradients in the
defect concentration as per Ficks law and by interaction with
any elastic strain fields in the medium. These strain-mediated
changes in transport kinetics are different for self-interstitial-
and vacancy-type defects. Over time, the persistent arrival of
an excess of one defect type or the other at a given sink results
in the local accumulation or loss of mass such that defect
by defect, atom by atom, the material’s original structure
transforms into a damaged structure. Consequently, long-term
changes in the physical and mechanical properties of metals
are often activated in full or in part by such strain interactions.
Examples include void swelling which produces macroscopic
changes in volume [1–5], radiation-induced climb which fa-
cilitates accelerated creep [6–9], and the formation of pris-
matic dislocation loops which promotes hardening [10–12].
The ability to predict nucleation and growth rates for these
damage features depends on quantifying the strain state of
a material in the undamaged and damaged microsturctures,
respectively, and its effect on the current of various point
defects and point defect clusters into the sinks present.

Quantitative theoretical descriptions of these processes are
provided by mean-field rate theory (MFRT). In this approach,
the individual, discrete sinks in a material are replaced by
a homogeneous lossy medium, and the kinetics of defect
absorption are quantified through the medium’s sink strength.
The defect concentrations, which in reality are complex func-

tions of space, time, and the internal strain state, are similarly
replaced by their averages. Ideally, the net rate of defect
capture at each sink type in this homogenized system is
identical to that of the real microstructure it is designed to
replicate. However, it is not immediately evident how this
homogenization procedure is best approached, and several
competing methods have emerged [13–18]. The usual ap-
proach is to consider isolated sinks which do not interact and
solve a simplified version of the point defect transport in an
idealized geometry to deduce the defect flux to a given sink.

Macroscopic descriptions of microstructural evolution
based on MFRT frequently neglect several crucial aspects
of the physics of radiation damage. These include, but are
not limited to, the clustering of point defects in cascades,
the anisotropic properties of defects, the collective effects
of dislocation structures, the resulting strain fields, and the
mixed character of realistic dislocation structures. Molecular
dynamics simulations have produced extensive knowledge
of cascade structure and defect clustering [19–23], and these
insights have been used to inform microstructure models over
longer timescales [24–26]. Defect anisotropy has received
significant attention as well [27,28], but the effects of the
spatial correlation of dislocations and the collective effect of
their strain fields are largely neglected in the generation of
dislocation sink strengths to date. These latter concerns are
the focus of the present paper as it is far from clear that a
single infinite perfectly straight edge dislocation at the center
of a cylindrical defect supply is an adequate surrogate for a
three-dimensional (3D) dislocation network. The multiplicity
of slip systems, the edge/screw character, the presence of
junctions, and line curvature all leave lingering questions
about whether the conventional sink strength calculations are
representative of the net point defect currents into dislocations
in real microstructures. These concerns are difficult to address

2475-9953/2019/3(5)/053608(12) 053608-1 ©2019 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevMaterials.3.053608&domain=pdf&date_stamp=2019-05-28
https://doi.org/10.1103/PhysRevMaterials.3.053608


AARON A. KOHNERT AND LAURENT CAPOLUNGO PHYSICAL REVIEW MATERIALS 3, 053608 (2019)

with analytical approaches. However, recently developed
numerical techniques allow the point defect transport and
absorption problem to be solved efficiently and accurately
for complex arrangements of dislocations in statistically
representative volumes, including a proper description of the
internal strain field and its effects [29].

In this paper, we apply discrete dislocation dynamics
(DDD) and spatially resolved rate theory to to quantify the net
absorption rate of point defects at dislocations. This allows
a critical assessment of the representativeness of particular
sink strength estimates for dislocation networks and the ability
of MFRT to represent three-dimensional dislocation networks
as lossy media in general. Section II outlines the methodol-
ogy for incorporating strain field interactions in the defect
flux and calculating the resultant sink strengths for arbitrary
three-dimensional dislocation networks. Section III quantifies
the effect of dislocation arrangement on sink strength, first
without, and then with the effect of strain field interactions.
The analysis spans a series of increasingly realistic dislocation
structures, beginning with purely periodic two-dimensional
(2D) arrays, moving to randomized 3D arrangements of
straight dislocations, and finally examining networks consist-
ing of a complex tangle of dislocations of varying character
and junction content. The organization of the microstructure
and the character of the network promote significant changes
in sink strength, particularly, with respect to the effect of
internal strain. We develop a surrogate expression for the
dislocation sinks strength which captures these effects, and
its implications are discussed in Sec. IV.

II. METHODS

The sink strength and bias of dislocations is governed by
the diffusive and strain-induced transport of point defects
throughout the material, and ultimately the rate at which point
defects reach dislocations as a consequence of these fluxes.
One can write the conservation of the mass condition on the
concentration c of a point defect population with source rate g
as

dc

dt
= −∇ · J + g, (1)

where the flux J of a particular defect species can be decom-
posed into diffusive and drift components according to

Ji = −Di j (c, j + βcE, j ), (2)

where subscripts preceded by commas refer to a partial deriva-
tive, Di j is the (bulk) diffusion tensor for the defect, and β

related to temperature as 1/kbT . Here, the interaction energy
E is determined by the elastic strain state at the position the
defect is located ε(r) and the point defect dipole tensor p in
the ground-state configuration according to [30,31]

E (r) = −pi jεi j (r), (3)

with a summation implied over repeated indices. Atomistic
methods can also be used to find interaction energies [32–34],
but in the exception of the core region, linear elasticity theory
describes the strain state well, and the dipole representation
supplies accurate energetics even for complex defects, such as
small loops [35].

In principle, the diffusivity D may be anisotropic and will
become a function of the strain state if the dipole tensor in the
saddle point differs from that in the ground state [27]. This
is known to be of particular importance when examining the
stress-induced preferred absorption effect [36]. In practice,
the resultant equations do not admit closed-form solutions
such that expressions to estimate the dislocation bias have
assumed—either implicitly or explicitly—that the ground and
saddle-point configurations have identical isotropic dipole
tensors and that the diffusivity is isotropic [15,37–40]. In this
case, the dipole tensor can be characterized solely in terms of
the relaxation volume �V . Generally, the relaxation volume
is defined through the material compliance as

�V = Siikl pkl , (4)

to which both isotropic and anisotropic parts of p can con-
tribute [41]. To ease comparison with conventional bias esti-
mates, we write

pi j = K �V δi j + p̃i j, (5)

where the tensor p̃ is assumed to be zero in the analytical
expressions for bias. A comprehensive study in aluminum
highlighted the effects of p̃, demonstrating the consequences
of its components for both the ground and the saddle-point
configurations when considering the isolated dislocation [42].
This is capable of changing the apparent bias of isolated
dislocations but can also impact the effect of configuration
through the interactions between dislocation strain fields not
captured in the relaxation volume. However, for this paper, we
will neglect the possible influence of such components such
that our findings can be compared directly to the conventional
analytical expressions and provide a direct assessment of the
impact of dislocation configuration on sink strength and bias.

A. Sink strength calculations

Sink strengths are calculated by solving Eq. (1) around a
particular instance of a sink, computing the net point defect
current I into that sink, and then equating the the total rate of
defect loss to some homogenized absorbing medium. That is,
one writes

I =
∮

A
J · dA, (6)

over the surface A of a given sink with J given by Eq. (2) and
then finds the appropriate sink strength k2 in the correspond-
ing homogenized medium as

Dk2C = Iρsink, (7)

where ρsink is the sink density and C is the mean-field concen-
tration of defect n.

Different authors often use different boundary conditions
when determining the current I and consequently derive dif-
ferent solutions for k2. The most common assumption is that
one can draw a cell around a given defect (a cylinder for
dislocations) sized to the mean defect spacing and set the
concentration at the boundary of that cell to the mean-field
value. That is, one solves

−∇ · J + g = 0, (8)

c(r0) = 0, (9)

c(R) = C, (10)
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FIG. 1. Schematic of the approaches used to calculate sink strengths. In this paper, the analytical estimates produced from both the
cylindrical cell and the effective medium approaches are compared to numerical calculations for various periodic structures.

where r0 is a capture radius and R is an outer cell radius
corresponding to the sink density. We will refer to the sink
strengths derived in this manner as the Laplace cell estimate
when the source terms are neglected and the Poisson cell
estimate when they are included.

It has been pointed out by Brailsford and Bullough that,
although the above approach is likely accurate to first order,
it is not internally consistent [14] in the sense that the mean
concentration and the appropriate representative concentra-
tion at the surface of the cylindrical cell are not the same. They
propose an alternative means of homogenization to avoid this
subtlety. This “effective medium approach” involves embed-
ding the sink directly in the homogeneous absorbing medium
created by all the other sinks k2

tot and solving instead

−∇ · J + g − Dk2
totc = 0, (11)

c(A) = 0, (12)

c(r = ∞) = C = g
(
Dk2

tot

)−1
, (13)

where the final boundary condition indicates that the flux
vanishes infinitely far from the sink. Although this procedure
describes the mean concentration consistently by definition,
analytical solutions are often unavailable or complex, and
numerical solutions are unavailable due to its nature.

Neither condition above is satisfactory for the curved,
noninfinite, or otherwise nonideal geometries associated with
realistic dislocation networks. As such, we consider a third
scenario in which periodic boundary conditions are employed.
In this case, the net current into the sink (or sinks) in the box
will be equivalent to the net source rate I = gV at steady state
by definition. Instead, all that remains is to relate the mean
concentration in the system to the sink strength that is

−∇ · J + g = 0,

c(r0) = 0,∫
Dk2c dV = gV. (14)

This approach also self-consistently relates mean concen-
tration to sink strength, whereas allowing multiple sinks in

various spatial configurations to be analyzed. A schematic
comparing the three approaches is shown in Fig. 1, noting that
the closed-form expressions to which we will later compare
have been derived in the first or second condition, whereas the
numerical calculations in this paper are all performed in the
third.

B. Local absorbing medium

Perhaps, the most direct approach to solving the set of
Eqs. (14) would be to craft a finite element mesh which
explicitly resolves the core of each dislocation. However, the
core radius is on the order of a few atomic spacings, and the
size of the periodic volume required to sample a statistically
significant number of dislocations can span several microns
depending on the density. Accordingly, it is preferable to
avoid such explicit resolution requirements if possible and
instead use an approach that allows the sinks to be described
discretely but does not require the core to be resolved. To this
effect, we use the recently introduced local absorbing medium
(LAM) approach [29].

This methodology leverages the same techniques used to
determine sink strengths for a homogeneous system [e.g., the
approach of Eqs. (6) and (7)] and applies them to a finer
volume corresponding to particular sinks. That is, instead of

dc

dt
= −∇ · J + g − Dk2c, (15)

with a uniform and universal absorbing medium k2, one writes

dc

dt
= −∇ · J + g − Ds(r)c, (16)

where s(r) describes the strength of an absorbing medium but
varies spatially and is only nonzero in the immediate vicinity
of a sink. The appropriate magnitude of s is determined by
bounding the volume over which the medium will be dis-
tributed and demanding that the same flux cross that boundary
when the resolved sink is replaced with the absorber as de-
scribed in the Appendix. This quantity is determined uniquely
through the geometry of the sink, the strain fields, and the
volume over which the absorber becomes distributed and is
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FIG. 2. Examples of the three types of dislocation configuration considered in this paper, including a periodic 2D array (left), a 3D array
of randomly placed dipoles (center), and a complex 3D network generated using DDD (right).

independent from values of the point defect concentration in
the bulk.

C. Dislocation configurations

This paper includes three types of periodic dislocation
microstructure, each generated in α-Fe, as illustrated in Fig. 2
with the densities that span the range of 5 × 1012 to 1015 m−2.
The first set is a periodic array of infinite pure edge disloca-
tions, designed to most closely replicate the two-dimensional
closed-form expressions for sink strength and bias generated
in cylindrical cells. For these calculations, the density is varied
simply by scaling the box size with a single dislocation at the
center of the box for each case. The second is a randomly
generated array of dipoles. For these calculations, the [111]
crystallographic direction is oriented along the x basis such
that pure edge dislocations can be inserted with line directions
lying along z or y, and pure screw dislocations can be placed
lying along x. The ratio of edge to total dislocation content
varies randomly between 0 and 1 for each instantiation of
the random array. A discrete set of box sizes is used with
additional variation in density accessed by changing the num-
ber of dislocations in the box. Finally, we consider complex
dislocation networks generated from the dynamic capabilities
of the DDD approach.

Existing DDD simulation methods are also used to gen-
erate the strain fields associated with each of the configura-
tions considered in this paper. In particular, the variant of a
mechanical solver which uses a fast Fourier-transform (FFT)
approach within the discrete-continuous model framework
(DDD-FFT) [43–46] has proven particularly efficient for our
purposes. This technique produces each component of the
elastic strain tensor at regular intervals on a Cartesian grid
throughout the material. For each type of microstructure,
the dislocations are placed within the DDD-FFT simulation
volume, the corresponding strain fields are generated, and
the appropriate LAM are assigned to each segment. Finally,
Eq. (1) is solved for the steady-state defect concentration
using finite differences on the same grid at which the strain
values are known and used to determine the sink strength.
This final step is repeated for defects of various relaxation

volumes. For the maximal symmetry case of the periodic
array, the calculations were repeated outside of the DDD-FFT
framework and without the LAM (for validation purposes)
using a high-resolution 2D grid with a resolved boundary
for the dislocation core and a strain field generated from
the superposition of the isolated edge dislocation solution.
In all cases, the material properties considered correspond
to an isotropic analog of α-Fe as shown in Table I, and the
nominal temperature used in these calculations was near the
peak void swelling temperature of bcc iron and ferritic steels
[47,48]. The complex networks are created by placing an
initial dislocation population of loops with random positions
and sizes in a simulation box. These loops are randomly
distributed among the possible variants of the 〈111〉{110} and
〈111〉{112} slip systems. These seed loops may be of either
pure edge (prismatic) or varying edge-screw (glide) character,
although, in both cases, the loops are glissile within the
relevant slip systems. The system is then loaded under intense
stresses on the order of a few gigapascals to activate growth
of glide loops and the operation of prismatic loops as Frank-
Reed sources. The resulting interactions between the loops
leads to the formation of a network. Several hundred steps
of such loading are followed by 20 000 steps of relaxation, a
duration sufficient to remove any unstable glide loops which

TABLE I. Standard parameters used in this paper, designed to
emulate α-Fe.

Parameter Value

K 270 GPa
ν 0.29
T 675 K
b 0.25 nm

Slip mode B (×10−5 Pa s) τc (MPa)

〈111〉{112} 8 10
〈111〉{112} 8 10
〈111〉{123} 8 10
〈001〉{110} 80 300
〈001〉{100} 9000 300
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TABLE II. Properties and target dislocation densities in each of
the box sizes considered.

Size (nm) 1440 720 360
Grid points 128 64 64
Mesh spacing (nm) 11.25 11.25 5.63
ρmin (1013 m−2) 0.5 2 8
ρmax (1014 m−2) 4 4 16

might remain in the structure. This process leaves a tangled
network consisting of segments inhabiting the original set
of slip systems, segments which have cross slipped to new
systems and remained there, and junctions formed during
the loading and relaxation process. During both processes,
dislocation velocities are computed from the resolved stress
τ through an overdamped equation of motion,

v = max(τ − τc, 0)

B
, (17)

using drag coefficient B and Peierls stress τc parameters which
reproduce atomistic simulations of dislocation interactions to
acceptable accuracy [12].

To properly distinguish the highly ordered periodic array
for the other two configurations which are designed to target
less ordered structures, a certain dislocation density must be
maintained in the simulation volume. As the number of dislo-
cations in the box drops, the full system becomes increasingly
ordered through the periodic images, and the mean spacing
between dislocations should be small compared to the box
size for the periodic system to reflect significant disorder. As
a guiding rule, we use

ρmin � n0L−2 (18)

for box size L where n0 is approximately 20 to avoid periodic-
ity concerns. Conversely, the assumptions behind the LAM
begin to break down where the absorbing regions begin to
overlap significantly. This can be expected to occur wherever
the mean spacing between dislocations approaches a few
mesh spacings, that is, to say,

ρmax � 1

π

(
npt

nsepL

)2

, (19)

where npt is the number of mesh points, nsep is the minimum
acceptable average spacing, and certainly no fewer than 2 but
more reasonably nearer to 6. The boxes sizes considered
here and target density ranges are shown in Table II. Due to
the nature of the microstructure generation process outlined
above, the density of the complex networks in a quasirelaxed
state cannot be controlled with precision, however, these
ranges were used to inform the target density range to be
considered for each simulation volume.

III. RESULTS

For each of the three types of dislocation structure, the
sink strength is computed both with and without the effect
of strain field interactions on point defect diffusion. For the
periodic array, only one calculation was required at each den-
sity. For the more complex structures (the random 3D arrays

and the networks), multiple calculations were performed at
each density to sample the variety of structures available.
In each case, 50 independent arrays were considered. Three
successive box sizes (0.36, 0.72, and 1.44 microns) were
used to span the array of dislocation densities required with
between 6 and 96 dipoles in each box for the random arrays.
In some cases, the same density was sampled at multiple box
sizes for intermediate densities to assess any effect of the
system volume. The analysis is simplified by introducing the
capture efficiency Z , which gives a dimensionless measure of
sink strength, and for dislocations,

Z = k2

ρd
, (20)

where ρd is the dislocation density.

A. Sink strengths without strain effects

First, each configuration was analyzed for noninteracting
defects (pi j = 0) and compared to the corresponding analyt-
ical estimates for sink strength derived from the cylindrical
cell and effective medium approaches. In the absence of strain
interactions, the cylindrical cell approach gives the estimate
widely applied to dislocation climb kinetics [49–51],

Z� = 2π

ln R/r0
(21)

without considering source terms (the Laplace solution). It
gives a slightly higher value,

Zp = 2π

ln R/r0 − 1
2

(
1 − r2

0
R2

) , (22)

when source terms are included (the Poisson solution) where
the outer cell radius R is related to the dislocation density as
R = (πρd )−1/2 in both cases. The effective medium approach
gives a more complicated result (the embedded solution),

Zem = 2πkr0K1(kr0)

K0(kr0)
, (23)

where K is the modified Bessel function of the second kind.
This is rarely used, likely due to its transcendental nature as
k = √

Zρ. For the physically relevant case of kr0 � 1 (that
is, the dislocations are separated by more than the core radius
on average), this reduces to the slightly more tractable but still
transcendental expression,

Zem = 2π

K0(kr0)
. (24)

For the periodic array, the sink strengths found from the
DDD-FFT and the 2D resolved boundary numerical solutions
matched each other to within 1% across the entire range of
density and were slightly higher than the Poisson estimate
which can be seen in Fig. 3. This is in agreement with previous
calculations examining such configurations with a kinetic
Monte Carlo approach [52].

The sink strengths of the other configurations, however,
differed substantially from this estimate. For random assign-
ments of dipoles, the sink strength was significantly lower
on average. There was some degree of variation between
instances of the dipole arrays, demonstrated in Fig. 4 where
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FIG. 3. The dislocation sink strength of a periodic array of
infinite straight dislocations, The solution from the DDD-FFT code
with local absorbing media is compared to a high-resolution numer-
ical solution with the boundary condition enforced directly at the
dislocation core. The predictions based on the Laplace and Poisson
solutions in a cylindrical cell as well as a dislocation embedded in an
equivalent effective medium are also shown.

the median, interquartile, and full range are shown for arrays
at a variety of densities. For a given density, the configuration
with fewer dislocations in the box (that is, to say, the smaller
sample volume) resulted in a somewhat higher median sink
strength, which appears consistent with the findings for the
single dislocation configurations. Indeed, if the number were
reduced to 1, the periodic array would be restored with its
significantly increased sink strength. The reduction in median
sink strength that occurs by increasing the sample volume
and reducing the periodicity of the system appears to satu-
rate relatively quickly, however, and statistically significant

FIG. 4. The dislocation sink strength of an array of randomly
inserted infinite dipoles. Simulations were run in each three different
volumes, each sampling five unique densities. For each case, the
median of 50 randomly generated instances is shown along the with
the interquartile and full ranges and compared against the three
analytical expressions.

FIG. 5. The dislocation sink strength of dislocation networks in
iron. Each of the 48 microstructures for each box size is shown as a
unique data point and compared to the analytical predictions of sink
strength based on simplified boundary conditions.

differences are really only observed for the simulations with
the minimum number of dipoles. As the volume converged on
representative sizes, the sink strength of these random arrays
approached the effective medium solution given by Eq. (24).

The capture efficiencies of the complex networks (ex-
cluding strain interactions) are shown in Fig. 5. For each
volume, between 40 and 50 instances were examined. The
sink strengths of these networks sit near, if slightly below,
that of the random dipole arrays. The variability in capture
efficiency also appears largely comparable to that seen for
random dipoles. The sink strength that emerges from these
configurations—presumably closest to the microstructure of
a real metal—sits only slightly below the effective medium
estimate of the capture efficiency, indicating that the use
of this value to describe the overall homogenized capture
behavior of three-dimensional networks is likely appropriate.
However, the strain field interactions with the point defects
can significantly increase the sink strength from these esti-
mates, and this effect is examined in the next section.

B. Strain field interactions

In addition to examining the sink strength of noninteract-
ing defects, each of the configurations generated above was
considered for interacting defects with different magnitudes
of relaxation volume. These spanned roughly 0.1–1.7 atomic
volumes and include the ground-state relaxation volumes of
the vacancy and self-interstitial atom (SIA) computed from
an empirical potential common for radiation damage in bcc Fe
[53]. Closed-form analytical solutions for the isolated cylinder
problem are also available in the case of an isotropic point
defect interacting with an edge dislocation in an isotropically
elastic medium and follow:

Z�(L) = 2π I0(L/2r0)

K0(L/2R)I0(L/2r0) − K0(L/2r0)I0(L/2R)
, (25)

where I and K are the modified Bessel functions of the first
and second kinds, noting that several sightly different but
similar variants exist depending on the boundary conditions
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FIG. 6. The increase in sink strength due to strain field inter-
actions with the point defect as a function of relaxation volume.
Simulations for regular periodic arrays and randomly placed dipole
configurations are shown alongside the predicted effect based on
Eq. (25).

enforced [37–39]. The point defect and elastic properties enter
through the interaction distance L, given by

L(�V, b) = Kb|�V |
2πkbT

1 − 2ν

1 − ν
, (26)

which also depends on temperature. Note that reversing the
sign of the relaxation volume creates a symmetric image in
the interaction energy around an edge dislocation such that
only the magnitude impacts Eq. (25). When considering strain
interactions, the effective medium approach does not admit an
exact closed form solution, a point we will revisit in the next
section.

As shown in the previous section, the sink strength for the
configurations we examine here differs—even in the absence
of strain interactions—from analytical predictions based on
such cylindrical cell approximations. Consequently, Z values
from this expression are difficult to compare directly to the
realized capture efficiency of any given three-dimensional
system. To more directly quantify the strain field effect on
kinetics, we will work with a normalized capture efficiency
Z (�V )/Z (0) rather than the capture efficiency directly. Fig-
ure 6 shows the effect of strain for both of the straight disloca-
tion configurations. As with the base sink strength, the DDD-
FFT implementation with local absorbers can be compared
directly to a 2D mesh with an explicitly resolved dislocation
core, and both calculation approaches are included. The fully
periodic array demonstrates a slight increase in the strain
effect when compared to Eq. (25), whereas the random dipole
arrays demonstrate a substantially reduced effect on average.
Some of the reduction is attributable to the presence of
screw character dislocations in these simulations, and indeed
the configurations which were entirely screw produced no
increase in the capture efficiency. However, the configurations
which were entirely edge still showed somewhat lower cap-
ture efficiencies than would be expected from Eq. (25) at large
values of the relaxation volume. Although the data shown is

FIG. 7. The increase in sink strength for dipole arrays due to
strain field interactions as a function of the edge content of the
system. The predicted bias based on the analytical expressions of
Eq. (27) (solid lines) are contrasted with the realized values for
particular arrays (points) and a least-squares fit to that data (dashed
lines).

for a density of 2 × 1013 m−2, such an effect was observed
consistently across box sizes and densities.

Dislocations of purely screw character produce no di-
latation in a medium with isotropic elasticity. The random
dipole arrays are oriented such that the dislocations all have
either pure edge or pure screw character. Accordingly, one
might expect that the wide range of biases evident in these
calculations are solely a consequence of the fraction of dipoles
that happen to take the screw orientation when the array is
constructed. Consider a modification of the bias according to

Zad(�V, ρ) = Z0(ρ) + χ{[Z (�V, ρ)] − Z0(ρ)}, (27)

with χ as the fraction of dipoles inserted with edge character,
Z given by Eq. (25), and Z0 given by Eq. (21). We will
refer to this as the character adjusted character prediction.
Figure 7 compares the bias of each array as realized from
three-dimensional calculations to the analytically predicted
values adjusted for the character of each array. Three rep-
resentative densities are shown, and in each case, the linear
increase in bias with edge content is followed broadly but
imprecisely. Significant deviation in the capture efficiency is
still observed, and the analytical values generally overpredict
the acceleration in capture kinetics.

For the complex networks, it is somewhat more difficult to
analyze the effect of strain on capture kinetics due to the vari-
ation in density between each instantiation of the dislocation
microstructure. It is not possible to directly examine the effect
of relaxation volume and network character at a fixed density
as no concrete reference density is available for these simula-
tions. Instead, we show Z (�V )/Z0 as a function of density for
two selected values of the relaxation volume in Fig. 8 as well
as the corresponding predictions of Eq. (25). The systematic
overprediction supplied by the analytical formula is expected
given the effect of screw dislocations in dipole case, but it is
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FIG. 8. The increase in sink strength due to elastic interactions
with complex networks. Equation (25) is compared to numerical
calculations for defects with large (solid line, filled points) and
intermediate (dotted line, open points) values of the defect relaxation
volume.

not evident what role is played by configuration of the network
(that is, spatial correlation, ordering, etc.).

Addressing the effect of configuration requires an alter-
native to the analytical expressions for the pure edge case,
and accordingly, we propose a surrogate expression of the
following form:

Zfit (δ) = 2π

ln(R/δ)

(
A0 + A1

r0

R
+ A2

δ − r0

R

)
, (28)

where δ constitutes an effective capture distance,

δ =
√

r2
0 + L2/4 (29)

containing the point defect properties, material elastic con-
stants, and temperature. This approach is motivated by prior
approximations of the sink strength [40,54] but includes fitting
parameters A0, A1, and A2 which provide corrections for
spatial correlation effects. The first accounts for systematic
deviation due to collective effects, the second describes how
this changes with density, and the third describes how collec-
tive effects scale with interaction strength. Together, these can
accommodate differences in sink strength due to ordering and
structure. We also note that the strain-free capture distance r0

is physically difficult to define but is usually assumed to be
one to two lattice units and becomes important only for very
weak interactions where L is comparable or shorter.

When combined with a linear dependence on edge content
per Eq. (27), a complete expression for sink strength can be
established

Zad
fit (χ, δ)

= 2π

ln R/r0

(
A0 + A1

r0

R

)

×
[

1 + χ

(
ln R/r0

ln R/δ

A0R + A1δ + A2(δ − r0)

A0R + A1r0
− 1

)]
,

(30)

FIG. 9. The deviation of dislocation network capture efficiencies
from the predictions of analytical expressions. The top plot reflects
the predictions of the cylindrical cell approach Z� without adjusting
for network character. The center plot uses Z� but includes the
character adjustment. The final plot uses the surrogate sink strength
described by Eq. (30).

which can incorporate the effects of character (edge vs screw)
and structure (order vs disorder) on sink strength separately.
However, the edge character of the networks is somewhat
more complex to quantify due to the presence of mixed
character segments and junctions. We will use

χ =
∑

i |bi × �i|
b
∑

i |�i| , (31)

where bi is the Burgers vector of the ith segment, �i is the
line connecting its end points, and b is the magnitude of the
Burgers vector used in connection with Eq. (26). This gives
the ratio of Burgers vector components lying in the edge direc-
tion to the reference magnitude and can conceivably exceed
unity for networks with significant junction content. The χ

used for the simpler case of dipole arrays is a degenerate form
of this expression when neither junctions nor mixed character
segments are present in the network.

To quantify the effectiveness of this approach on a case-by-
case basis, consider the error,

ηZ = Z − Z∗

Z
, (32)

where Z∗ represents the predicted capture efficiency, and Z
represents the measured capture efficiency of a given mi-
crostructure instantiation as found from the DDD-FFT/LAM
approach. The performance of the analytical expression Z�

given by Eq. (25) is shown in Fig. 9 as well as an adjustment
for network character Zad

� per Eq. (27). This is compared
against the surrogate expression Zad

fit , which considers both
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TABLE III. Coefficients to calibrate the capture efficiency for
different types of dislocation structure.

Structure A0 A1 A2

Periodic array 1.14 2.81 0.64
Random dipole 0.91 −2.16 −0.92
Full network 0.87 −5.12 −0.77

structure and character, Eq. (30). The statistical distribution
of errors in each case is represented via median, interquartile,
and full range values for each of several relaxation volumes
with the box size serving as a rough measure of the dislocation
density. Both of the predictions based on Eq. (25) show a
pronounced systematic error in Z . The overprediction worsens
with increasing density or interaction strength, which is mit-
igated but not eliminated by adjusting for network character.
A fit of the surrogate expression to the dislocation network
database describes each set to within the inherent statistical
spread, which stands between ±5 and ±15% depending on the
size of the system. A least-squares analysis was applied to the
databases for each of the three configuration types (periodic
2D array, random dipoles, and complex network), generating
the coefficients in Table III.

IV. DISCUSSION

The effect of strain on capture efficiency factors promi-
nently in the driving force for void swelling through the
dislocation bias, which motivates excess vacancy flux. Here,
we adopt the convention,

Bd = Zi

Zv

− 1, (33)

where Zi and Zv reference the capture efficiency for SIA
and vacancy defects, respectively. As the bias is a ratio of
Z , errors which are systematic (e.g., the coefficient A0 in
the previous section) will have no effect, whereas errors that
scale with interaction strength (described by A2) will. The
key question is whether effects on sink strength produced by
structure (order vs disorder) and character (edge vs screw)
are systematic in nature or not. The bias analysis here is
targeted to ferritic/martensitic (F/M) steels with the vacancy
relaxation volume, dislocation density, and temperature of
interest set accordingly. The parameters for this system are
not anomalous, however, and fall within the ranges for typical
metals where the vacancy defect relaxation volume is less than
a third of the atomic volume whereas the SIA can vary from
roughly one to two atomic volumes [41,55].

Bias factors have been generated from the surrogate sink
strength in Eq. (30) for all three configurations considered in
this paper and are compared against the conventional analytic
expression in Fig. 10. No notable difference between the
dipole array and the network configurations appears through
the range of SIA interaction strengths examined. The highly
ordered 2D system displays higher biases than the other two
configuration types, and all have departed significantly from
the conventional expression within the plausible range of SIA
relaxation volumes. The impact of screw character segments is
evident even for weak interactions, and the bias is also shown

FIG. 10. The dislocation bias factor Bd as a function of SIA
relaxation volume at a density of 3 × 1014 m−2 and the nominal
defect relaxation volumes for Fe marked. The conventional analytical
expression is shown directly as well as the surrogate sink strength
expression representing the three dislocation structures considered in
this paper. For the network case, three distinct values of the character
parameter are considered.

for networks which are 1/3 and 2/3 screw. The roughly linear
scaling of the dislocation bias with edge content is not surpris-
ing or counterintuitive, but the mesoscale approach taken here
confirms that it functions effectively for realistic networks.
The reduction of bias for each 1/3 increment in screw content
is of similar magnitude to the effect of configuration, sug-
gesting both factors contribute in real material systems. The
range of possible configurations has not been fully explored
in this paper, however, and nonuniformity within the network
can only be expected to increase for engineering materials
(for instance, in a cell-wall-type dislocation microstructure),
which intuitively suggests that further decrease in bias is
possible for such cases.

Together, these factors can help explain the low swelling
rates in ferritic materials where empirical estimates of the
bias factor range from fractions of a percent to low single
digits [56]. The maximum achievable steady-state swelling
rate relative to radiation dose measured in displacements per
atom (dpa) is approximately [57]

S ≈ εBd

4
(%/dpa), (34)

where ε is the point defect survival fraction—a material-
and irradiation-condition-dependent consequence of cascade
structure—usually between 10 and 30% [58–60]. Accord-
ingly, the conventional expression suggests peak swelling
rates between 1%/dpa and 3%/dpa if the survival efficiency
is included and nearly 10% if it is neglected. Notably, recent
ab initio calculations suggest a larger intersitital relaxation
volume of roughly 1.6 � in both the ground-state and the
saddle-point configurations, which would correspond to still
higher swelling rates [61]. The highest measured swelling
rates for these materials are reported for FeCr binary alloys
and α-Fe not exceeding 0.2% in the former [47,48,62] but
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possibly as rapid as 0.5% for the latter (in cold-worked metal)
with shorter incubation periods [47,56]. Alloys featuring a
martensitic microstructure exhibit even lower swelling rates
[63,64], generally attributed to high densities of lathe bound-
aries and precipitates that can act as alternative sinks and
recombination centers, frustrating the conditions which led
to Eq. (34). In F/M steels, the networks strongly favor the
screw configuration in both the unirradiated and the irradiated
conditions, suggesting 20% is a reasonable estimate for χ

[65,66] in which case the present paper predicts a bias near
8% and a peak steady-state swelling rate between 0.2%/dpa
and 0.6%/dpa.

Several additional factors may influence the sink efficien-
cies reported here. Notably, isotropic assumptions are taken
throughout this paper in regard to both the bulk diffusivity
and the defect dipole tensors. Anisotropy in either may have
significant effects on defect capture, potentially modifying the
capture efficiency of dislocations directly. Furthermore, both
contribute to a change in the sink strength of a dislocation
with applied stress, a phenomenon which does not occur with
isotropic considerations. Consequently, one expects additional
collective effects when anisotropy becomes important as the
local stress state created by neighboring dislocations can be
expected to join defect depletion in contributing to changes
in the sink strength. This can induce further deviation in
mean behavior from the analytical expressions but perhaps
more importantly induce additional variance in bias from
instance to instance on the micron scale. Finally, point defect
clusters are also produced in significant quantities in most
irradiation conditions and have different dipole tensors from
their monodefect counterparts. Whereas this does not affect
the sink efficiency of the point defects themselves, it may
change the overall interstitial bias (as plotted in Fig. 10).
We note that the present approach can be extended directly
to determine the sink strengths of sufficiently small clusters
provided the dipole tensors are known, whereas the DDD
framework offers the potential to assess average lifetimes of
larger glissile clusters by treating them explicitly as prismatic
dislocation loops.

Finally, we turn our attention to the growth of prismatic
dislocation loops in irradiated metals. In the homogenized
interpretation, interstitial-type loops will grow and vacancy-
type loops will shrink if the loop bias factor exceeds the
network bias factor. The opposite occurs in the case where
the loop bias falls below the network, and, in either case,
the size distribution broadens over time. Bias factors for
loops are more difficult to generate analytically, and different
approaches have produced loop capture efficiencies that agree
only in the sense of a complex nonmonotonic dependence on
the size of the loop and the total dislocation density [67,68].
Consider a further complication: That, for any given loop,
the capture kinetics will depend on where it is positioned
in regard to the surrounding network and other loops. The
capture efficiencies seen in this paper can vary by as much as
10% for volumes on the order of a cubic micron. At the 10-nm
length scale relevant to irradiation induced prismatic loops,
the variations in defect supersaturation are significantly more
pronounced. This produces locations in the microstructure
where loop nucleation and growth is encouraged and others
where it is frustrated, influencing the locations where such

loops will appear. It is not at all clear that mean-field quan-
tities, such as the average point defect concentrations or the
capture efficiencies in a homogenized system enter into this
picture when loops are distributed such that the environment
they see is not representative of such system averages.

V. CONCLUSIONS

The configuration of a dislocation network influences the
capture kinetics of point defects in the system with the sink
strength of a purely periodic system exceeding that of more
realistic 3D configurations by a factor of as much as 2. When
strain field interactions are neglected, the effective medium
approach provides the most representative description of sink
strengths for realistic three-dimensional dislocation networks.
Whereas this approach provides a reliable estimate of the
average sink strength of networks, individual instantiations at
similar densities follow a statistical distribution such that the
sink strength could differ between instances by as much as
30%, depending on the size of the system. Local variations
are even stronger, and the point defect supersaturations vary
widely from point to point within the material volume, poten-
tially driving the kinetics of both loop and void nucleations
away from estimates based on mean-field quantities.

The effect of strain field interactions on the dislocation
structure also vary from configuration to configuration. The
nature of the network in terms edge, screw, and junction
content strongly influences the dislocation bias. Accounting
for network character with a fairly straightforward quantifi-
cation of the edge dislocation content produces sink strength
estimates nearer to the capture kinetics realized in the DDD
calculations. However, screw and mixed character segments
do not account entirely for the difference between the an-
alytically predicted sink strengths and the sink strengths of
realistic dislocation networks. The additional discrepancies
are due to the irregular structure of the networks for which the
effective medium boundary conditions provide an acceptable
description of these configurational effects without strain but
do not yield a compact solution when energetic interactions
are considered. Instead, we have introduced a fitted expression
which describes the realized mean sink strengths of DDD mi-
crostructures over the physically relevant range of interaction
strengths and dislocation densities. This approach implies a
dislocation bias factor for F/M steels and FeCr binary alloys
much more consistent with the swelling rates observed in
those material systems.
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APPENDIX: SINK REGULARIZATION

Dislocation sinks are regularized to the FFT grid using
the local absorbing medium approach. Within this framework,
each segment is distributed to the neighboring grid points as
a diffuse absorbing medium in such a manner as to reproduce
the defect absorption rates of the discrete sink. This is accom-
plished via the following conceptual procedure:

(1) Consider a cylindrical volume of radius rA containing
the segment.

(2) Assign a radially dependent absorption density s(r)
within this volume.

(3) Choose the form and magnitude of s(r) such that
neither the concentration at nor the flux across the surface of
the cylinder is modified if the discrete sink is replaced with
the absorbing medium.

(4) Assign a discrete absorption coefficient si to each grid
point, which is the average s within the associated volume.

The appropriate values of s(r) follow from preserving the
flux across the medium boundary. To this end, consider a
dimensionless flux at the absorber boundary rA,

φ = rAc′(rA)

c(rA)
, (A1)

which must be identical if the inner boundary condition is
replaced by the absorber s(r). In cylindrical coordinates, this
condition can be satisfied if the absorber takes the form

s(r) = φ

rA

(
1

r
+ φ

rA

)
+ β∇2E . (A2)

In the case without strain, c(r) is given by

c(r) = c(rA) ln r/r0

ln rA/r0
, (A3)

and φ becomes

φ = 1/ ln rA/r0. (A4)

A power-law interaction potential of the form βE (r) = a0rn

gives a radial defect profile of

c(r) = c(rA) exp
(
a0rn

A − a0rn
)(EIa0rn − EIa0rn

0

EIa0rn
A − EIa0rn

0

)
, (A5)

where EI is the exponential integral and

φ = n

(
exp a0rn

EIa0rn
A − EIa0rn

0

− a0rn

)
. (A6)

In the case where E (r) has strong angular dependence or
no analytic expression for E is available, an effective radial
potential can be determined by an exponential averaging
procedure,

exp [−βU (r)/2] = 1

2π

∫ 2π

0
exp [−βE (r, θ )/2]dθ, (A7)

which has been shown to adequately represent the net flux
[69,70]. We note that, although the Laplacian of E vanishes
analytically for harmonic interactions, such as those which
appear in this paper, it appears numerically due to finite
difference discretization and in such cases significantly influ-
ences the appropriate absorber distribution. A full description
and validation of this procedure is available, including in
conditions with multiple dislocations [29].
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