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Shear-driven motion of Mg {101̄2} twin boundaries via disconnection terrace nucleation,
growth, and coalescence
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Twin nucleation and growth are prevalent plastic deformation mechanisms in hexagonal close-packed metals
such as Mg. For twin growth to occur, the interfaces that border the twinned domain must migrate and the kinetics
associated with this process are yet to be fully explained. Thus, the objective of this study is to characterize the
relationship between the kinetics of the {101̄2} twin boundary in pure Mg in the stress-driven regime, and the
nucleation, growth, and coalescence of disconnection terraces that serve as the mechanisms for migration. This
problem is addressed via atomistic simulations adopting both two- (2D) and three-dimensional (3D) simulation
geometries, and a model for the velocity of the {101̄2} twin boundary as a function of temperature and shear
stress is proposed. This study shows that the kinetics of {101̄2} twin boundary migration must be addressed using
3D models, as 2D simulations do not properly capture disconnection terrace nucleation and growth processes,
demonstrated via differences in activation volumes and energies. Importantly, simulations reveal an autocatalytic
terrace nucleation mechanism as playing a role in twin growth, where nucleation of a new terrace is dependent
on the growth of existing terraces on the twin plane.
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I. INTRODUCTION

Deformation twinning plays a fundamental role in the
mechanical behavior of hexagonal close-packed (hcp) metals
[1]. In the process of accommodating plastic deformation,
the morphology of the twin domains and their associated
interfaces affects hardening, texture evolution, and ductility
[2]. As a consequence, much work has been devoted in the
past decade to study hcp twinning at all length scales ex-
perimentally, computationally, and theoretically. In particular,
understanding the atomistic configuration and mobility of
twin interfaces is an indispensable first step for elucidating
the role of twinning in hcp plasticity. However, despite the
fact that twins are three-dimensional (3D) domains [2,3], the
majority of previous studies devoted to twin interface char-
acterization regard twins as two-dimensional (2D) entities.
One can draw a similitude between twin growth and Earth
topography: Plate tectonics shows that mountain ridges form
at subduction zones and 2D cross sections of the mantle depict
clean elevation profiles in the continents. The 3D geological
topography, however, is much less uniform and characterized
by a rather inhomogeneous distribution of elevations and
depressions.

The thickening of a {101̄2} twin domain requires the
motion of the {101̄2} coherent interface [4,5]. Such motion
is mediated by a shear stress, and it is well known that the
interface does not displace as a whole in this process, but
through the successive nucleation and motion of interfacial
defects that propagate “steps” [6,7]. While all of these interfa-
cial defects induce the same crystallographic shear, they can
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have varying heights ranging from, at minimum, two inter-
planar spacings up to several dozen [7]. Depending on their
character, these defects have been reported to be twinning
dislocations, disconnections, or disclinations [7–10]. Away
from triple lines and in the absence of grain boundary sliding,
the shear coupling relationship vnβv|| is sometimes used [11]
to describe the velocity of the interface in the direction of its
normal vector, vn, relative to the shearing velocity, v||. The
coupling factor β may be positive or negative and has been
related to the crystallography of the mating lattices [11].

In 2D models, the steps are implicitly regarded as being of
infinite length in one dimension by using periodic boundary
conditions in atomistic simulations, even if the thickness of
the simulation model is sufficient to allow for the nucleation
of kink pairs [12]. In 3D, the steps become “terraces,” and the
key scientific questions are as follows: How do they nucleate
and how do they grow laterally within the twin boundary?
The answers are relevant to the kinetics of propagation of
twin boundaries, and this work will show that temperature and
shear-stress dependence is measurably different for 3D than
for 2D propagation.

Only a few prior groups have explored the nucleation of
disconnection terraces in true 3D simulation models [13–15].
For example, Race et al. and Hadian et al. studied the
nucleation of 3D terraces on a flat �7〈111〉 symmetric tilt
grain boundary (GB) in Al [13], and on asymmetric Al GBs
which naturally contain steps or kinks as part of their interface
structure [14]. First, they showed that large cells are necessary
to attain convergence in the interface velocity. Then, using
classical homogeneous nucleation theory, they showed that
the energy barrier for the nucleation of a disconnection terrace
on the �7〈111〉 symmetric tilt GB was inversely propor-
tional to the driving force imparted on the GB, leading to
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non-Arrhenius migration behavior. Their model, based on
terrace nucleation [13], predicted an extremely large energy
barrier and large critical terrace radius at low driving force,
implying that atomically flat GBs have no intrinsic mobil-
ity. However, Hadian et al. later showed [14] that motion
of asymmetric GBs occurs via motion of preexisting kinks
within the GB, rather than terrace nucleation, and thus dis-
played an energy barrier for migration independent of driving
force. Considering {101̄2} twins in Mg and Mg alloys, Luque
et al. [15] presented a model for twin boundary migration
based on the concept of homogeneous terrace nucleation.
Specifically, for the arbitrary assumption of a square terrace,
they proposed an Arrhenius model for twin growth rate val-
idated by molecular dynamics (MD) simulations at applied
shear stresses between 15 and 100 MPa. MD simulations
with these boundary conditions confirmed the mechanism of
terrace nucleation and the assumption that twin boundary
migration occurred by individual terrace nucleation events
well separated in time. Note, while the above models are based
on homogeneous nucleation, dislocation interactions with 2D
and 3D twin interfaces can also lead to the heterogeneous
nucleation of terraces, as reported for the 2D case by Serra
and Bacon [16,17], and for the 3D case by Gong et al. [2].

Building upon prior efforts, the objective of this work
is to characterize the mechanisms associated with migration
of the coherent {101̄2} mirror twin boundary in Mg in the
shear-stress-driven regime between 100 and 500 MPa, using
2D and 3D atomistic simulation models. In this sense, this
work explores twin boundary migration mechanisms in a
fundamentally different regime as that explored by Luque
et al. [15]. Resolved shear stresses greater than 100 MPa are
certainly plausible on the local scale. For example, the shear
transformation associated with the tensile twin, in excess of
12%, will induce stresses near the twin interface and at the
twin tip reaching far more than 100 MPa [18]. Similarly, these
high local stresses will occur during high rate loading and
due to interactions between the twin domain and other defects
[18–20]. This work finds that twin propagation is mediated by
the nucleation, growth, and coalescence of terraces, which are
delimited by elementary b2/2 disconnections [17], consistent
with prior work [13–15]. Furthermore, the details of terrace
nucleation are affected by the 2D versus 3D nature of the
atomistic simulation models. A model for the velocity of
the {101̄2} twin boundary across the range of temperatures
and shear stresses evaluated is presented. Using this model,
average activation energies and activation volumes are com-
puted for disconnection-based mechanisms in both 2D and
3D growth simulations. This study unambiguously shows that
3D simulations are necessary to quantify the kinetics of twin
propagation, in agreement with length scale convergence sim-
ulations reported by Race et al. for a flat �7〈111〉 symmetric
tilt grain boundary in Al [13]. A novel result in this work is the
observation of an autocatalytic terrace nucleation mechanism
occurring within the range of shear stresses and temperatures
explored, whereby stress concentrations associated with the
presence and growth of existing terraces on the twin bound-
ary promote the nucleation of new terraces. Such a process
can be revealed only at shear stresses or temperatures that
allow for correlated (rather than uncorrelated [15]) migration
mechanisms on the twin boundary. The effective activation

volume and energy associated with the nucleation of ter-
races are computed to be very small, <0.26b3 and <0.1 eV,
respectively, and different values for these parameters are
found for 2D and 3D simulation models. Note that the term
autocatalytic has been used recently [21] to describe nucle-
ation of a new twin from a grain boundary source, due to the
local stress field of an incoming twin [22]. This work shows
that the twin thickening process itself can be autocatalytic
in nature. Altogether, this study delineates the importance of
accounting for local stress concentrations (which may include
intergranular and intragranular interactions) in the vicinity of
twin boundaries, in order to quantify the kinetics of twinning.

II. METHODS

A. Simulation codes and interatomic potential

Atomistic simulations in this work are performed using
LAMMPS [23] with atomic visualizations generated using
OVITO [24]. The modified embedded-atom method (MEAM)
potential for Mg developed by Wu et al. [25] is used for all
simulations. This MEAM potential provides a more accurate
description of Mg lattice parameters, cohesive energy, and
defect energies, compared to an earlier MEAM potential by
Kim et al. [26]. Further, since the MEAM potential accounts
for angular dependence of atomic bonding, it is more appro-
priate for hcp Mg than earlier embedded-atom method (EAM)
potentials by Sun et al. [27] or Zhou et al. [28]. For example,
the EAM potential by Sun et al. provides an unrealistic stack-
ing fault energy and predicts that the {101̄2}〈1̄011〉 twinning
dislocation is unstable [25].

B. 2D and 3D simulation models

Figure 1 shows the simulation geometry employed in this
work. The lattice regions are oriented such that the {101̄2}
twin boundary lies parallel to the global XY plane. Periodic
boundary conditions are employed in all directions, resulting
in a second {101̄2} twin boundary in the Z direction. For
2D models, LX = 0.3187 nm, LY = 30.35 nm, and LZ =
49.35 nm, while for 3D models, LX = 31.87 nm with the Y
and Z dimensions the same as the 2D model. The 3D model
dimensions are larger than those used by Race et al. [13,14];
they proved that volumes of this size are sufficient to capture
a converged response for terrace nucleation. Regardless, in
the case of the 3D model, supplementary simulations with
larger X and Y dimensions are performed to confirm that
the disconnection-based mechanisms associated with shear-
driven motion of the twin boundary are not adversely influ-
enced by the size of the periodic simulation domain.

To determine the minimum energy structure of the {101̄2}
twin boundary, a standard procedure [29–31] is employed
whereby the opposing lattice regions are translated relative
to each other to provide different starting configurations for
an energy minimization procedure. The extent of the trans-
lations in the Y and Z directions is motivated by the Gibbs
potential energy surface determined via density functional
theory (DFT) calculations [32]. At each starting configuration,
sequential energy minimization calculations are performed
using a nonlinear conjugate gradient method, with the sim-
ulation cell allowed to change size and shape to provide a
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FIG. 1. (a) Schematic of the {101̄2} twin boundary simulation cell. The global Z direction is normal to the twin boundary plane. (b) {101̄2}
Mirror twin boundary structure predicted using the MEAM potential of Wu et al. [25]. Atoms are colored by atomic potential energy.

stress-free atomistic model. Figure 1(b) shows the mini-
mum energy structure of the {101̄2} twin boundary. The
twin boundary is atomically flat with an approximately 86°
misorientation between basal planes in opposing grains, in
agreement with prior DFT and atomistic simulation results
[32–36].

C. Thermodynamic equilibration and shear deformation

After the equilibrium structure of the twin boundary is
attained, a state of pure shear stress is applied (τY Z �= 0
with all other stress components equal to zero) by allowing
simulation cell size and shape changes during an energy min-
imization process. Then, the twin boundary model is brought
to a desired temperature T , while maintaining the shear stress
τY Z , using MD simulations in the isostress-isothermal (NσT)
ensemble [37]. Temperatures between 100 and 400 K and
shear stresses between 100 and 500 MPa are considered in
this work. During equilibration, the twin boundary may begin
to move. The MD simulations under a constant shear stress
are continued for a sufficient amount of time to capture mean-
ingful motion of the {101̄2} twin boundary in the Z direction.
The velocity of the twin boundary is computed from the
average shear strain rate of the simulation cell, as explained
in Sec. III. Each 2D simulation is repeated five times and
each 3D simulation is repeated three times with different
random thermal seeds for the initialization of the atomic
velocities. Data presented are averages over the simulation
sets. Note, with this approach, a state of pure shear stress
is uniformly applied over the entire simulation cell without
manually imposing shear displacements on the boundaries
on the system in the Z direction. This differs from many
prior atomistic simulations of shear-driven motion of grain
boundaries where interface motion is induced via a shear dis-
placement [8,11,12]. These approaches do not allow uniform
control of the stress state acting on the interface, although the
interface is guaranteed to move at any temperature if the shear
displacement is continually increased.

III. RESULTS

A. Twin boundary motion in 2D models

Figure 2 shows shear strain and twin boundary velocity
data for 2D simulations of shear-driven motion of the {101̄2}
twin boundary. Figure 2(a) shows shear strain as a function

of time step. The important aspect of this figure is the time
domain over which the slope of shear strain versus time
step curve is approximately linear, as this portion of the
shear deformation process is used to compute average twin
boundary velocity. The plateau in the shear strain observed
around γY Z = −0.07 for models with T > 100 K are solely
a consequence of the height LZ of the simulation cell. Since
the twin boundaries migrate in opposite directions, they will
annihilate after each moves a distance of LZ/4. The result
of the annihilation is a twin-boundary-free sample, and since
the shear stress applied is below the critical shear stress for
homogeneous defect nucleation, no additional shear strain is
realized postannihilation.

To compute the average twin boundary velocity for each
combination of temperature and shear stress, the shear strain
rate γ̇ is first computed using the displacement of the simu-
lation cell along the shear direction, divided by time and the
height of the cell, using a MD simulation time step of 0.001 ps.
Then, the average twin boundary velocity is computed as
v = γ̇ Lz/2γtw, where Lz is the height of the simulation model
containing two mirror twin boundaries and γtw = 0.13 is the
plastic shear strain generated by a disconnection pair as it
advances the boundary [15]. Since disconnection terrace nu-
cleation and growth on the twin boundary planes is expected
to be the only mechanism in operation, the average velocity
of the twin boundary can be computed via this approach
and direct tracking of the twin boundary Z elevations is not
necessary.

Figure 2(b) shows the {101̄2} twin boundary velocity as
a function of inverse temperature for 2D simulations. Each
data point represents the average of five independent 2D
simulations with standard deviation of less than 8.6% for all
data points. At the highest shear stresses imposed (highest
driving forces), the data are linear and the slope (temperature
dependence) indicates an Arrhenius-type behavior. This is in
qualitative agreement with prior studies on the shear-coupled
motion of grain boundaries in fcc materials [11,13,14]. How-
ever, at lower driving forces and lower temperatures, a decay
in the shear strain rate is apparent, indicating a transition from
a drag-controlled regime to a nucleation-controlled regime.
Statistical variation between the five model realizations is
much smaller than the magnitude of the low-temperature
decay in the shear strain rate. This regime transition is evident
in Fig. 2(a); at low temperature (100 K) and moderate shear
stress (100 MPa), the shear strain evolves discontinuously
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FIG. 2. (a) Shear strain as a function of time step for select 2D atomistic simulations. Individual nucleation events are visible at the lowest
driving forces. (b) Average twin boundary velocity as a function of inverse temperature for 2D simulation models. The lines correspond to the
model presented as Eq. (2) in Sec. III C. (c) Nucleation of disconnections on the twin boundary plane. Disconnections move in opposite
directions (solid arrows) and coalesce at the periodic boundary to move the twin boundary down (open arrow) a distance equal to the
disconnection step height. (d) Detail showing the crystallography of the disconnection step. Atoms are colored by atomic potential energy
with the same scale as Fig. 1.

and strain bursts can be correlated with nucleation events
[15]. Overall, the rate sensitivity of the {101̄2} twin boundary
motion process in 2D is not negligible. This fact is typically
discarded in the literature, which usually assumes twinning to
be an athermal and strain-rate-insensitive process.

The mechanisms by which the {101̄2} twin boundaries
migrate are shown in Figs. 2(c) and 2(d) for τY Z = 100 MPa
at T = 100 K. These images are created following a brief
steepest descent energy minimization to eliminate thermal
oscillations that obscure the view of the twin boundary. Shear-
driven motion of the {101̄2} twin boundary is initiated by
the spontaneous nucleation of a pair of disconnections, as
shown in Fig. 2(c). The disconnections propagate in opposite
directions along the twin boundary plane and coalesce at
the periodic boundary, moving the {101̄2} twin boundary a
distance equal to the step height of the disconnections. This
process repeats to continue the motion of the twin boundary.
The disconnections have a vertical step height 0.378 nm and a
〈1̄011〉 dislocation with a Burgers vector of 0.0446 nm (based
on analysis of the crystallography [38]), as shown in Fig. 2(d).
The nucleation process is directional as disconnections are

nucleated on the negative Z face of the twin boundary in the
center of the simulation cell, as shown in Fig. 2(c), while they
are nucleated on the positive Z face of the twin boundary at the
periodic border (not shown in Fig. 2). Reversing the sign of the
applied shear stress, thereby reversing the sign of v||, reverses
the direction of twin migration. This basic mechanism is
consistent for all temperatures and shear stresses considered,
and is in qualitative agreement with prior works on shear-
coupled grain boundary motion [8,12]. At high temperatures
or driving forces, multiple disconnection pairs can nucleate
simultaneously promoting reasonably smooth boundary mo-
tion. A similar result has been reported by Martinez et al. for
2D simulations of {101̄2} twins in Ti [10]. This accelerated
terrace nucleation rate is further discussed in a later section,
within the framework of a model for shear stress and temper-
ature dependent behavior.

B. Twin boundary migration in 3D models

It is expected that a generalization of the mechanism ob-
served in 2D simulations would take place in 3D simulations.
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FIG. 3. Twin boundary velocity versus inverse temperature for
3D models. The lines correspond to the model presented as Eq. (2)
in Sec. III C.

While this is the case, this section shows that the kinematics
and kinetics are different, similar to the conclusions made by
Race et al. for terrace nucleation on a symmetric tilt GB [13].
Figure 3 shows twin boundary velocity as a function of inverse
temperature for 3D simulations of shear-driven motion of the
{101̄2} twin boundary. Twin boundary velocity is computed
using the same method as in the 2D simulations in Sec. III A
Each data point represents the average of three independent
3D simulations with standard deviation of less than 1.3%
for most data points. The exceptions are models subjected
to boundary conditions close to the nucleation-dominated
regime where error based on standard deviation is at most
20.3%. For a few temperature and shear-stress combinations,
the nucleation rate of disconnection terraces is particularly
rate limiting such that twin boundary migration is out of reach

for the MD simulation times; these data are omitted from
Fig. 3.

At high temperatures and driving forces, twin boundary
motion exhibits Arrhenius behavior. However, at low tem-
peratures, such as 100 K, a clear decline is apparent in the
velocity. Visually, the slopes of the relationship between twin
boundary velocity and inverse temperature are steeper in
Fig. 3 for shear-driven motion of the {101̄2} twin boundary
in 3D models than those shown in Fig. 2(b) for 2D models.
This implies that an accurate description of nucleation and
motion of disconnection terraces is not captured by 2D model
geometries.

Figure 4 shows a view normal to the {101̄2} twin bound-
ary, illustrating the mechanisms by which the twin boundary
moves, for the case τY Z = 500 MPa and T = 100 K. Shear-
driven motion of the {101̄2} twin boundary is initiated by
the nucleation of a small disconnection terrace, as shown
in Fig. 4(a). In the direction normal to the twin boundary,
the disconnection loop has a step height 0.378 nm and a
〈1̄011〉 dislocation with Burgers vector magnitude 0.0446 nm,
identical to that of the 2D model. In the 〈1̄21̄0〉 direction,
the disconnection loop contains only a pure step of 0.378 nm
because this direction is common in the two crystals and thus
no mismatch is required. Once the disconnection terrace is
nucleated, it expands and coalesces with other terraces within
the twin boundary plane, leading to movement of the twin
boundary a distance equal to the step height. It is found
that the first few terraces take on an approximately elliptical
shape as they expand, implying that there is a dependence of
mobility on the character angle of the disconnection, analo-
gous to that found in dislocations [39,40]. Interestingly, very
small terraces are found to nucleate ahead of moving terraces,
identified at multiple snapshots in Fig. 4 with circles. This
suggests that the nucleation of disconnection terraces can
be conditional on prior history, i.e., the growth of existing

FIG. 4. Disconnection terrace nucleation, growth, and coalescence at 100 K with an applied shear stress of 500 MPa. Atoms are colored
in bands by Z position with blue, green, and red colors representing different sets of {101̄2} planes parallel to the twin boundary. Regions of
autocatalytic nucleation in the initial twin boundary are circled.

053606-5



SPEAROT, CAPOLUNGO, AND TOMÉ PHYSICAL REVIEW MATERIALS 3, 053606 (2019)

FIG. 5. Disconnection terrace nucleation, growth, and coalescence at 500 K with an applied shear stress of 100 MPa. Atoms are colored in
bands by Z position with blue, green, red, and yellow colors representing different sets of {101̄2} planes parallel to the twin boundary.

terraces within the twin boundary plane. This mechanism is
referred to as autocatalytic nucleation and shows that in the
stress-driven regime, correlated nucleation events can occur
and should be considered in models for twin growth. The
importance of stress concentrations on autocatalytic behavior
will be discussed further in Sec. IV. After several propagation
and nucleation events, terraces with relatively arbitrary shapes
nucleate at higher rate. This coincides with a linear regime for
plastic strain rate [e.g., Fig. 2(a)]. The arbitrary shape of the
disconnection terraces in this regime implies that disconnec-
tion line tension plays a minor role.

At higher temperature but lower shear stresses, the fre-
quency of disconnection terrace nucleation is significantly
higher resulting in nucleation of many irregularly shaped
terraces that simultaneously interact within the {101̄2} twin
boundary plane, as shown in Fig. 5 for the case τY Z =
100 MPa and T = 500 K. The irregular shape of the terraces
in Fig. 5 implies a relatively low excess energy of the dis-
connection core. At this temperature, new terrace formation is
considered to be due to both autocatalytic terrace nucleation
and spontaneous formation due to entropic effects. Interest-
ingly, double layers are sometimes observed where a discon-
nection terrace nucleates on top of an existing disconnection
terrace that is actively expanding, indicating that the twin
boundary does not necessarily return to a pristine state at a
different Z elevation before continued terrace nucleation.

C. Model for shear-driven motion of the twin boundary

A velocity law for the shear-driven motion of the {101̄2}
twin boundary is proposed that accounts for shear stress,
temperature, and size dependence. Altogether, the effective
twin boundary velocity results from both nucleation of new
terraces and growth of existing terraces. Let nt and At denote
the instantaneous areal terrace density and their individual
area, respectively. Further, if one denotes with h the height of

the elementary b2/2 disconnection associated with the motion
of the twin boundary, measured in the prior sections from
atomistic simulations, then the twin boundary velocity can be
written as

v = h(ṅt At + nt Ȧt ). (1)

The first term in Eq. (1) corresponds to that proposed by
Luque et al. [15]. In their work, the authors assume (i) that
each nucleated terrace is in equilibrium and has an assumed
square or rectangular shape, (ii) that nucleation events are
statistically uncorrelated, and (iii) that the attempt frequency
associated with terrace nucleation decreases linearly with the
number of atoms in the nucleated terrace. Altogether, this
leads to an Arrhenius-type model for twin growth rate where
the preexponential factor scales to the fourth power with the
imposed shear stress.

Within the driving force regime studied in this work, which
can include autocatalytic behavior as shown in Figs. 4 and 5,
it is postulated that when a steady state is reached, the areal
density of terraces remains constant, neglecting the first term
of Eq. (1), such that the expansion of twin terraces becomes
the rate limiting factor. Further, the equilibrium areal terrace
density is given by the product of the number of sites per unit
area nA, the area simulated, and the probability of nucleation
given by the Arrhenius law in which enthalpy is written
as �H = �U0 − τvA. Here, vA is the activation volume for
the nucleation of disconnection loops and �U0 denotes their
formation energy. Note that nA could depend on stress. While
in the autocatalytic regime these considerations appear to be
unnecessary, this may not be the case in the nucleation-starved
regime (i.e., low stress and low temperatures). Furthermore,
the expansion of each terrace can be simply written via a
drag law linearly relating the velocity of disconnections, with
Burgers vector b, to the imposed resolved shear stress via
a temperature dependent mobility M. This mobility is to be
interpreted as an effective mobility in the {101̄2} twin plane
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FIG. 6. Application of Eq. (2) to the MD simulation data in 2D and 3D. Manipulation of Eq. (2) provides (a) the activation volume for 2D
and 3D simulations models (slope of each curve) and (b) the activation energy �U (Y-axis intercept) and the mobility M (slope of the curve).

for each disconnection terrace. In practice, the dependence
of mobility on the disconnection character must be assessed.
With these considerations, and if reff is defined as the mean
effective radius of terraces,

v = 2πreffhnaMbτ exp

(−�U0 + τυA

kT

)
. (2)

In Eq. (2), k is Boltzmann’s constant, T denotes the tem-
perature, and b refers to the norm of the Burgers vector of
the elementary disconnection. By rearranging Eq. (2), both
activation volume and activation energy can be estimated
from MD simulation results. Figure 6(a) shows kT ln(v/τ )
versus the applied shear stress τ , for 2D and 3D simulation
models. The slope provides the activation volume vA, which
is not expected to depend on temperature. From the 2D
and 3D MD simulation results, this is true at the highest
temperatures considered (300 and 400 K). For 2D simulations,
the activation volume is found to be relatively constant, with
a best fit yielding an activation volume of approximately
0.08b3 at T = 100 K and essentially zero at a temperature of
400 K. For 3D simulations, the activation volume varies from
approximately 0.26b3 at the lowest temperatures considered
down to 0.075b3 at 400 K. In summary, the dependence of
the activation volume on temperature is particularly weak and
occurs only in the nucleation-starved regime for which both
terms of Eq. (1) should be considered to better capture the
curvature in Figs. 2(b) and 3.

Figure 6(b) shows kT ln(v/τ ) versus the kinetic tempera-
ture, kT , for both 2D and 3D simulation models. The Y axis
intercept of each regression line provides the activation energy
�U0 associated with the terrace nucleation process, under the
assumption that the activation volume is very small, which
is confirmed in Fig. 6(a). For 2D simulations, the activation
energy is 0.014 eV, while for 3D simulations the activation
energy is 0.032 eV. Thus, there is a measurable difference
between both the activation energy (as well as the activation
volume) between 2D and 3D simulation models, underscoring
the importance of terrace geometry in the shear-driven motion
of the {101̄2} twin boundary. Ultimately, the atomistic simu-
lation data for the twin boundary velocity, shown in Figs. 2(b)
and 3, support the validity of Eq. (2). Using the activation
volumes and energies computed from Fig. 6, the model ac-
curately predicts shear stress and temperature dependence in
the high-driving-force regime, but fails to capture the decay in

twin boundary velocity below the transition to a disconnection
loop nucleation-starved regime [13–15] for twin boundary
migration.

IV. DISCUSSION

In 2D, the formation energy of disconnection terraces on
the {101̄2} twin boundary can be written as [10]

U0 = 2Ecore + Eint. (3)

Here Ecore and Eint denote the core energy of each discon-
nection and the interaction energy between disconnections,
respectively. Further, assuming isotropic elasticity, Eint can be
estimated as [41]

Eint = kb2

4π
ln

(
w

rc

)
, (4)

where k denotes a constant with units of energy per volume, w
is the distance between the disconnections, and rc is the core
radius. To assess the difference between the energy barrier
extracted from MD simulations and energy barriers associated
with the nucleation of individual terraces, the formation en-
ergy of individual disconnection terraces is computed in 2D,
as shown in Fig. 7. The core contribution alone is computed

FIG. 7. Energy of the disconnection cores (2Ecore ) as a function
of separation distance between disconnection cores using 2D models.

053606-7



SPEAROT, CAPOLUNGO, AND TOMÉ PHYSICAL REVIEW MATERIALS 3, 053606 (2019)

to be 0.38 eV/nm. By comparison, the current 2D simulations
predict an effective activation energy of 0.044 eV/nm. This
largely suggests that the nucleation of terraces is correlated
in the stress and temperature regime studied, as opposed to a
nucleation-starved regime [15] corresponding to the first term
of Eq. (1). Similar conclusions can be made for the 3D case,
as the formation energy of a disconnection loop of critical
size is expected to be much larger than the activation energy
extracted from MD simulations in Sec. III. In fact, Race et al.
[13] showed that a nucleation-based model overpredicts the
energy barrier for GB migration at high driving forces, likely
because it does not consider correlated events. This significant
difference can be rationalized as follows. First, the activation
volume extracted from the MD simulations is particularly
small, which explains why a stable terrace can be gener-
ated locally by stress concentrations. Second, once the first
disconnection terrace is generated, this terrace will naturally
provide the local stress concentration that contributes to the
generation of new disconnection terraces, due to the stress
field associated with the disconnection [42], thereby providing
an additional driving force. This is the essence of the auto-
catalytic process, as previously identified for the case of twin
nucleation from the grain boundary sources [21,22]. From a
constitutive modeling viewpoint, capturing the effects of this
autocatalytic process entails that field variables quantifying
the Helmholtz free energy in the system be described with
nanometer length scale resolution.

To appreciate the pertinence of the autocatalytic regime,
consider the three-stage sequence leading to twin domain
thickening, consisting of disconnection loop nucleation, trans-
verse growth, and coalescence. In a continuous medium,
the shear strain associated with the twin transformation will
induce a back shear stress applied by the host parent or by
the neighboring crystals. These reaction stresses have been
shown to be greater than 100 MPa [18–20] and they will affect
both the lateral propagation of the twin and its thickening
process. Indeed, during the forward propagation of the twin
domain, the stress states at the tip of a twin and away from
the tip will differ significantly. One can estimate the stress
field surrounding a twin domain embedded in a matrix phase
by using an Eshelby inclusion approach. Assuming elasticity
and an ellipsoidal twin shape, the resolved shear stress on
the twinning plane ahead of the twin tip will be positive,
and well in excess of 100 MPa, while it should be negative
midway across the twin. With this, it is expected that the
propagation of the twin tip will be accompanied by the
nucleation and motion of disconnection terraces on coherent
twin planes. Given the high stress state at the twin tip, this
sequence of events will occur in the autocatalytic nucleation
regime. It suggests that twins thicken during the lateral prop-
agation of their tip, consistent with other atomistic scale
simulations [43].

Finally, during the thickening stage and considering the
case when the twin is connected to grain boundaries, given

the small effective activation volumes and activation ener-
gies extracted from MD simulations, the autocatalytic regime
could be triggered by both intergranular stresses (type II) and
transgranular stresses (type III) associated with the dislocation
microstructure. This in turn rationalizes the particularly com-
plex shapes adopted by tensile twins in Mg and Mg alloys.

V. CONCLUSIONS

Using molecular dynamics simulations, the mechanisms
associated with shear-driven motion of the {101̄2} mirror twin
boundary in Mg are characterized, and the importance of 3D
model geometry on shear-driven motion is emphasized. The
twin boundary migrates in the direction normal to the coherent
twin plane via the nucleation, growth, and coalescence of
disconnection terraces. This study reveals the presence of an
autocatalytic regime for twin growth, whereby new terrace
nucleation can be triggered by the growth of existing terraces
on the twin boundary plane, which leads to small (<0.1 eV)
effective activation barriers for nucleation of terraces. This
suggests that twin growth is dependent on local stress con-
centrations, which may arise as intragranular stresses from
the presence of dislocations, or grain neighbor induced in-
tergranular stresses. With this, it is to be expected that local
twin growth bursts could occur in the local vicinity of stress
concentrations, if these are aligned with the twinning shear
direction and twin plane. Thus, one would expect fully 3D
twin domains to have particularly irregular shapes, consistent
with 3D electron backscatter diffraction (EBSD) observations
[44].

Further, a model is proposed to describe {101̄2} effective
twin boundary velocity during shear-driven motion. Molecu-
lar dynamics simulations are used to compute activation en-
ergies and activation volumes for both 2D and 3D simulation
geometries, confirming that the kinetics of twin propagation
must consider the 3D nature of disconnection nucleation,
growth, and coalescence. Finally, it is noted that results of
this study apply to twin thickening by shear-stress-driven
migration of the coherent plane. This mechanism does not
exclude other possible terrace-nucleation mechanisms, such
as dislocation-twin reactions. Furthermore, the disconnection
terrace nucleation and expansion may also assist forward and
lateral twin propagation [3], which should also be treated
within a 3D framework. These calculations, however, do not
provide information about the latter mechanisms.
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