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Anharmonic effects in the low-frequency vibrational modes of aspirin and paracetamol crystals
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The low-frequency range of vibrational spectra is sensitive to collective vibrations of the lattice. In molecular
crystals, it can be decisive in identifying the structure of different polymorphs and, in addition, it plays an
important role in the magnitude of the temperature-dependent component of vibrational free-energy differences
between these crystals. We study the vibrational Raman spectra and vibrational density of states of different
polymorphs of the flexible aspirin and paracetamol crystals based on dispersion-corrected density functional
theory, density functional perturbation theory, and ab initio molecular dynamics. We examine the effect of
quasiharmonic lattice expansion and compare the results of harmonic theory and the time-correlation formalism
for vibrational spectra. Lattice expansion strongly affects the collective vibrations below 300 cm−1, but it
is significantly less important at higher frequencies, while thermal nuclear motion can be important in the
full vibrational range. We also observe that the inclusion or neglect of many-body van der Waals dispersion
interactions does not cause large differences in the low-frequency range of Raman spectra or vibrational
density of states, provided the lattice constants are fixed. We obtain quantitative agreement with experimental
room-temperature Raman spectra below 300 cm−1 for all polymorphs studied. Examining the two-dimensional
correlations between different vibrations, we find which modes show a larger degree of anharmonic coupling to
others, providing a possible route to assess the accuracy of harmonic free-energy evaluations in different cases.
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I. INTRODUCTION

Molecular crystals are a large class of crystals that encom-
passes common painkillers and antipyretics such as aspirin,
paracetamol, or ibuprofen. As suggested by their name, such
crystals are built from individual molecular units, which are
mainly held together by noncovalent interactions such as
hydrogen bonds and dispersion forces. The molecular units
that constitute them can be arranged in different patterns and
each specific arrangement is called a polymorph. Despite the
often small energy differences separating these polymorphs
[1], they can present very different physicochemical proper-
ties. For instance, paracetamol form II is known to be more
soluble than form I, and is also more easily compressible
into tablets [2]. Being able to accurately grasp the energetic
balance between different polymorphs and to unambiguously
characterize them could potentially lead to reduced costs in
the pharmaceutical industry, for example. Doing so is no
easy task, though: the energy differences between different
polymorphs are typically of the order of only a few meV
per molecular unit [1] and vibrational structural fingerprints
can show only small (but important) differences. Therefore,
several factors that compete between each other, such as
anharmonic effects in lattice expansion, nuclear vibrations,
dispersion forces, and polarization of hydrogen bonds, need
to be taken into account [3–5].
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Given the large unit cells (containing hundreds of atoms)
of some of these molecular crystals, few studies have treated
all of these effects in first-principles theoretical calculations
[1,3,4,6–8]. Specifically, the impact of anharmonic terms
of the potential-energy surface (PES) on the temperature-
dependent properties of these crystals has only recently started
to be addressed [4,9–14]. In particular, the low-frequency
phonon modes, mainly governed by intermolecular interac-
tions (e.g., hydrogen bonds), are sensitive to (anisotropic)
lattice expansion at finite temperatures [3,11,15] and also to
nuclear fluctuations—even if the extent of this sensitivity has
not yet been carefully quantified. This region is particularly
important since it strongly contributes to the vibrational free
energy at finite temperatures [16]. As an illustration, we show
in Fig. 1 the error in the temperature-dependent part of the
harmonic vibrational free energy given by a 5% error in the
vibrational density of states at different frequencies. Errors
in the lower frequencies, especially below 500 cm−1, have a
large impact on this term, which becomes more pronounced
as the temperature increases.

As vibrational spectra can be measured with high accuracy
and at different temperatures, comparing theoretical and ex-
perimental spectra in the low-frequency region is important
to gauge whether temperature-dependent vibrational free en-
ergies can be accurately described by any given theoretical
methodology.

In this paper, we present a theoretical characterization of
the low-frequency (ω < 300 cm−1) vibrational Raman spectra
of the two main polymorphs of paracetamol and aspirin.
Comparing these particular polymorphs is enlightening since
while for paracetamol the hydrogen-bonding pattern in the
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FIG. 1. Errors in the temperature-dependent term of the har-
monic quantum vibrational free energy as a function of tem-
perature T and frequency ω, caused by a percentage error �ω.

�F therm(ω, T ) = kBT ln [(1 − e− h̄(ω+�ω)
kBT )/(1 − e− h̄ω

kBT )]. We consid-
ered �ω = 0.05ω.

different polymorphs is quite diverse, in aspirin they are
almost identical, as shown in Fig. 2(a). We employ density
functional theory (DFT) and density functional perturbation
theory [17–20] (DFPT), including many-body van der Waals
corrections [21,22] (MBD). We present an analysis of how
low-frequency vibrational modes change with anharmonic
couplings to other modes, with changes in the lattice and with
changes in the potential-energy surface.

II. METHODS

In the following, we provide details about the different
methodologies we use, as well as the numerical settings we
employ in each case. All of our calculations were performed
within FHI-aims [23], an all-electron numeric atom-centered-
orbitals code. We obtained the experimental crystal structures

from Ref. [24] for aspirin I, from Ref. [25] for aspirin II,
and from Refs. [26,27] for paracetamol I and II. We compute
energies and forces with the Perdew-Burke-Ernzerhof (PBE)
exchange-correlation functional throughout, including MBD
dispersion corrections as described in Ref. [28], except where
stated otherwise. For the Raman spectra, we calculate the
polarizability tensors with DFPT [20]. We calculate the ten-
sors with the local density approximation (LDA) functional,
given that we have previously shown in Ref. [20] that it saves
considerable computational time and the Raman spectra show
no differences when calculating these tensors with different
functionals. In the following, it will thus always be assumed
that LDA was used for calculating polarizabilities, even if not
explicitly mentioned. Unless stated otherwise, a 2 × 2 × 2 k-
point grid was used for all polymorphs.

A. Lattice expansion

In order to assess anisotropy in the quasiharmonic lattice
expansion calculations, we assumed fixed angles for each
molecular crystal polymorph and minimized the second-order
Taylor expansion of the Helmholtz free energy F at a particu-
lar temperature T ,

F (a, b, c) = F0 + pt H p, (1)

where F0 is the free energy at the equilibrium lattice param-
eters at the temperature of choice, H is the matrix of second
derivatives of the free energy with respect to the lattice param-
eters, p = (a − a0, b − b0, c − c0) where a0, b0, and c0 are
the equilibrium unit-cell parameters at a given temperature,
and pt is its transpose. Given the symmetric nature of H, we
thus have 10 unknown variables to determine at a specific
temperature T , namely, the six H matrix elements, the three
equilibrium lattice parameters, and F0. This minimization was
done at the assumption of fixed cell angles and employing
a nonlinear least-squares fit. We used at least 10 evaluations

FIG. 2. (a) The four polymorphs of this study at equilibrium: (i) aspirin form I, (ii) aspirin form II, (iii) paracetamol form I, and
(iv) paracetamol form II. The unit cell is drawn in black. (b) Superposition of multiple frames coming from an AIMD simulation. In all
systems, methyl groups rotate freely. In aspirin form II, the distance between neighboring acetyl groups varies over time.
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of F calculated at different values of a, b, and c in the har-
monic approximation from DFT (at any given temperature) in
order to determine these parameters. Once DFT phonons are
obtained for different lattice displacements, the temperature
dependence of the vibrational free energy in the harmonic ap-
proximation is analytically known, thus making it easy to find
the optimum parameters of Eq. (1) at any temperature. Further
details of this procedure can be found in the Supplemental
Material (SM) [29]. We note that a possible alternative, which
would require a comparable amount of phonon evaluations,
would be to evaluate mode-specific Grüneisen parameters [30]
to approximate the variation of phonon frequency with each
lattice parameter.

The tight basis sets of FHI-aims were used for all atomic
species and the phonon calculations using a 1 × 1 × 1 super-
cell and a 5 × 5 × 5 q-point grid were performed using the
PHONOPY program [31]. We calculated 14 distortions of the
lattice for aspirin I, 10 for aspirin II, 15 for paracetamol I, and
13 for paracetamol II. We checked that the solution is a mini-
mum of the free-energy surface by ensuring that the eigenval-
ues of H are all positive. Whenever that was not the case, we
displaced the cell in the direction of the eigenvector with the
negative eigenvalue, calculated phonons for this displacement,
and added this point to the minimization procedure. The
routine written for this model is available online [32].

B. Harmonic Raman spectra

A standard way to evaluate vibrational Raman spectra is
through the harmonic approximation, in which the Taylor
expansion of the potential energy is truncated at the second
order. In this procedure, Raman intensities are proportional
to the derivatives of the polarizability tensor with respect to
atomic displacements (see, e.g., Refs. [33,34]). We calculate
the orientation-averaged “powder” harmonic Raman intensity
IH (ω) (which is directly proportional to the Raman scattering
cross section [35]) of a given normal mode p by [36],

IH (ω) = I⊥
H + I‖

H ∝ 1

ω(1 − e−β h̄ω )
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where I⊥ and I‖ are the depolarized and polarized Ra-
man intensities, respectively, β = 1/(kBT ), and (α′

i j )p =
(∂αi j/∂Qp)0 is the derivative of the i j component of the polar-
izability with respect to the displacement of normal mode Qp.
We compute these derivatives through finite differences, in
which we evaluate the polarizability tensor from DFPT [20] at
6N (forward and backward) nuclear displacements in the unit
cell around the equilibrium position, with N being the number
of atoms per unit cell. We use regular Cartesian coordinates
to describe normal modes. This coordinate system may not
always be appropriate when dealing with torsional vibrational
modes, for which a better approach is to use curvilinear

coordinates [37]. Knowing the space group of our crystals, we
then apply all symmetry operations pertaining to this group
onto the vibrational modes, in order to confirm whether or
not they should show Raman activity [38]. A posteriori, we
discard modes that are Raman inactive, if any are found. We
note, however, that selection rules are naturally enforced by
the whole procedure and such an a posteriori correction is
only needed if (rare) numerical errors are present.

The harmonic Raman spectra presented in this paper were
calculated with light numerical and basis-set settings in the
FHI-aims code [23], for direct comparison with the anhar-
monic spectra. Differences between light and tight harmonic
spectra are minor and shown in Fig. S3 in the SM [29].

C. Anharmonic Raman spectra

A way to go beyond the harmonic approximation is to
resort to the time-correlation formalism. In this formalism,
the potential energy is sampled without any approximations,
thus ensuring that full anharmonicity (here at a classical
nuclei approximation) is captured. Vibrational Raman line
shapes are proportional to the Fourier transform of the static
electronic polarizability (or static electronic susceptibility) au-
tocorrelation function [39]. Realizing this formalism requires
computing polarizability tensors along molecular dynamics
trajectories, as explained in, e.g., Ref. [20]. For compari-
son with experimental spectra taken from powder samples,
here we calculate the anharmonic powder-averaged Raman
intensity IA(ω). This can be calculated from the isotropic
and anisotropic contributions to the signal as follows (see
Ref. [40], Eqs. (21)–(99) and (21)–(100); and also [35]):

IA(ω) = I⊥
A + I‖

A = Iiso(ω) + 7

3
Ianiso(ω),

Iiso(ω) = I‖
A − 4

3
I⊥
A ∝

∫ +∞

−∞
dte−iωt 〈ᾱ(0)ᾱ(t )〉,

Ianiso(ω) = I⊥
A ∝

∫ +∞

−∞
dte−iωt 1

10
〈Tr[β(0) · β(t )]〉, (3)

where the electronic polarizability (or electronic susceptibil-
ity) tensor α = ᾱI + β and the brackets 〈·〉 denote the canoni-
cal average. Here we consider only the electronic contribution
to the dielectric permittivity. In ionic and polar crystals, con-
tributions from ionic polarization could be more pronounced,
as discussed in Ref. [41]. We apply the so-called quantum
or Kubo-transform correction factor to the line shapes of
β h̄ω/(1 − e−β h̄ω ).

All of our ab initio molecular dynamics (AIMD) simu-
lations were performed with light numerical and basis-set
settings in FHI-aims and otherwise the same settings as for all
other calculations. We performed a thermalization (NVT) run
of about 2 picoseconds for each polymorph, followed by two
NVE simulations of 15 picoseconds each, using a time step
of 0.5 femtosecond. We computed polarizability tensors with
DFPT calculations every 1 fs.

D. 2D-correlation spectra

Two-dimensional (2D) correlation spectra can be calcu-
lated from our MD simulations. We follow the procedure
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detailed in Ref. [42]. These 2D correlations “provide a quan-
titative comparison of spectral density variations observed at
two different spectral variables over some finite observation
interval Tmin and Tmax” [42]. It is thus a useful tool to under-
stand couplings between different modes, as has been recently
shown for the case of water [43]. We recall the main formulas
from Ref. [42] to produce such spectra in the present text. We
define the dynamic spectrum Ĩ j (ω) as

Ĩ j (ω) = I j (ω) − Ī (ω), (4)

where I j (ω) is simply the intensity [e.g., Raman intensity as
defined in Eq. (3)] at ω, evaluated for a given time window
Twin, the duration of which depends on the phenomenon
one wants to observe. If we divide our trajectory of interval
[Tmin, Tmax] into m segments of length Twin evenly spaced by
an increment of (Tmax − Tmin)/(m − 1), the average spectrum
Ī (ω) is given by

Ī (ω) = 1

m

m∑
j=1

I j (ω), (5)

and the synchronous 2D correlation intensity takes the follow-
ing expression:

φ(ω1, ω2) = 1

m − 1

m∑
j=1

Ĩ j (ω1)Ĩ j (ω2). (6)

In all of our simulations, we choose Twin = 1 ps.
The diagonal peaks appearing in these spectra are referred

to as autopeaks and are always positive; they represent the
change in intensity at a given frequency over a given period
of time. Hence, regions that vary substantially in intensity
will have strong autopeaks, while regions that vary little will
have weak autopeaks. Off-diagonal peaks, or cross peaks,
correspond to simultaneous changes (of equal or opposite
signs) in intensities at two different frequencies over a given
duration, indicating a probable coupling between the two
corresponding vibrational modes.

III. RESULTS

A. Lattice expansion and harmonic Raman spectra

The four molecular crystals studied in this work, namely,
aspirin I and II, and paracetamol I and II, have known crystal

structures, which are shown in Fig. 2(a). In many molecular-
crystal polymorphs, important structural differences can al-
ready be spotted simply by looking at the molecular arrange-
ment and the shape of the unit cell, even without resorting to
Raman spectroscopy. Paracetamol I and II are good examples
of such different polymorphs, as shown in Fig. 2(a). For
a few, however, differences are much more subtle. This is
particularly true for aspirin, for which both forms appear to
have the same structure in projection. One key difference lies
in the pattern formed by intermolecular hydrogen bondings
between the acetyl groups (CH3CO) [44–48].

Lattice expansion can have a large impact on the ener-
getics, affecting the stability ranking of polymorphs [49].
However, here we will focus on its impact on vibrational
spectra and, more specifically, on Raman spectra. To this end,
we calculate the harmonic Raman spectra (see Sec. II B) of
aspirin I and II, using for each of them two different lattice pa-
rameters: the experimentally determined ones obtained from
Refs. [24,26,27,44] and the ones coming from the procedure
outlined in Sec. II A. The lattice parameters we use are given
in Table I.

We observe that most calculated lattice parameters at 300 K
are relatively close to the experimental 300 K results, although
the changes are quite heterogeneous. The most notable dif-
ferences can be seen for the b parameter of paracetamol II
and the c parameter of aspirin II that both show a difference
of about 2.8%. The absolute values of the calculated lattice
constants at 300 K for form I of paracetamol and aspirin are
closer to experiment than those of their respective form II,
although the relative expansion is better reproduced for the
latter (see SM, Fig. S1 [29]). Other works have been con-
ducted on a similar topic, but employing different functionals
and a different approach, as they fixed the experimentally
determined volumes at different temperatures and only op-
timized the lattice parameters, leading to an expected good
agreement with experimental values [50]. We draw attention
to the fact that lattice parameters calculated without van der
Waals (VdW) dispersion interactions (at the potential-energy
surface), shown in Table I, strongly deviate from experimental
values, highlighting the importance of these interactions in
determining the shape and density of these crystals.

The harmonic Raman spectra of aspirin form I and II
computed with our calculated lattice parameters and the ex-
perimental ones at 300 K are shown in Fig. 3. We observe that

TABLE I. Lattice parameters. Unit vectors are in Å and angles in degrees. Second and third columns: fully (atomic positions and unit
cell) optimized structure at the potential-energy surface (PES) using the PBE and the PBE+MBD functional. Fourth column: calculated lattice
constants from our quasiharmonic lattice expansion scheme, calculated with the PBE+MBD functional. Fifth column: experimental lattice
constants at 300 K from Refs. [24,26,27,44]. Last column: error (in percentage) between the calculated and experimental lattice parameters at
300 K.

� (Calc.-Expt.)
PES (PBE) PES (PBE+MBD) Calc. 300 K Expt. 300 K (%)

a b c β a b c β a b c β a b c β �a �b �c

Paracetamol I 6.92 12.51 12.98 55.8 7.01 9.15 12.77 66 7.09 9.23 12.75 66 7.08 9.34 12.85 64.5 0.14 1.18 0.78
Paracetamol II 11.63 9.14 17.40 90 11.59 7.30 17.26 90 11.62 7.61 17.26 90 11.83 7.40 17.16 90 1.78 2.84 0.58
Aspirin I 12.30 7.00 12.30 96 11.40 6.52 11.33 96 11.50 6.51 11.46 96 11.42 6.60 11.48 96 0.70 1.36 0.17
Aspirin II 13.26 6.85 12.38 114 12.27 6.43 11.35 111 12.52 6.65 11.82 111 12.36 6.53 11.50 112 1.29 1.84 2.78
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I H

(ω
)

Calc. latt. 300K
Exp. latt. 300K

0 100 200 300 400 800 1200 1600
Wavenumber (cm-1)

2800 3200

Aspirin I

Aspirin II

× 0.4

× 0.4 × 0.4

× 0.4

FIG. 3. Harmonic Raman spectra of aspirin I (top) and II (bot-
tom) obtained with the experimental lattice parameters (black lines)
and the calculated lattice parameters (blue lines) at 300 K. We
used the PBE+MBD functional. In the middle and right panels, we
indicate the factor by which each panel is scaled as compared to the
left panel.

using different lattice parameters has seemingly no influence
in the middle-frequency range, while at high frequencies, only
small rigid shifts and minor changes in intensities can be
observed. The impact is most easily seen at low frequency,
especially for form II, where the intensities of several peaks
are modified and the general line shape changes substantially.

It is not surprising to see that the changes manifest mostly
at low frequency since, as mentioned in Sec. I, low-frequency
phonon modes tend to be sensitive to the intermolecular
potential, which is determined by the shape of the lattice.
The differences between the two polymorphs can stem from
different factors. As we have previously seen, the difference
between the experimental lattice constants and the calculated
ones is greater for aspirin II than aspirin I, so it is only logical
that this difference is reflected in the spectrum. Also, it is
known that aspirin II is more easily compressible, as it forms
flat hydrogen-bonded sheets along the c axis, as opposed to a
wavelike pattern in form I [46]. This seems to be consistent
with the larger expansion of the c lattice vector of aspirin II,
which is observed both in our calculations and in experiments,
even though the differences between both polymorphs are
rather small. In any case, it is very interesting to notice that
relatively moderate changes in lattice parameters can translate
to a more noticeable change on the low-frequency range of the
harmonic Raman spectrum.

The lattice is not the only parameter that may impact a
vibrational spectrum. Another worthwhile aspect to consider
is the exchange-correlation functional that is used, or the
addition of van der Waals dispersion. Especially for systems
such as molecular crystals, dispersion forces are known to
play an important role and change the energetics substantially
[5]. We report the impact of dispersion interaction on the
harmonic Raman spectra of the same aspirin polymorphs in
Fig. 4. In order to decouple different effects, we maintain
the experimental lattice parameters in this case, but fully

I H
(ω

)

PBE+MBD
PBE

0 100 200 300 400 800 1200 1600
Wavenumber (cm-1)

2800 3200

Aspirin I

Aspirin II

× 0.6

6.0 ×6.0 ×

× 0.6

FIG. 4. Harmonic Raman spectra of aspirin I (top) and II (bot-
tom) obtained with the PBE (orange) and the PBE+MBD (black)
functionals, using the 300 K experimental lattice constants.

optimize the atomic positions with the different potential-
energy surfaces.

We observe that at high frequencies, ignoring van der
Waals contributions in this case results in a blueshift of 47
(51) cm−1 of the peak located at 2639 (2624) cm−1 for aspirin
I (II). This peak corresponds to symmetric O-H stretching mo-
tions between the molecular dimers. We note that we observe
a similar shift of this band when simulating these spectra using
300 and 123 K experimental lattice parameters (see SM, Fig.
S2 [29]). These observations are consistent with the fact that
removing van der Waals interactions from the model weakens
the H bonds, and so does increasing the temperature. Conse-
quently, these two effects lead to a blueshift of this band. The
middle- and low-frequency ranges remain basically unaltered
by the change of functional. We note that in the geometries
considered here, we observe the presence of a vibrational
mode at 33 cm−1 in both polymorphs when including MBD
corrections. The same modes are at 34 cm−1 when neglecting
MBD corrections. These are not Raman-active modes, though,
and hence do not show up in Fig. 4.

The results presented so far confirm the importance of
taking lattice expansion into account when assessing Raman
spectra. The discrepancies we observe in our calculated lattice
constants at 300 K, in comparison to experiment, can be
due to several factors, among them the exchange-correlation
functional and the approximations in the lattice-expansion
procedure itself [for instance, the assumption of fixed angles
or the fact that the multiparameter optimization of Eq. (1) can
lead to metastable minima]. A detailed investigation of this is-
sue requires studying a broader set of crystals, functionals, and
a careful benchmark between different methods (including
carrying out computationally costly constant-pressure AIMD
simulations at different temperatures directly). This will be
the subject of a future study. For the remainder of the present
work and in order to focus solely on the impact of vibrational
anharmonic contributions, we maintain the experimental lat-
tice parameters (see Table I) for aspirin I, II, paracetamol I,
and the one reported in Ref. [51] for paracetamol II.
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I A

(ω
)

0 500 1000 1500 2000 2500 3000 3500
Wavenumber (cm-1)

Paracetamol I

Aspirin I

Aspirin II

Paracetamol II

FIG. 5. Anharmonic Raman spectra of the four polymorphs of
this study on the whole frequency range calculated from AIMD at
300 K with the PBE+MBD functional. Here the intensities have been
scaled by a frequency-dependent factor of

√
ω solely for visualiza-

tion purposes, i.e., so that high frequencies become as visible as low
frequencies.

B. Anharmonic effects on vibrational modes and
Raman line shapes

Figure 2(b) shows the pronounced nuclear fluctuations
that are observed at room temperature. We note, for exam-
ple, that during AIMD simulations, in all cases the methyl
(CH3) groups rotate freely and we observe hydrogen-transfer
events between two aspirin monomers. Other torsional mo-
tions within the molecular units are also activated, for example
the rotation of the aromatic ring with respect to the rest of the
molecules. The question is how these fluctuations translate to
the vibrational Raman spectra.

The time-correlation formalism gives access to the full
anharmonicity of the potential-energy surface within the ap-
proximation used for the dynamics of the nuclei (e.g., classical
or quantum). It is thus able to capture combination bands,
overtones, and the phonon lifetimes that give rise to the
anharmonic line shape. A drawback of this formalism is that
the assignment of vibrational modes is not straightforward
and it is often based on the corresponding harmonic spectrum,
for which modes are well defined [52]. Techniques have been
proposed to extract effective vibrational modes directly from
AIMD simulations [53,54]. Such techniques, although very
successful in small molecules, require large sampling times
and are not straightforward to apply to larger and very flexible
systems or to simulations that incorporate nuclear quantum
statistics.

In Fig. 5, we show the calculated anharmonic Raman
spectra in the full frequency range [55]. The most interesting
observation regarding the high-frequency region is that the
intense peak observed at 2639 (2624) cm−1 for aspirin I
(II) in the harmonic approximation, corresponding to the
stretch of O-H bonds that connect the H-bonded aspirin
dimers in the crystal, seems to be completely absent from
the anharmonic spectra and, in fact, also from experiments,

2600 2800 3000 3200
Wavenumber (cm-1)

I(ω
)

Anharmonic (1ps) 
Harmonic

2600 2800 3000 3200

Anharmonic (5ps)

FIG. 6. Evolution of the anharmonic Raman spectrum of aspirin
II for different simulation lengths as compared to the harmonic
Raman spectrum. In each case, the height of the anharmonic peak
located at 3000 cm−1 has been adjusted to the harmonic one. Note
that the same effect is also observed for aspirin I.

as shown in Ref. [56]. However, when calculating Raman
spectra from short-time (1 ps) autocorrelation functions of the
polarizability tensors, one can see that this peak is present, but
gets broadened and loses intensity upon increasing simulation
time, as shown in Fig. 6 [we also show in the SM [29], Fig. S6,
that this vibration is actually present in the vibrational density
of states (VDOS) of the hydrogen involved in this mode]. In
addition, this mode is connected to the observed hydrogen-
transfer events between two aspirin monomers, which we
expect to become more pronounced or turn into a fully shared
hydrogen if nuclear quantum effects are included.

As shown in the SM [29], Fig. S4, and further discussed
in the next section, neglecting vdW contributions in the an-
harmonic Raman spectra of all crystals results in only small
changes to the line shapes and intensities, as long as the lattice
parameters are kept fixed at the same values.

In Fig. 7, we focus on the structure-sensitive low-frequency
range of these spectra. We compare our harmonic and anhar-
monic spectra to experimental results for aspirin and parac-
etamol obtained from powder samples at room temperature,
as reported in Refs. [45] and [57], respectively. For visual
comparison, we normalized to 1 the highest peak of each
spectrum. For both systems, there is a good visual agreement
between the harmonic Raman spectra and the experimental
spectra. There are significant shifts between the harmonic and
anharmonic Raman spectra for only a subset of the peaks
in this region, which shift closer to the position observed in
experiment when anharmonicity is included. For clarity, we
label some of these peaks and depict their harmonic normal
mode of vibration in Fig. 7, noting that for each system, there
are both localized vibrational modes (here typically methyl
group rotations) and more global-motion modes. We will see
in the next section that the more pronounced shifts of the
collective modes correspond to vibrations that have a stronger
correlation with other modes. While none of the approaches
allows us to reach a perfect quantitative agreement with
experiment, the anharmonic spectra provide an overall better
description of peak positions, in particular for paracetamol I
and II. Some of the discrepancies in relative intensities could
be resolved by increasing statistical sampling. We highlighted
some of the main frequency shifts between harmonic and
anharmonic results by placing a vertical dotted line.
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ω
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(a) (b)

FIG. 7. Comparison of the PBE+MBD harmonic, anharmonic (300 K), and experimental (300 K) Raman spectra of aspirin I and II, and
paracetamol I and II. The experimental data were extracted from Refs. [45] and [57]. The shaded areas around the anharmonic spectra indicate
the uncertainty derived from the statistical error of the different trajectories. Selected normal modes from the harmonic analysis are also shown,
for which the arrows represent the direction and the amplitude of the moving atoms. The unit cell is drawn in black.

C. Mode coupling

In order to further analyze the effects of anharmonic mode
coupling in the low-frequency vibrational range of these
crystals, we turn our attention to the vibrational density of
states (VDOS), which here we also calculate within the time-
correlation formalism by summing the Fourier transforms of
the atomic velocity autocorrelation functions. This quantity
plays a more direct role in the estimation of the vibrational
free energies of these crystals. Experimentally, only inelastic
neutron scattering can directly access the VDOS and such
measurements are rare for most materials.

We report the VDOS of paracetamol I, aspirin I, and aspirin
II in Fig. 8 with the PBE and PBE+MBD functionals (data
for paracetamol II and the PBE+MBD functional are shown
in the SM [29], Fig. S5). We note that in all cases, the
VDOS is almost insensitive to the inclusion of many-body
dispersion in the whole frequency range, an assertion that
also holds for the harmonic VDOS when using the same
lattice constants (see SM [29], Fig. S6). It thus appears that
anharmonic contributions play a more important role than the
inclusion or not of vdW effects, if the lattice parameters are
kept constant (we stress that vdW are extremely important
when it comes to relaxing unit-cell parameters).
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FIG. 8. VDOS spectra of (from top to bottom) paracetamol I,
aspirin I, and aspirin II obtained with the PBE (orange line) and
PBE+MBD (black line) functionals.

In order to characterize mode coupling, we calculate the
2D VDOS correlation spectra as explained in Sec. II D. Our
results are shown in Fig. 9 for all four polymorphs presented
in this study. For each 2D-correlation plot, we make two cuts.
The first cut corresponds to the lowest observed frequency
of the system, while the second one is meant to highlight
a difference in intermode couplings between polymorphs.
Additionally, we focus on correlations within the 0–900 cm−1

region only. The following assignment of vibrational modes

will be based on results from the harmonic approximation,
albeit knowing that frequency shifts may be present. We
choose each time the most probable eigenmode, i.e., the one
corresponding to the closest harmonic eigenfrequency.

Overall, we observe that most of the vibrational modes
showing stronger frequency shifts in Fig. 7 are also the ones
showing stronger correlations with other modes in Fig. 9.
For example, for aspirin I, the mode around 120 cm−1 which
marks the edge of the intense low-frequency Raman signal
is considerably shifted in the anharmonic case, and it is seen
to show a pronounced anticorrelation to the mode located at
49 cm−1 (bending motion of one of the radicals of the benzene
ring). Another example is the peak labeled e of paracetamol I
in Fig. 7. It shows several pronounced anticorrelations around
366 cm−1 (bending motion of the benzene ring), 465 cm−1

(C-O bendings in the benzene plane and rocking of the ben-
zene), and 630 cm−1 (breathing mode of the benzene rings).
In the following, we discuss other noteworthy aspects of these
2D correlations, which evidence differences between the sets
of polymorphs.

For aspirin I, the lowest observed frequency at around
35 cm−1 corresponds to a “sliding motion” of the molecules
with respect to one another. It couples in particular to a high-
frequency mode at about 740 cm−1 that mainly consists of a
wagging motion of the benzene ring. The second vibration we
focus on, at around 430 cm−1, corresponds to collective mo-
tions involving, in the majority, CO and CC bending motions.
It couples positively most strongly to two other modes at 155
and 310 cm−1, corresponding, respectively, to methyl group
rotations (rocking) and bendings between methyl groups and
their radicals.

FIG. 9. VDOS 2D correlation spectra of (a) aspirin I, (b) aspirin II, (c) paracetamol I, and (d) paracetamol II. Blue (red) indicates a negative
(positive) correlation between modes, i.e., the intensities of a given pair vary in the opposite (same) direction. Twin = 1 ps.
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For aspirin II, the 35 cm−1 mode (analogue to that of
aspirin I) couples most strongly (and positively) to the mode
at 130 cm−1, which corresponds to collective partial methyl
group rotations and bending motions between benzene rings
and their radicals. The second cut at 430 cm−1 (analogous to
that of aspirin I) shows only weak correlation to other modes,
in stark contrast to aspirin I.

For paracetamol I, the lowest-frequency vibration around
35 cm−1 (involving small rotations of the individual molec-
ular units as a whole) shows a pronounced coupling with
another mode at 630 cm−1, consisting, for the most part, of C-
C bendings. Similarly, the second mode we pick at 630 cm−1

shows, in particular, two couplings at 35 cm−1 and 800 cm−1,
with the latter consisting of N-H, C-H, and O-H bending
motions, without twisting the backbone structure.

For paracetamol II, one observes that in the low-frequency
region, the lowest-energy mode at about 16 cm−1 (sliding
motion of the molecules with respect to one another) couples
very little to higher-frequency vibrations. Conversely, the
intense mode at 630 cm−1, which is extremely similar to that
of paracetamol I, has a strong negative coupling with a mode
at 450 cm−1, composed mainly of C-O and C-N bendings.

All the vibrational modes mentioned above can be visual-
ized in the SM [29], Figs. S10–S13. In general, there is no
unique coupling between two specific vibrational modes, but
rather a complex pattern of correlations between several of
them in this low-frequency range composed of delocalized
modes. This serves as a guide to understand which poly-
morphs and in which frequency regions one can expect more
changes due to anharmonic effects and can thus serve as a
diagnostic tool as to whether harmonic evaluations of free
energy will be more or less accurate. We plan to further
explore this aspect in the future.

IV. CONCLUSIONS

In this paper, we calculated harmonic and anharmonic
Raman spectra of two polymorphs of paracetamol and aspirin,
using a recent implementation of DFPT in the FHI-aims code
and focusing especially in the low-frequency range, below
300 cm−1. We studied the impact of quasiharmonic lattice
expansion over harmonic Raman spectra, and concluded that
while the middle- and high-frequency ranges are almost in-
sensitive to moderate changes in lattice parameters, the low-
frequency harmonic Raman spectra show important changes.
We also measured the influence of many-body dispersion
corrections, both in harmonic and anharmonic Raman spectra
and vibrational density of states at fixed experimental lattice
parameters. In the harmonic picture, the impact of MBD for
both Raman and VDOS spectra is almost negligible. In the
anharmonic picture at room temperature, the impact of adding
MBD interactions is overall very tenuous. Dispersion interac-
tions are, nevertheless, extremely important for determining
the lattice parameters and the thermal lattice expansion in
these crystals, as one would expect given the nature of the
intermolecular interactions. We compared anharmonic Raman
spectra below 300 cm−1 to experimental room-temperature
spectra of all polymorphs, obtaining good agreement. Finally,
we reported VDOS 2D-correlation spectra and showed that
different correlations exist between low- and higher-frequency

vibrational modes, suggesting a high degree of anharmonicity
for specific modes, but not for others. Interestingly, similar
vibrational modes in different polymorphs show very different
correlation patterns to other modes.

Overall, our results show that vibrational properties calcu-
lated from AIMD can accurately describe the low-frequency
as well as the high-frequency vibrational region of molecular
crystals and reproduce the finer line-shape structure, provided
that enough statistical sampling is performed. The harmonic
approximation does reproduce the main experimental peaks as
well, even though several peaks are shifted with respect to an-
harmonic results, especially for paracetamol. We observe that
the most pronounced peak shifts in the low-frequency range
correlate with stronger off-diagonal correlation in our 2D-
correlation spectra. This means that temperature-dependent
free-energy calculations based on AIMD [4] can indeed serve
as benchmark values for such crystals, provided the cost of
such simulations is affordable and a good estimation of the
lattice constants at different temperatures is possible, either
through simulations or experiment.

The results also highlight once more the complexity of
studying systems such as molecular crystals, the structure and
properties of which depend on a delicate interplay between
several phenomena. Cheaper methods such as the harmonic
approximation give very valuable insights into these struc-
tures, but are by essence bound to fail for anharmonic modes
and high temperatures. In the present study, the most dra-
matic failure of the harmonic approximation was observed in
the high-frequency OH-stretch mode of the aspirin crystals.
The calculation of 2D-correlation spectra could allow one,
in principle, to assess the validity of harmonic free-energy
evaluations, given that weak intermode correlations suggest
that anharmonic effects are less important. This aspect could
be exploited in the future.

For a more thorough understanding and assessment of
polymorphic molecular crystals, the anharmonic route thus
seems to be unavoidable if one can overcome the cost of
such simulations in large-scale studies. As an example, the
calculation of the trajectories needed to obtain the anharmonic
Raman spectrum of paracetamol I required about 300 000
core hours (around 75 000 for the dynamics and 225 000
for the computation of polarizabilities) in the COBRA su-
percomputer (processor type Intel Skylake 6148). This cost
breakdown suggests that efficiently modeling the electric-field
response properties could represent a larger gain in time than
employing a good model to calculate the forces. Machine-
learning approaches can be employed in this case, as will be
demonstrated in an upcoming paper [58]. Such a reduction in
computational cost will allow the study of a much wider range
of systems, including also nuclear quantum effects.

The data presented in this work as well as the input and
output files used to produce it are publicly available as a
dataset [59] in the NOMAD Repository.
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