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We propose a Bayesian inference methodology to evaluate unobservable parameters involved in multi-phase-
field models to accurately predict the observed grain growth, such as in metals and alloys. This approach
integrates models and a set of observational image data of grain structures. Because the image data set is not
a time series, directly applying conventional inference techniques that require time series as the input data is
difficult. The key idea in our methodology to overcome this difficulty is to construct a time series with an
appropriate statistic that characterizes static image data of grain structures. Our methodology implements the
empirical Bayes method. It can estimate not only a probability density function of the parameters but also an
initial phase field, which is generally unobservable in real experiments. After validating the proposed method
through numerical tests using synthetic data, we apply it to real experimental images of grain structures in a
steel alloy. The proposed method properly estimates unobservable parameters along with their uncertainties and
successfully selects the initial phase field that best explains the experimental data from among candidate initial

phase fields.

DOL: 10.1103/PhysRevMaterials.3.053404

I. INTRODUCTION

Controlling the mechanical properties of structural materi-
als such as iron, stainless steel, and aluminum is a crucial issue
in materials science. A fundamental factor that determines
structural properties is the microstructure, which is composed
of grains with different crystallographic orientations. Predict-
ing the temporal grain evolution is a key task for efficiently
developing materials, because it is directly related to control
of the macroscopic mechanical properties [1-3]. The time
evolution of the grain structure is generally driven by inter-
actions between neighboring grains due to the curvatures of
grain boundaries [4,5], diffusion of chemical elements [6,7],
and thermal effects [8,9]. In prediction, numerical simulations
that consider these interactions are essential for controlling the
dynamics of the grain structure needed to develop materials
with the desired mechanical properties. The phase-field (PF)
method is widely accepted for simulating the dynamics of
grain structures [10—12]. The key parameters that determine
the dynamics of grain growth are interfacial energy y, PF
mobility L, and thickness W of grain boundaries. Although
accurately determining these parameters and the initial PF
needed to conduct a PF simulation is essential for the ac-
curate prediction of the growth of the grain structure, these
prerequisites are typically assumed based on experience or
toy experiments, which may cause large prediction errors.
However, the recent innovation [13—17] of statistical method-
ologies based on Bayesian inference (BI) [18] enables us to
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identify them by comparing the results of PF simulations and
limited observational data.

The BI method evaluates a probability density function
(PDF) (precisely, a posterior PDF) of unmeasurable or un-
observable parameters involved in given simulation models
by integrating the simulation models and limited observa-
tional or experimental data. The posterior PDF contains rich
information, e.g., the optimum and its uncertainty, given
by the maximum and broadness of the PDF, respectively,
which is needed to update the model and observational or
experimental designs. In particular, data assimilation (DA)
[16], which is a kind of BI mainly developed in the fields
of the meteorology and oceanography [19-21], constructs the
posterior PDF based on time series of data and forecasts
based on the PDF [13—15]. Because the integration of physical
models and observational or experimental data is an essential
procedure in various scientific areas, DA has been expanding
into application fields such as seismology [22], biology [23],
petrology [24], and materials science [17,25-27]. DA, which
can be directly applied when an observational dataset is given
as a time series, systematically estimates parameters that
determine the dynamics of a given system, e.g., ¥, L, and W in
the PF models. However, the time series of data is not always
available in materials science. Therefore, in constructing a DA
methodology for materials science, we should bear in mind
the following: (i) observational or experimental data are often
static images of grain structures and (ii) ordinary DA requires
us to compare the time series of a PF model and the time
series of data, including information about the time evolution
of grain structures.

This study proposes a Bl-based methodology to estimate
y, L, and W by designing appropriate time series of a statistic
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that characterizes the grain structure in each static image. Our
methodology relies on an empirical Bayes method (EBM) that
simultaneously estimates the parameters along with their un-
certainties and the initial PF, which is generally unobservable
in real experiments. We apply the proposed method to real
experimental data of austenite grain structures, which exhibit
purely curvature-driven grain-boundary growth.

The remainder of this paper is organized as follows: Sec-
tion II introduces the PF model used in this study and then
discusses the significance of estimating the parameters in-
volved in the model from the perspective of application to real
data. Section III proposes an appropriate statistic for practical
image data of grain structures, which is to be input into the BI
procedure mentioned in Sec. IV. The proposed methodology
is validated through a numerical test using synthetic data in
Sec. V. An application to real data and discussions are given
in Sec. VI, and we conclude in Sec. VII.

II. MULTI-PHASE-FIELD MODEL

This study describes the temporal evolution of grain struc-
tures using a multi-phase-field (MPF) model [10,11]. The key
point in this model is that grains are described by a set of
time-dependent field variables {¢;(x, 7)}, termed PF variables,
where x and ¢ denote place and time, respectively. Let N be
the number of grains (or PF variables) that exist at the start of
the simulation. The PF variable ¢;(x, 7) indicates the existence
probability of the grain i (i = 1, ..., N), which satisfies the
conservation law vazl ¢i(x,t) = 1. The condition ¢;(x, 1) =
1 implies that only grain i occupies the position x, ¢;(x,1) = 0
implies that grain i does not exist at x, and 0 < ¢;(x, 1) < 1
implies that the grain boundaries between grain i and the other
grains exist at x. Considering the physical properties of the
desired material mentioned in Sec. III A, the MPF model used
in this study assumes that the dynamics of the grain structure
are driven only by the curvature effect of the grain boundaries.
The MPF model proposed by Steinbach et al. [10], upon
which this study is based, is

96, YN N
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where s;(x, t) is an indicator function, i.e., s;(x,7) = 1if 0 <
¢i(x,1) < 1 and s;(x, 1) =0 if ¢;(x,t) =0, and the integer
n(x, t) is the number of grains that exist at x, i.e.,n = vazl S;.
The tensor f;j; that appears in Eq. (1) is given by

Eizk 2
fijk = Li; jv Or + widr |, (2)

where L;; is the PF mobility and ¢;; and w;; are described by
using the interfacial energy y;; and the thickness W;; of the
grain boundary, respectively [9], as

2
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Originally, these parameters are defined for each pair of grains
i and j; however, the subscripts can be omitted by replacing

the parameters with their average values, ie., L;j = L, ¢;; = €,
w;j = w, W;; =W, and y;; = y, because the crystallographic
orientations of the grains are assumed to be distributed ran-
domly and isotropically in this study. In this case, Eq. (1) is
reduced to

N
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where A =2Lw and B = Le? are the free parameters as-
sociated significantly with the dynamics, which are to be
estimated from observational data. These parameters A and
B relate to the three free parameters contained in the MPF
model, i.e., v, L, and W, as follows:

W = ,IZB 6
=TT X, ()
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Note that the interfacial energy y is a physical parame-
ter that can be measured in real experiments, whereas the
thickness of grain boundaries W and the PF mobility L are
nonphysical parameters that are difficult to determine directly
from real experiments. Conventional studies determine W and
L by trial and error, which requires many PF simulations
to reproduce results that support experimental results. The
actual computational cost needed to conduct a PF simula-
tion is generally high; therefore, determinations by trial and
error require unrealistically burdensome computations that
often exceed the limitations of available computer resources.
Moreover, because the determinations are usually conducted
on the basis of experience and intuition, quantifying the
underlying uncertainties in W and L is difficult. Because
such uncertainties affect the simulation results, we need to
develop a methodology to estimate W and L along with their
uncertainties through the integration of the PF model and
observational data. Furthermore, the comparison between the
parameters estimated by this methodology and those obtained
by first-principle calculations, such as the molecular dynamics
simulations [28,29], enables us to validate and improve the
given PF model. Thus, establishing a methodology to evaluate
W and L is significant from the perspective of PF simulation
studies.

yL =

III. EXPERIMENTS

A. Target material

The target material in this study is Fe-
0.27C-0.18Si-0.45Mn-0.014P-0.003S steel alloy, in which
the grain structure evolves with time in an isothermal
environment. Because this steel does not include elements
that may hinder austenite grain growth, we can observe purely
curvature-driven grain growth. In addition, the experiments
show that the crystallographic orientations of the grains in
this steel are randomly distributed, which ensures that the
MPF model shown by Eq. (5) can describe the grain-growth
dynamics. After setting a sample of the steel into a heating
furnace, we conduct a heating treatment involving the
following three stages: heating, holding, and cooling, as
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FIG. 1. Heat treatment protocol for obtaining a sample of the
grain structure with holding time .

described in Fig. 1. In the heating stage, the temperature
in the furnace increases to 1637 K starting from room
temperature with a high heating rate of 50 Ks~'. When the
temperature reaches 1637 K, heating stops, and the holding
stage starts. In the holding stage, the temperature in the
furnace is maintained at 1637 K. The characteristic size
of evolving grains depends on the holding time f,, which
indicates how long the sample is kept in this isothermal
environment. After #, has elapsed, the cooling stage starts
to stop the growth of grain structures. In this stage, the
temperature of the furnace decreases to 1237 K with a high
cooling rate of —50 Ks~! to approach room temperature
at —3 Ks~!. The rapid cooling promotes ferrite nucleation
at the austenite grain boundary, which simplifies boundary
detection.

This study applies this heat treatment to five samples of
steel using different holding times #;, to obtain grain structures
with different characteristic grain sizes. Figure 2 shows the
obtained grain structures for the holding times (a) #;, =1 s,

M, =2s,()ty,=5s,()t,=10s, and (e) 1, = 20 s,
respectively. The red solid lines indicate the grain boundaries,
whereas the polygons surrounded by the lines indicate grains.
The characteristic grain size is confirmed to increase with
increasing holding time f;; thus, the series of these images
synthetically shows the temporal evolution of grain structure.
Note that the direct application of the ordinary DA to this
images series is impossible because the series was obtained
from different samples.

B. Design of observational data

Based on the images of grain structures shown in Fig. 2, we
designed observational data comparable to the results of the
MPF simulations. Because the PF parameters to be estimated
have the dimensions of time and length, the dimensions of the
observational data should also be of length or its higher orders.
In this study, we employed a statistic related to the character-
istic areal size of grains as the observational data, because this
statistic is ensured to be identical on the assumption that the
underlying probability density of the grain size depends only
on #;, as the number of grains approaches infinity. Each grain
size in Fig. 2 can be easily computed by measuring the area of
the closed polygon denoting the grain. Let N;, be the number
of grains in the snapshot at ¢, and {S, ..., Sth} be the set of
grain sizes. We propose a statistic “moment ratio” K given by

N,
i §?
K(o) = 25 ®)

T
Zi=h] Si
Figure 3 shows the moment ratio K as a function of

t, computed from the grain structures shown in Fig. 2.
This statistic has the dimensions of areal size and exhibits

FIG. 2. Grain structures of the target steel obtained by heat treatment with holding times (a)#, = 1s,(b)#, =25s,(c)t, =55s,(d)#, = 105,
and (e) t;, = 20 s. The dotted black circles 3 mm in diameter indicate the surface domains of the samples. The red solid lines indicate the grain

boundaries.
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FIG. 3. Moment ratio K generated by the grain structures shown
in Fig. 2 as a function of the holding time #,.

similar behavior to that of the average grain size predicted by
Hillert’s mean-field analysis of curvature-driven grain growth
[4,30]. This implies that the moment ratio K properly captures
the temporal evolution of the characteristic grain size in
curvature-driven grain growth.

We emphasize here the advantages of using this moment
ratio K as the observational data rather than other statistics
such as the average grain size used previously. Because ordi-
nary DA requires comparing the time series of observational
data and simulation results, it is ideal to use the time series
of an identical grain structure obtained by in sifu observation
in an isothermal furnace. However, such in situ observation
is technically difficult owing to the contamination of the
steel surface by oxidation. In addition, some treatments such
as polishing and etching are usually needed prior to the
observation of the fine grain structure, making acquisition
of the time series of an identical grain structure difficult.
Our proposed statistic enables comparison with the simulation
results, because the statistic absorbs the details of the grain
structures arising from individual sample differences.

IV. BAYESIAN INFERENCE

This section presents the BI methodology used to estimate
the PF parameters A and B and the initial PF & = {¢;(x,t =
1s)} involved in Eq. (5). The key technique here is EBM
[31,32], which enables us to obtain a posterior PDF related
to the PF parameters and simultaneously select the best initial
PF from among several candidates.

A. Phase-field model quantities for comparison
with observations

Let7 = {1, ...,t,,} be the set of #;, sorted in ascending or-
der, where n, is the size of 7, and let D = {K(¢1), ..., K(ty,)}
be the set of K values obtained from the observations at times
in the set 7. To compare observations with results from the
MPF simulations, a model-based quantity corresponding to
K must be extracted from the PF variables. We define this
comparative quantity as a model-based moment ratio C():

Zi‘vzl Si(t)?

K@) = ,
Y Sit)

€))

TABLE 1. Parameters for MPF simulations.

Parameter Notation Value
Number of grains N 80
Length of a side of the H 2.7 mm
computational domain

Grid spacing Ax 0.021 mm
Time step At 1.12 x 107*s

where S;(¢) is the areal size of grain i, which is computed
using the PF ¢; as

Si(t) = /dx T (x, 1). (10)

The positive parameter « tunes the sharpness of the grain
boundaries, letting o =4 in this study. In general, S;(¢)
approximates the actual areal size of the ith grain more ac-
curately as « tends to infinity. Simple numerical experiments
show that the approximation is sufficient when o > 4, but it
gets worse when o < 4. We demonstrated that this model-
based moment ratio /C properly describes the behavior of the
data-based moment ratio K by conducting the MPF simula-
tions with various sets of parameters. The temporal evolutions
of the MPF model were computed with a two-dimensional
square periodic spacing with dimensions of H x H starting
from an initial PF structure at# = 1 s. The initial PF structure
was composed of N grains, the locations of which were tuned
so that their computed model-based moment ratio K was equal
to the data-based moment ratio K at 1 = 1 s. To solve the
MPF model numerically, we discretized the computational
domain by using a square lattice with a grid spacing Ax
and applied the computational scheme proposed by Kim
et al. [12]. This scheme reduces the computational cost to
O(MiimeMygria), Where myq is the number of grid points and
Myme 18 the total number of time steps, which is considerably
less than the cases when naive schemes are implemented. A
time step At for time discretization was selected to prevent the
simulation from diverging. Table I lists the parameters used
in the numerical simulations. Figure 4 exemplifies temporal
evolutions of the model-based moment ratio X computed from
the solutions of Eq. (5) in the three cases of the parameter
A. The computed time series of X and the grain structures
seemed roughly consistent with the values of K (Fig. 3) and
real observations (Fig. 2).

B. Observation model

Our BI method requires an “observation model” that de-
scribes the relation between observations and simulations.
This study assumed that the data-based moment ratio K(z)
[Eq. (8)] was equivalent to the model-based moment ratio
KC(¢) [Eq. (9)] contaminated by noise, i.e.,

Kt)=Kt)+ @ eT), (11)
where the observation noise 2; (i =1, ..., ny) was assumed

to identically and independently follow a normal distribution
¢(£2) with a mean of zero and a constant variance of ol ie.,

Q) = ! @ 12
q( )—ﬁexp(—p). (12)

Here, we assume that o is an undetermined hyperparameter.

053404-4



BAYESIAN INFERENCE OF GRAIN GROWTH PREDICTION ...

PHYSICAL REVIEW MATERIALS 3, 053404 (2019)

solsenie
> | T N
\'—/\(Oi \w‘* 'L' 0
&
E ° K()
é (A, B) = (25,0.025)
o LOF (A, B) = (50,0.025) (b)
= —— (A,B) = (75,0.02
g (A,B) = (75,0.025) *(0)
2 05 )
Q
:
0.0 L L I
= 012 5 10 20

Time 7 (s)

FIG. 4. Data-based moment ratio K(¢) (the same as in Fig. 3)
and model-based moment ratios with three sets of A and B (bottom),
starting from an identical initial grain structure at ¢t = 1 s [top (a)].
The grain structures and corresponding moment ratios at = 20 s
are indicated as (b)—(d), where the colors in the top panels are the
magnitudes of Y | ¢2. The units of A and B are s~ and mm?s™"',
respectively.

C. Bayes’ theorem

Here, we construct a posterior PDF, which is a conditional
PDF of the parameters A and B, and an initial PF @', con-
ditional on a given dataset D, based on Eqgs. (11) and (12).
Bayes’ theorem states that a posterior PDF p(A, B, ®’'|D, o)
is given by

p(A, B, ®'|D, o) x p(A, B)p(®)p(D|A, B,o, @), (13)

where p(A, B) is the joint prior PDF of the parameters A
and B, p(®’) is the prior PDF of the initial PF &', and
p(D|A, B, o, ®') is a likelihood function. This study assumed
that the initial PF &’ is not stochastic but deterministic, so that
the prior PDF p(®’) is given as

p(@) =8(D" — D), (14)
where &(e) is the Dirac § function. However, the prior PDF
p(A, B) is assumed to be a uniform distribution:

1

when (A,B)eTl

otherwise,

p(A,B) = s)

A max Bmax
0

where I' is a rectangular region given by

[

The likelihood function p(D|A, B, o, ®') measures the consis-
tency between the data and the model, which is defined here
based on ¢(£2) as

p(DIA, B0, @) =[] q(s2)
teT

_ 1 a R 17
() ()

0<SA<An0<B< Bmax} (16)

Prepare candidates V = {®y, ..., D, }
Fork=1,...n

m |Ama>u Bmax, AA, AB|

Interpolation

| Is p (D|o, ;) maximized?

yes

O« o

| (@) — p(DIds, D) |
End for

FIG. 5. Procedure to select the best initial phase field from a
candidate set V = {®y, ..., ®,/} based on the score Q.

where R is the sum of squared residuals, i.e.,

R =) [Kt)— K@)
LeT

18)

Note that R depends on A, B, and @' through the temporal
evolution of the PF resulting from the MPF simulations.
Substituting Egs. (14)—(18) for Eq. (13), we obtain a posterior
PDF p(A, B, ®'|D, o), but this is not the objective posterior
PDF related to the parameters A and B. The objective can be
obtained by marginalizing Eq. (13) with respect to &’ as

_ P(A,B)p(DIA, B, o, @)

pD|o, D)

where the normalization constant p(D|o, ®) is given by

PA,B|D, o, ®)

. (19

p(D|o, D) = /Oo dA/OO dBp(A, B)p(D|A, B, o, ®). (20)

To fully determine the posterior PDF of Eq. (19), the
unknown o, which is unmeasurable directly from K (), must
be given. Thus, this study employed an EBM as follows:to
determine o objectively.

D. Empirical Bayes method

Our EBM-based methodology is capable not only of deter-
mining o objectively but also selecting the best initial PF from
a given candidate set (Fig. 5) as follows:

The EBM [31,32], which is one of the BI methods, deter-
mines hyperparameters involved in a given statistical model
based on the maximum likelihood principle. Let p(Y|Z) be a
PDF of observational data Y, where Z denotes a hyperparam-
eter vector that characterizes the PDF. We aim to estimate an
optimum hyperparameter vector Z for Z by using realizations
Y* through evaluating the goodness of the PDF. When Y*
is given, the goodness is given by the likelihood function

053404-5



ITO, NAGAO, KUROKAWA, KASUYA, AND INOUE

PHYSICAL REVIEW MATERIALS 3, 053404 (2019)

p(Y*|Z), i.e., the optimum Z is obtained by maximizing the
likelihood function with respect to Z. In our case, Eq. (20)
corresponds to the PDF to be maximized with given data D,
so that an optimum & for o can be obtained as

6 = argmax p(D|o, )
(o] [o¢]
= argmax/ dA/ dBp(A, B)p(D|A, B, o, ®)
o —0Q —0oQ

Amax Brmax
= argmax/ dA/ dBp(D|A, B, o, ). 21
o 0 0

This type of methodology for estimating hyperparameters,
which needs to optimize the normalization constant, is termed
the EBM. As seen in Eq. (21), the naive implementation of the
EBM incurs a high computational cost because a large number
of likelihood function calculations are required. Hence, the
EBM is rarely performed in massive simulation models such
as PF models. However, in our case, the EBM is available
with low computational cost because the simultaneous com-
putation of R and o is not required when computing the
likelihood p(D|A, B, o, ®). In practical computation, prior to
evaluating the integral, we prepare a table of values of the
model-based moment ratio X that are evaluated at discrete
points in I'. The table can be utilized to compute a table of
‘R at the discrete points; subsequently, a continuous field of R
is reproduced by using the table of R via interpolation. The
continuous field can be reproduced with a low computational
cost; hence, we can perform the EBM even when with a
massive simulation model. In this study, we discretize I" onto
a rectangular mesh with the grid spacings AA for A and AB
for B and adopt a first-order interpolation to reproduce the
continuous R. By substituting the obtained & in Eq. (19), we
obtain the full form of the posterior PDF p(A, B|D, &, ®).
Furthermore, our methodology is available for the selection
of the optimum initial PF from several candidates assumed
in advance. Let V = {®4, ..., ®,} be a set of candidates
for the initial PFs, where n’ is the number of candidates,
and let 6; be the 6 obtained by applying our EBM-based
methodology to an initial PF ®;. From the perspective of
the EBM, the selection is performed by evaluating a score Q
given by

Q@) = pD|6y, D) (k=1,....n), (22)

which is naturally obtained when computing 6. The initial PF
with the largest score is selected as the best one. Note that a
simple fitting of the data-based moment ratio K does not pro-
vide information related to the initial grain structure, whereas
our EBM-based methodology can simultaneously estimate the
parameters and select the best initial grain structure.

V. TWIN EXPERIMENTS

We conducted “twin experiments” that validated the pro-
posed method based on synthetic data generated by the simu-
lation model using true parameters assumed in advance [33].
The true parameters were assumed to be Ay, = 200 s~! forA,
and Byye = 0.075 mm?s~! for B. The simulation parameters
listed in Table I were used in all twin experiments. A MPF
simulation using these parameters generated synthetic obser-

vational data IC att =1, 2, 5, 10, and 20 s, following which
synthetic observation noise following a normal distribution
with a mean of zero and a constant variance of o> contam-
inated the data. This study conducted the following three
twin experiments: Twin experiment I (Sec. V A) investigated
the influence of the settings of the domain I'" on estimation
results. As shown in Eq. (21), the upper bounds A, and B«
obtained from experience and intuition are directly related
to the accuracy of the posterior PDF. Twin experiment II
(Sec. V B) investigated the influence of signal-to-noise ratios
for the observations, which depends on the magnitude of the
standard deviation o. The accuracy of estimation of o directly
influences the reliability of the posterior PDF of A and B.
Twin experiment III investigated the selection of the best
initial PF from among the candidates. The score Q [Eq. (22)]
was shown to be an appropriate indicator for the selection
of the initial PF that best matches the synthetic observational
data.

A. Twin experiment I: Influence of the domain I’

The setting of the domain I' is an important factor in
obtaining a proper estimation. A wider I' would give a more
objective estimation result; however, it usually requires a
massive computational cost. Twin experiment I aims at finding
a minimum area for I" that provides a correct estimation. In
general, successful estimation is not always ensured when
using a newly proposed estimation method incorporating sub-
jective settings, such as I' in our case. Hence, we checked the
validity of our method by investigating the dependence of the
estimation results on I'. To perform our methodology, I' is
discretized with grid spacings of AA = 6.25 s~! for A and
AB =0.0015625 mm?s~! for B. For generating synthetic
observational data, the initial PF was assumed to be the same
as the one used in Sec. IV A, and the standard deviation o
of the observation noise used to contaminate the synthetic
observational data was set to be o = 107> mm?. Whether
the maximizer, which is a set of A and B that maximizes the
posterior PDF, is consistent with the true parameters assumed
in advance is of interest in this experiment. We performed
the proposed method many times, by changing the values
of Amax and Bpyy, i.e., changing the area of the domain
I' [Fig. 6(a)]. Figures 6(b) and 6(c) show the maximizer
(A, B) for various sets of (Amax, Bmax). This indicates that
the estimation always succeeds when I' includes the set
(Agrue, Birue), While the estimation does not work well when
I' does not include the set. Although the latter fact is trivial,
the former fact is nontrivial because successful estimation, in
general, is not always ensured, even if ' includes the true
parameters. Our methodology ensures estimation of the true
parameters when I" includes them; therefore, we conclude that
our methodology provides an essential ability as a parameter
estimator.

B. Twin experiment II: Influence of signal-to-noise ratio

The signal-to-noise ratio is also a factor that affects the
quality of the posterior PDF. Twin experiment II investigated
the influence of this factor in the case of Gaussian noise with
varied noise levels, i.e., the variance o2. The bounds A . =
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FIG. 6. (a) Setup of Twin experiment I. The blue area indicates
the domain I defined by Eq. (16), which determines the prior for
A and B. Twin experiment I investigated the influence of I' in
the estimation of the maximizer (A, B). The star indicates the true
parameter set. (b), (c) Results of Twin experiment I. The colors,
the values of A/Aue and B/Byy, indicate how appropriately the
maximizer (A, B) was estimated when the domain I" was varied. The
stars denote the true case, i.e., (Amax, Bmax) = (Awue> Burue)-

800 s~! and Bpax = 0.2 mm?s~! were fixed, and the other
settings except for o were the same as in Twin experiment I.
Figure 7 shows the average and the 95th and 5th percentiles of
the estimated 6 obtained from a thousand trials with different
observation noise. The averages lie clearly on the line 6 = o,
which indicates the validity of the proposed method.

C. Twin experiment III: Selection of initial phase fields

Twin experiment III confirmed that the score Q is an
appropriate indicator for selecting an initial PF from among
the given candidates. Figure 8(a) shows the three candidate
initial PFs V = {®;, ®,, @3} for this experiment, which were
generated by the procedure described in Sec. IV A. Each of
these candidates satisfies the condition that the initial value of
K is equal to the value of the data-based moment ratio K at
t = 1 s. The synthetic observational data /C(¢) were computed

107" F —f
En P
E 10—3 L ,I'I’
E -3
& 107 E=F° -——= b =0

0% 10* 103 102 10!
o (mm?)

FIG. 7. Results of Twin experiment II. The relation between the
estimated 6 and assumed o is shown. For each o, a thousand trials
of estimations of & with different observation noise were conducted.
Each blue point indicates the average, and the upper and lower ticks
in each error bar indicate the 95th and 5th percentiles, respectively.
The dashed gray line indicates § = o.

by the MPF model by using the parameters in Table I and an
initial PF chosen from V (we call this the “true initial PF”).
Then, the data were contaminated by observational noise that
followed a normal distribution with a mean of zero and a
standard deviation of o = 0.001 mm?. Using this synthetic
observational data, we computed the score for each candidate
based on Eq. (22). If the initial PF with the highest score out
of the three candidates was consistent with the true initial
PF, the proposed method was validated. Figure 8(b) shows
three experimental results of the scores in cases where the true
initial PF was given by ®;, ®,, and ®3. In each experiment,
the score of an initial PF was largest when it was consistent
with the true initial PF. This indicates the validity of the score
0 as an indicator for the selection of the initial PF.

(a) (Dl (D3 1
0
(b) Candidates
[ Jod (B ) mm o
9L
Q 10
106 =
103 B
10°

@, D,

True initial phase-fields

D3

FIG. 8. Results of Twin experiment III. (a) Initial phase fields
used in this experiment. (b) Comparison of the scores Q. The
horizontal axis indicates the true initial phase fields, i.e., the initial
phase fields used to generate the synthetic observational data. The
height of each bar indicates the average of Q values over a thousand
trials with different observational noise. The upper and lower ticks in
each error bar indicate the 95th and 5th percentiles, respectively.
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FIG. 9. Selection of the initial phase field based on the score Q in
the case of real observational data. The candidate initial phase fields
are shown in Fig. 8(a).

VI. APPLICATION TO REAL DATA

The proposed methodology was applied to the real data-
based moment ratio K shown in Fig. 3. The domain I was
set letting A = 800 s™' and B = 0.2 mm?s~!, which
sufficiently covered the parameter space to provide robust
estimation. The other parameters in the MPF simulations were
set as in Table I. The candidate initial PFs were as shown in
Fig. 8(a). Figure 9 shows that ®; was the best initial PF from
among {®, ®,, 3}, as indicated by the score Q for @, being
significantly larger than the scores for the other candidates.
Figure 10(a) shows the posterior PDF of the parameters A
and B, assuming ®; as the initial PF. The posterior PDF
has a conspicuous maximizer, and the model-based moment
ratio C(¢) computed by using the maximizer successfully
reproduced the real data-based moment ratio K(¢), as shown
in Fig. 10(b). Moreover, the posterior PDF shows clearly that
a linear correlation between A and B exists. Recalling Egs. (6)
and (7), this linear structure implies that the uncertainty of
W is small while that of yL is large. This is confirmed by
the posterior PDFs of W and yL, which were obtained by
applying a variable transformation to p(A, B|D, 61, ®,) based
on Egs. (6) and (7):

2B
(W|D Gl,q)l)—/ dA/ dB(S( —7'[\/:>

x p(A, BID, 61, ®y), (23)
and
p(yL|D,61,<1>1)=[ dA/ as(yL TV
—o0 % 42
X p(Av B|D7 615 CDI) (24)

Figures 10(c) and 10(d) show that the posterior PDF of W
seems to be unimodal, while that of y L was multimodal. The
relation between the properties of the MPF model and the
data-based moment ratio K can explain the different features
of these posterior PDFs. The MPF model [Eq. (5)] can be
rewritten using W and y L:

09; 2 1 2
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FIG. 10. Results of application to the real data-based moment ra-
tio K(t). (a) Joint posterior PDF p(A, B|D, &, ®,). (b) Comparison
between the data-based moment ratio K(¢) (the same as in Fig. 3)
and the model-based moment ratio K(¢) computed by using the
maximizer (A, B) of p(A, B|D, é;, ®,). (c), (d) The marginal PDFs
of W and y L transformed from p(A, B|D, 6, ®;) via Eqgs. (23) and
(24).

In this equation, term (i) sharpens the grain boundaries,
whereas term (ii) makes them diffuse. The magnitude relation
between these terms determines the spatial functional form of
the PFs in the steady state. When term (i) is too large, i.e.,
W is too small, the motion of all grain boundaries “freeze”
before the curvature-driven migration of grain boundaries
starts. When term (ii) is too large, i.e., W is too large, all grain
boundaries diffuse; then the PFs cannot appropriately describe
the grain structure. These facts suggest that an appropriate W
exists for reproducing K, which is driven by grain-boundary
motion.
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On the other hand, the quantity yL is the characteristic
rapidity of the change in the PFs. In the special case where
the number of grains N is two, the migration speed of the grain
boundary is proportional to y L. In this case, the determination
of yL works well because the variation of /C is completely
determined by the migration of the boundary. In fact, a previ-
ous study [27] showed that DA using the ensemble Kalman
filter [14] could determine the PF mobility in a structural-
phase-transition problem for steel. When N is greater than
three, such as in the problem considered in this work, many si-
multaneous migrations of grain boundaries make the posterior
PDF of y L broad and/or multimodal, as shown in Fig. 10(d).
Nevertheless, obtaining more information to constrain the
migration speed of grain boundaries remains an open problem.

When the proposed methodology based on the MPF model
[Eq. (5)] is applied to materials that exhibit abnormal grain
growth [4], unlike the steel used in this study, the posterior
PDF variance will be larger than Fig. 10(a). To reduce this
variance, a more accurate PF model that can appropriately
reproduce the abnormal grain growth is required. Our method-
ology is available not only for the current MPF model [Eq. (5)]
but also for other PF models involving more complex physical
effects. Therefore, the best PF model can be selected through
a comparison of the obtained posterior PDFs.

VII. CONCLUSIONS

We proposed a methodology based on Bayesian inference
that enables us to estimate unobservable parameters involved
in MPF models for grain growth. This enables accurate sim-
ulations that can properly explain real experimental data;
such data-driven optimizations of massive simulations have
previously proven difficult in structural materials science.
The key points in our methodology are as follows: (i) the
construction of the time-dependent data-based statistic from
the static experimental data, which can be directly used in
the procedure of DA, (ii) the EBM-based estimation of the
posterior PDF without explicitly assuming a hyperparameter
related to the observational noise, and (iii) the procedure of
selecting the best initial PF that matches experimental data.

We validated the proposed methodology through three
twin experiments using synthetic data and confirmed that the
estimation of the parameters involved in the MPF model and

the selection of the initial PF were successful. The proposed
methodology was then applied to real experimental data re-
lated to the grain structures of a metal. The approach ob-
jectively estimated parameters along with their uncertainties
by constructing the posterior PDF and selected the initial PF
that best matched the time series of the data-based statistic.
The obtained posterior PDF of the thickness of the grain
boundary W seemed to be unimodal. This implied that an
appropriate W for the MPF simulation existed, although W
was a nonphysical quantity used only for PF simulations. On
the other hand, the posterior PDF of the quantity y L related
to the migration speed of the grain boundary seemed to be
multimodal. This meant that more experimental data were
needed to constrain the migration speed of the grain boundary.

This work focused on grain growth driven purely by the
curvature of grain boundaries, which is the most fundamental
effect in grain growth. However, the proposed EBM-based
methodology is widely applicable to other PF models, in-
cluding complex physical effects such as the anisotropy of
boundary migration [5,34], thermal effects [9,34], elasticity
[35,36], and transport of chemical compositions [6,7]. The
proposed methodology can evaluate posterior PDFs related
to unmeasurable or unobservable parameters originating from
such effects. Such posterior PDFs provide us with valuable
information not only for improving predictions in the dynam-
ics of grain growth, but also for optimization of observational
settings. This can be used to address problems such as how
to assign time intervals for measurements, which is a crucial
problem in practical experiments.
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