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Stability of heteroepitaxial coherent growth modes on nanowire radial surfaces
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The thermodynamic stability of the coherent shell and Stranski-Krastanov heteroepitaxial growth modes
on cylindrical nanowires is analyzed theoretically. In contrast to previous studies, the exact geometrical
shape of pyramidal Stranski-Krastanov islands is considered for the calculation of surface- and elastic-energy
contributions. In particular, the impact of the pyramid base angle on the relaxation energy is included. Moreover,
the dependence of island facet surface-energy density on the distance of the surface to the nanowire substrate is
taken into account. Maps of the growth-mode stability are derived for the Si-core/Ge-shell structure, which
display the favored mode as a function of deposited volume, wetting-layer thickness, and nanowire radius.
We show that for nanowire radii in the range between 15 and 100 nm, the Stranski-Krastanov mode becomes
stable only for larger pyramid angles. In addition, it is found that the exact value of the surface-energy density
significantly influences the transition between the two growth modes, leading to a stabilization of islands bound
by low-energy crystal facets, as observed in experiments.
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I. INTRODUCTION

Nanowire (NW) heterostructures comprise axial [1], radial
[2,3], and branched [4,5] morphologies. For the fabrication
vapor-liquid-solid or vapor-solid growth mechanisms using
metal organic vapor phase epitaxy [6], molecular beam epi-
taxy [7,8] or chemical beam epitaxy [9] are widely employed.
Also, atomic-layer deposition is used for the formation of NW
shells [10,11]. On the radial surfaces of NWs, heteroepitax-
ial deposits usually grow in the form of a shell according
to the Frank–van der Merwe (FM) mechanism or in the
form of three-dimensional islands according to the Stranski-
Krastanov (SK) mode [12]. Such NW radial heterostructures
are of great interest for advanced optoelectronic devices such
as lasers [13], light-emitting diodes [14,15], single-photon
sources [16], field-effect transistors [2,17], or spintronics [18],
as well as for fundamental studies of carrier confinement
[19,20]. Heterostructured core-shell NWs exhibit outstanding
electronic properties such as high carrier mobilities [17] and
tunable band gaps [21].

Experimentally, for the Si-Ge system, core-shell growth is
observed for small NW core diameters below 20 nm [2,12],
whereas evidence for SK island growth is reported at larger
diameters [12]. In order to understand the interplay between
growth morphology and coherent strain relaxation in radial
NW heterostructures, extensive theoretical and experimental
studies have been performed, which address the occurrence,
wavelength, and amplitude of strain-induced periodic pertur-
bations on the growth surface [22–25]. The relative stability
of the pure FM and SK growth modes has been predicted
by thermodynamic approaches for the Si-Ge system [25,26].
Although these approaches take the self-relaxation of a

*Corresponding author: thomas.riedl@uni-paderborn.de

misfit-strained cylindrical shell layer into account, they suffer
from several restrictions and simplifications:

(i) The formula derived by Shchukin et al. [27] for the
calculation of the SK island elastic relaxation energy and used
by Li and Yang [26] implies a constant in-plane strain compo-
nent as a function of the vertical coordinate (perpendicular to
the NW axis) and therefore is restricted to flat islands of low
aspect ratio.

(ii) For computation of the island volume as well as of the
facet surface area and the NW surface area beneath the island,
the influence of NW curvature is neglected.

(iii) Concerning the surface energy of the island facets the
exponential dependence of the surface energy on the distance
to the substrate interface [28] is neglected.

In the present study, we reanalyze the stability of the pure
FM and SK growth modes in consideration of the actual
volume and surface area of a pyramidal island on a cylindrical
NW substrate as well as the distance dependence of the pyra-
mid surface energy and the influence of the pyramid angle on
the island relaxation energy. This improved model is outlined
in Sec. II. Section III presents and discusses the results for
the Si-Ge system. The approach can be transferred to other
material systems as well. In Sec. IV, we draw conclusions.
Details of the calculations are delineated in Appendices A
and B.

II. GEOMETRIC-STRUCTURAL AND CONTINUUM
ENERGY-DENSITY MODELING

In the following, we consider the growth of Ge on a single
cylindrical Si NW covered with a preexisting Ge wetting
layer (WL), either in the form of a homogeneous shell or SK
islands, in an analogous manner as previously done by Li and
Yang [26]. Let �ESK and �EFM be the change in the forma-
tion energy in the SK and FM growth mode, respectively, with
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FIG. 1. (a) Cross section and (b) top view drawing illustrating a
pyramidal Stranski-Krastanov island on a cylindrical nanowire with
the wire axis parallel to y.

respect to planar two-dimensional (2D) growth. Then,

�E = �ESK − �EFM (1)

gives the total-energy difference of the two modes. Here, �E ,
�ESK, and �EFM refer to Ge deposition onto a region on the
NW surface, whose area equals the inverse areal density k of
the SK islands. If �E > 0, the FM mode is stable, whereas in
the case of negative �E , SK growth is favored. A detailed
calculation of �ESK and �EFM will be presented later in
this section. Overall, �ESK and �EFM are determined by
the surface and elastic relaxation energetics governed by the

FIG. 2. Schematic cross sections of a pyramidal island on a
cylindrical nanowire in the plane perpendicular to the nanowire axis
for (a) y = 0 and (b) s < |y| � xS (cf. Fig. 1). In (b), the silhouette
of the pyramid before or behind the section plane is indicated by a
dotted line. Aseg and Aseg,t are the x − z cross sections of the intersec-
tion volume of the pyramid with the wetting layer and nanowire at
the respective y positions.

NW substrate geometry in conjunction with the larger lattice
constant of the deposited Ge as compared to that of the Si NW.

A. Growth geometry

Let us first focus on the geometrical and structural aspects
of our model. We assume that the NW core of radius rNW is
covered with a WL of thickness tWL resulting in a total NW
radius of rWL = rNW + tWL (Fig. 1). The considered SK island
shape is a quadrilateral pyramid with the base edges running
parallel and perpendicular to the NW axis, respectively. For
convenience, a Cartesian coordinate system is used to describe
the geometry, where the y axis runs parallel to the NW axis
and the z axis passes through the NW axis and the top of the
pyramid. The origin of the coordinate system is placed at the
surface of the WL such that the projection of the SK pyramid
apex onto the WL is at x = y = z = 0. The pyramid facets
form an angle α with the x − y plane. The half base length
s is measured parallel to the y axis at x = z = 0. In the ±x
direction, the pyramid facets intersect the WL surface at x =
±xS [Fig. 1(a)] with

xS = 1

1 + tan2α

{
tan α(s tan α + rWL)

− [(
r2

WL − s2)tan2α − 2srWL tan α
]1/2}

. (2)

The intersection points exist only if s �
rWL[(1 + tan2α)1/2 − 1]/ tan α. A derivation of Eq. (2)
and the boundary condition for s is provided in Appendix A.
The island volume is calculated as the volume of a pyramid
with base length xS minus its intersection volume with the
WL and NW. The intersection volume consists of two parts
(Fig. 2): The first is a cylinder segment at −s � y � s with
x − z cross-section Aseg, which is displayed as the dark-gray
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FIG. 3. Top view drawing highlighting the wetting-layer surface
area AWL,Pyr on the cylindrical nanowire (axis parallel to y) beneath
the Stranski-Krastanov pyramid island as well as the wetting-layer
surface AWL,seg bound by y = −xS or y = +xS and the adjacent
pyramid–wetting-layer intersection lines. The top edges of the pyra-
mid are indicated by dash-dotted lines.

area in Fig. 2(a). The second comprises two truncated
cylinder segments at s < y � xS and −xS � y < −s with
x − z cross-section Aseg,t (y), shown as the dark-gray area in
Fig. 2(b). Thus the volume is

V = 4

3
xs

3 tan α −
[

2sAseg + 2
∫ xs

s
Aseg,t (y)dy

]
, (3)

where the integral was solved numerically.
Similarly, the area of the WL surface beneath the pyra-

mid, AWL,Pyr, is given by the WL surface defined by −xS �
x � +xS and −xS � y � +xS minus twice the WL surface
AWL,seg bound by y = −xS or y = +xS and the corresponding
pyramid-WL intersection lines L1 or L2 (Fig. 3):

AWL,Pyr = 4xsrWL arcsin

(
xs

rWL

)
− 2AWL,seg. (4)

The area AWL,seg is calculated numerically, as described in
Appendix A.

Regarding the strain state of the WL or, more generally,
shell layer, a tangential strain εt linearly decreasing with radial
distance r is assumed. For the Si-nanowire/Ge-shell system,
the strain has been analyzed by means of relaxation of the
atom positions (i.e., molecular statics) using conjugate gradi-
ent energy minimization and the Stillinger-Weber interatomic

FIG. 4. Results for the strain in a 10-aSi-thick Ge shell on a Si
nanowire obtained from molecular statics simulations. (a) Tangential
strain εt as a function of r for a nanowire radius rNW of 40aSi; (b)
slope ∂εt/∂r as a function of nanowire radius.

potential [29] in the LAMMPS software [30]. For the gener-
ation of atom coordinates as well as for the strain evaluation,
self-written code has been employed. The results show that εt

is always compressive and decreases approximately linearly
with r [Fig. 4(a)]:

εt (r) = −ε0 + ∂εt

∂r
(r − rNW) with r � rNW, (5)

where ε0 = (aGe − aSi)/aGe denotes the lattice misfit between
the nanowire and its shell. The slope ∂εt/∂r decays with
nanowire radius, which can be described by an exponential
fit function [Fig. 4(b)],

∂εt

∂r
=

(
∂εt

∂r

)
0

exp

(
− rNW

rc

)
, (6)

where ∂εt/∂r is in %/nm and rNW is in units of the Si lattice
parameter aSi. (∂εt/∂r)0 ≈ 0.441%/nm and rc ≈ 63aSi are
the fit parameters. In contrast to the model in Refs. [26,31],
which assumes a curved lattice of the shell, the slope from
molecular statics has a significantly smaller magnitude. In
Refs. [26,31], it is supposed that once εt = 0 is reached,
growth continues strain free, giving rise to the kink of the
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FIG. 5. Schematic cross sections of the growth configurations
considered for the growth mode stability analysis: (a) Stranski-
Krastanov growth, (b) shell growth, and (c) 2D growth on a planar
substrate. In each case, the considered surface areas and surface-
energy densities (separated by a semicolon) are given for the region
defined by the dashed lines normal to the surface.

dashed line in Fig. 4(a). As the lattice relaxation is not re-
stricted in the radial direction, the normal strain is set to zero,
whereas the strain parallel to the NW axis equals −ε0. Here,
the tetragonal lattice distortion due to the Poisson effect is
neglected since the shell thickness considered for the analysis
of growth-mode stability and thus the corresponding strain
relaxation energy are small (Sec. II C).

In the following, we will describe the calculation of the
energy differences �ESK and �EFM upon growth in the SK
or FM mode. Figure 5 illustrates the surface areas and energy
densities occurring in the two growth modes as opposed to
the planar reference system. In all three cases, an area of size
1/k on a preexisting WL of thickness tWL is considered. After
deposition of a material volume V onto a WL covered planar
substrate [Fig. 5(c)], the total layer thickness amounts to t0 =
tWL + kV .

FIG. 6. Correction function � in dependence of α for pyramidal
Ge islands on a Si nanowire, computed by molecular statics.

B. Energy of Stranski-Krastanov growth

In the case of SK growth [Fig. 5(a)], the energy change
with respect to 2D planar growth �ESK is determined by the

FIG. 7. Pyramid volume-to-surface-area ratio as a function of
pyramid half base length s (a) for different pyramid base angles α and
rNW = 50 nm, and (b) for different nanowire radii rNW and α = 30◦.
The inset in (a) shows a cross-section view of the pyramid on the
nanowire along with geometric quantities.
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change of surface energy �ESK,surf due to the enlargement and
displacement of the surface and the island elastic relaxation
energy �ESK,rel:

�ESK = �ESK,surf + �ESK,rel

=
{

Esurf,f − Esurf,WL + 1

k
[γshell(tWL) − γshell(t0)]

}

+ �ESK,rel. (7)

According to Eq. (7), �ESK,surf is calculated as the total
surface energy of the pyramid facets Esurf,f minus the surface
energy of the WL beneath the pyramid Esurf,WL plus the
surface-energy difference between layers of thicknesses tWL

and t0. Esurf,f is obtained by integration of the surface energy
per unit area γ f over the pyramid facet area A f :

Esurf,f =
∫

A f

γ f (t )dA. (8)

As the bonding of the Si substrate lattice affects the first
few monolayers of Ge deposited on it via next-neighbor
effects, the surface-energy density γ of Ge depends on the dis-
tance t to the substrate interface. For a planar substrate/layer
configuration, this was quantified by first-principles calcula-
tions [32] and approximated by an exponential decay function
[28], which we adopt for surface-energy evaluation of the WL
and of the pyramid island on the NW:

γ (t ) = γNW + (γDep,∞ − γNW)

[
1 − exp

(−t

h0

)]
. (9)

Here, γNW and γDep,∞ denote the surface energies per unit
area of the NW substrate and of the infinitely thick deposit
strained to match the substrate lattice, and h0 is the monolayer
thickness of the deposit. These surface-energy densities de-
pend on the crystallographic orientation. For the sake of better
comparability with previous studies, we use orientationally
averaged surface energy densities for Si and Ge. The case of
special orientations will be exemplarily considered as well in
the last paragraph of Sec. III. The distance of each surface
point on the pyramid facets to the WL-NW interface to be
inserted in Eq. (8) is computed as t = tWL + t f , where t f is
the distance of the point to the WL surface. The calculation of
t f is given in Appendix A. γDep,∞ equals the surface-energy
density, which the facets would have at infinite distance to
the NW interface, γ f ,∞, depending on the facet orientation.
Similarly, the surface energy of the WL beneath the pyramid
island is

Esurf,WL = γshell(tWL)AWL,Pyr, (10)

where γshell(tWL) is computed according to Eq. (9) with
γDep,∞ = γshell,∞ (surface-energy density of the cylindrical
shell at infinite distance) and t = tWL.

For calculation of the elastic relaxation energy of the
pyramidal island, we follow an approach similar to that of
Tillmann and Förster [33], which takes the z dependence of
the tangential and parallel strain components into account,

�ESK,rel = Y

1 − ν
(�2 − 1)ε2

mV. (11)

FIG. 8. (a), (b) Contour plots of the total-energy difference �E per deposited volume V between Stranski-Krastanov and shell growth as
function of wetting-layer thickness and V for a Stranski-Krastanov pyramid base angle of 15° and nanowire radius of 50 nm. (c), (d) Volume
profiles of the total-energy difference per volume �E/V for a wetting-layer thickness of five monolayers [marked by dashed lines in (a) and
(b)]. Graphs (a) and (c) refer to Eqs. (1)–(16); Graphs (b) and (d) refer to the model of Li and Yang [26].
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FIG. 9. Volume profiles of the individual energy per volume contributions for a wetting-layer thickness of five monolayers, pyramid base
angle of 15°, and nanowire radius of 50 nm: (a)–(d) for the Stranski-Krastanov mode, and (e), (f) for the shell growth mode. Graphs (a), (c),
and (e) refer to Eqs. (1)–(16); Graphs (b), (d), and (f) refer to the model of Li and Yang [26].

Y and ν denote the Young’s modulus and Poisson ratio
of the deposit material, respectively, and εm represents the
average of the parallel and tangential strain components at the
WL surface,

εm = −ε0 + εt (rWL)

2
. (12)

� describes a dimensionless correction function, which
scales with the strain in the island and nanowire substrate, i.e.,
is inversely related to the strain relaxation,

� =
[

YV ε̄2/(1 − ν) + YNWVNWε̄2
NW/(1 − νNW)

YV ε2
m/(1 − ν)

]1/2

, (13)

where YNW, νNW denote the Young’s modulus and Poisson
ratio of the Si nanowire, and ε̄, ε̄NW are the average strains

of the Ge island and Si nanowire averaged over the tangential
and parallel directions as well as over the strained volumes V
and VNW, respectively. Molecular statics simulations are used
for determining ε̄ and ε̄NW. It is found that � depends mainly
on α and only weakly on island size. The dependence on α

can be fitted with a linear equation,

�(α) = 1.07 − 0.0114α, (14)

where α is in degrees (Fig. 6). The relative error of the island
relaxation energy �ESK,rel due to neglect of the Poisson effect
is smaller than 3%.

C. Energy of shell growth

In the case of FM-like shell growth, the material deposition
leads to an increase of the cross-section surface area, which is
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seen by the material flux. If we assume a constant material
flux per unit cross-section area (the same as in the cases of
SK growth and 2D planar growth), i.e., a constant deposited
volume per unit area and time, a shell of total thickness
t0 = tWL + kV results, with curvature r0 = rWL + kV . Like in
SK growth, a surface-related term (�EFM,surf ) and an elastic-
energy term (�EFM,rel) contribute to the total-energy change
�EFM with respect to 2D planar growth,

�EFM = �EFM,surf + �EFM,rel. (15)

For the surface contribution, the increase of surface area by
the factor r0/rWL as well as the variation of the surface-energy
density γshell with distance to the NW substrate is taken into
account,

�EFM,surf = 1

k
γshell(t0)

(
r0

rWL
− 1

)
= γshell(t0)

V

rWL
. (16)

The elastic term �EFM,rel represents the self-relaxation
energy, i.e., the gain in elastic energy of the cylindrical
heteroepitaxial shell layer as compared to a planar layer,
owing to the decay of the tangential strain towards larger
radial distance. �EFM,rel is computed by using linear elasticity
theory and Hooke’s law; see Appendix B.

For the considered Si-core/Ge-shell structure, the lattice
parameter misfit relative to the shell is ε0 ≈ 4.03%, Young’s
modulus of Ge and Si are 103 and 130 GPa [34], respectively,
the Poisson ratios of Ge and Si are 0.27 and 0.28, respectively
[34], and the elastic stiffness coefficients of Ge are c11 = 124
and c12 = 41.3GPa (all at room temperature) [35]. Further-
more, a SK island density of k = 5 × 1013m−2 is assumed,
which corresponds to typical experimental values. As reported
by Li and Yang [26], the resulting growth-mode stability
only weakly depends on the island density. If not, otherwise
stated orientation-averaged surface-energy densities of γNW =
1.9 J/m2 for Si and γshell,∞ = γf,∞ = 1.3 J/m2 for Ge are
used [22,26,36,37].

III. RESULTS AND DISCUSSION

As the SK island volume and surface area play a key
role for the growth-mode stability, we first report on the
dependence of these geometric quantities on the pyramid
half base length s, base angle α, and nanowire radius rNW.
Figure 7 displays the evolution of the pyramid volume-to-
surface-area ratio as a function of s for different α and rNW.
For small s, this ratio agrees well with the corresponding ratio
for a pyramid island on a planar substrate, which increases
linearly with s. At larger s, the volume-to-surface-area ratio
of our model falls increasingly below the linear ratio for the
planar substrate, which is explained by the larger peripheral
regions of the pyramid characterized by a low thickness. For
larger α or rNW, this decrease below the linear ratio is shifted
towards larger s. All curves end at large values of s when the
pyramid facets no longer intersect the wetting layer.

Figures 8(a) and 8(b) show the total-energy change per
deposited volume V as a function of wetting-layer thickness
tWL and volume V for a pyramid base angle of 15° and
rNW = 50 nm for our model, as opposed to Li and Yang [26].
In this figure and in all following figures (except for Fig. 14
and figures in the Appendices), the thickness of the deposited
material kV , corresponding to the volume V , is also displayed

FIG. 10. Total-energy difference �E per deposited volume V be-
tween Stranski-Krastanov and shell growth as a function of nanowire
radius and V for a Stranski-Krastanov pyramid base angle of 15° and
wetting-layer thickness of five monolayers, according to the model
presented here.

in units of monolayers on the right or top axis. Within the
analyzed ranges of tWL and V for our model, the FM-like
shell growth mode is stable (�E > 0), whereas Li and Yang
predict the SK mode to become stable at larger tWL and V
[dark-blue region in Fig. 8(b)]. In contrast to Li and Yang,
our results show that for tWL � 2.5 monolayers, �E/V passes
through a minimum at intermediate V and rises at larger V
[Figs. 8(a) and 8(c) versus 8(b) and 8(d)]. In the following, we
exemplarily analyze this behavior with the help of the volume
profiles of the individual SK and FM energy contributions
for a WL thickness of 5 monolayers, which is close to the
experimentally observed WL thickness (Fig. 9) [12]. The
initial decrease of �E/V with increasing volume [Figs. 9(a)
and 9(c)] originates from a decrease of �ESK,surf/V mainly
owing to an increase of the volume-to-facet surface-area ratio,
which leads to a decrease of the difference between the facet
surface energy and the surface energy of the WL beneath the
island per volume, respectively [Fig. 9(c)]. In the model of Li
and Yang, this effect dominates the dependence of �E/V on
V in the entire volume range [Figs. 9(b) and 9(d)]. Please note
that the model of Li and Yang uses a reference state with a
surface-energy density of γshell(tWL), i.e., [�ESK,surf/V ]Li =
[Esurf,f/V ]Li − [Esurf,WL/V ]Li [26]. In our model, for large
island volumes, the volume-to-facet surface-area ratio de-
clines and, moreover, the facet-area portion having a small
distance to the WL increases due to the NW curvature, leading
to an increased surface-energy density. These effects result
in an increase of Esurf,f/V relative to Esurf,WL/V and thus in an
increase of �ESK,surf/V [Fig. 9(c)]. In contrast, this increase
of �ESK,surf/V does not occur in the model of Li and Yang,
which assumes a volume-to-facet surface-area ratio increasing
linearly with V , as is the case on a planar substrate, and
a constant island facet surface-energy density. As compared
to the SK energy changes, the corresponding surface- and
elastic-energy changes per volume in the case of FM growth
[Fig. 9(e)] are one-to-two or three-to-four orders of magnitude
smaller, respectively. On the one hand, the surface energy per
volume, �EFM,surf/V , slightly decreases because of the rela-
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FIG. 11. (a) Total-energy difference �E per deposited volume V between Stranski-Krastanov and shell growth as a function of wetting-
layer thickness and V for a Stranski-Krastanov pyramid base angle of 30° and nanowire radius of 70 nm. (b)–(e) Volume profiles of the
individual energy per volume contributions for a wetting-layer thickness of five monolayers [marked by a vertical dashed line in (a)]: (b) total
energy �E/V ; (c), (d) Stranski-Krastanov mode; and (e) shell growth mode. The insets in (b) and (c) are enlargements of regions at low
volume, respectively.

tively small decrease of γshell(t0) with increasing t0 or V . On
the other hand, �EFM,rel/V becomes increasingly negative, as
a larger portion of the shell lattice is at a larger distance to the
NW core and therefore more relaxed. In contrast, �EFM,surf/V
and therefore �EFM/V are negative in the approach of Li and
Yang [Fig. 9(f)] because it uses γ (tWL) instead of γ (t0) as the
energy density of the reference surface.

If we now look at the dependence of �E/V on the NW ra-
dius rNW (Fig. 10), we find that �E/V decreases with increas-
ing rNW (indicating a decreasing stability of the shell growth
mode), but remains positive for rNW � 100 nm. As our ap-
proach neglects the dependence of nanowire surface energy on
curvature, only nanowire radii rNW � 15 nm are considered.

At a larger pyramid base angle of 30° and rNW = 50 nm,
the FM mode is still stable for all volumes and WL thicknesses
below seven monolayers (not shown). For a larger NW radius
rNW = 70 nm and an angle of 30°, the SK mode occurs
in a wide volume interval for WL thicknesses above four
monolayers [Fig. 11(a)]. The transition from the FM to the SK
mode is governed by the surface-energy change per volume in
the SK mode, �ESK,surf/V [Figs. 11(b) and 11(c)], similarly
to the case of Fig. 9 (rNW = 50 nm, α = 15◦). For small vol-
umes, �ESK,surf/V decreases with V , like in the case rNW =
50 nm, α = 15◦, which gives rise to a first zero crossing
�E/V at V ≈ 1.3 × 103 nm3 (0.46 monolayers) for tWL = 5
monolayers. For large volumes, the volume-to-facet surface-
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FIG. 12. Total-energy difference �E per deposited volume V be-
tween Stranski-Krastanov and shell growth as a function of nanowire
radius and V for a Stranski-Krastanov pyramid base angle of 30° and
wetting-layer thickness of five monolayers. The black/white dotted
line indicates the minimum which occurs in the �E/V volume
profiles. The white solid line highlights the critical volume for the
transition from shell to Stranski-Krastanov mode as a function of
nanowire radius.

area ratio declines, leading to an increase of �ESK,surf/V
and, consequently, to a second zero crossing of �ESK/V and
�E/V at V ≈ 7.9 × 103 nm3 (2.8 monolayers). Compared
to rNW = 50 nm, α = 15◦, the contribution of the peripheral
pyramid facet regions (with a low distance between the sur-
face and the WL) to the pyramid surface energy is less pro-
nounced for rNW = 70 nm, α = 30◦; therefore, the increase of
�ESK,surf/V at large volumes [Fig. 11(d)] is less pronounced
in the latter case. In addition, the magnitude of �ESK,rel/V
exceeds that for rNW = 50 nm, α = 15◦ [Fig. 11(c) versus
Fig. 9(a)], owing to the stronger relaxation in the upper
parts of the island for α = 30◦. Again, the surface- and
elastic-energy changes per volume in the case of FM growth
remain comparatively small, with decreasing �EFM,surf/V
and increasingly negative �EFM,rel/V towards larger V
[Fig. 11(e)]. Figure 12 exhibits �E/V in dependence of rNW

and V for α = 30◦ and tWL = 5 monolayers. The calculations
show that for rNW � 57 nm, a SK stability region evolves for
a wide volume range above a critical volume ranging between
1800 and 1180 nm3 (0.64 to 0.42 monolayers). As expected,
this critical volume Vcrit decreases towards larger NW radius
because the larger pyramid volume-to-facet surface-area ratio
leads to a stronger decrease of �ESK,surf/V with V . As already
discussed for rNW = 50 nm, α = 15◦ and rNW = 70 nm, α =
30◦, a minimum of �E/V occurs in the volume profiles for
each rNW, marked by the dotted line in Fig. 12. Consequently,
a second SK-FM transition appears for NW radii between 57
and 74 nm. For rNW > 74 nm, this transition does not exist
because the SK mode remains stable up to the largest possible
SK island size.

When increasing the pyramid base angle to 45°, a larger
SK stability zone is observed, which is shifted to larger
volumes and which extends to smaller NW radii (down to
27 nm) for a WL thickness of five monolayers (Fig. 13).
The enlarged SK zone can be explained by the larger SK
volume-to-facet surface-area ratio in combination with the

FIG. 13. Total-energy difference �E per deposited volume V be-
tween Stranski-Krastanov and shell growth as a function of nanowire
radius and V for a Stranski-Krastanov pyramid base angle of 45° and
a wetting-layer thickness of five monolayers.

stronger elastic relaxation of the SK island, i.e., more negative
�ESK,rel/V . These factors also explain the decrease of the
critical NW radius rNW,crit , i.e., the minimum NW radius for
which SK growth is stable, with increasing pyramid base
angles α (Fig. 14).

Lastly, let us consider the special case of a SK island
bounded by (112), (1̄1̄2), (1̄12), and (11̄2) facets with α ≈
35.3◦ against the (001) island basal plane. We have selected
this case because {112} facets have a low surface-energy
density and exhibit an angle α in the range between 20° and
45° as observed in experiments [12]. For the Ge shell, we
use γshell,∞ = 1.3 J/m2 as before, and for the {112} island
facets, we use γf,∞ = 1.1 J/m2, obtained by extrapolation
from silicon data [37]. As apparent from Fig. 15, the reduced
surface energy of the island facets leads to a stabilization of
the SK mode throughout the entire analyzed ranges of de-
posited volumes and NW radii. The finding that the SK mode
becomes stable only in the presence of larger pyramid base
angles or low-energy island facets agrees with experimental

FIG. 14. Critical nanowire radius rNW,crit , i.e., the minimum NW
radius for which Stranski-Krastanov growth is stable, as a function of
pyramid base angle α at a wetting-layer thickness of five monolayers.
The solid line serves as a guide to the eye.
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FIG. 15. Total-energy difference �E per deposited volume V
between Stranski-Krastanov and shell growth as a function of the
nanowire radius and V for a preexisting wetting-layer thickness of
five monolayers, a pyramid base angle of 35.3° [corresponding to
{112} pyramid facets and a (001) island basal plane], and γf,∞ =
1.1 J/m2, γshell,∞ = 1.3 J/m2.

observations [12]. In particular, the presence of low-energy
island facets would explain the reported growth of Ge islands
on Si NWs of small diameter (≈ 20 nm) [24].

IV. CONCLUSIONS

In summary, we have analyzed the thermodynamic stability
of the coherent heteroepitaxial shell and Stranski-Krastanov
growth modes on cylindrical nanowire substrates by using an
improved model. Contrary to previous theoretical studies, we
consider the exact geometrical shape of the pyramidal islands
on the nanowire, the dependence of the island relaxation
energy on the pyramid base angle, and the dependence of the
island surface-energy density on the distance to the nanowire
substrate. Applied to the growth of Ge on cylindrical Si NWs,
our approach predicts that the FM-like shell growth mode
occurs for low pyramid base angles (15°), whereas at larger
angles, the SK mode is favored above a critical NW radius.
Low-energy island surface facets, which form larger angles
(>30◦) against the island basal plane, are found to stabilize
the SK mode strongly for all NW radii in a wide range of
deposited volumes. This result agrees with experiments.
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FIG. 16. Cross section of a quadrilateral pyramid island on the
radial surface of a cylinder. The lengths and points used for calcula-
tion of the distance xS are sketched.

APPENDIX A: GEOMETRIC PROPERTIES OF A
PYRAMIDAL ISLAND ON THE RADIAL SURFACE

OF A CYLINDER

1. Intersections between the ±x pyramid facets
and the cylinder surface

Figure 16 depicts the x − z cross section of a quadrilateral
pyramid island with half base length s and angle α situated on
the radial surface of a cylinder (axis parallel to y). The origin
of the coordinate system, i.e., z = 0, is at the cylinder surface.
The x positions of the intersections between the ±x pyramid
facets and the cylinder surface, ±xS , are calculated as follows.
On the one hand, the line HA on the pyramid facet is given by

zL(x) = h − x tan α = (s − x) tan α, (A1)

where h is the pyramid height. On the other hand, the circle
representing the cylinder circumference can be expressed by

zCircle(x) = (
r2

WL − x2)1/2 − rWL, (A2)

where rWL represents the radius of the nanowire including the
wetting layer. At the intersection point A, zL(xS) = zCircle(xS),
which yields the quadratic equation

(1 + tan2α)x2
S − 2 tan α(s tan α + rWL)xS

+ s tan α(s tan α + 2rWL) = 0. (A3)

Solving Eq. (A3) gives the x coordinate of point A:

x(A) = xs = tan α(s tan α + rWL) − [(
r2

WL − s2
)
tan2α − 2srWL tan α

]1/2

1 + tan2α
. (A4a)

Owing to the mirror symmetry, we obtain, for the x coordinate of point B,

x(B) = −xs = − tan α(s tan α + rWL) − [(
r2

WL − s2
)
tan2α − 2srWL tan α

]1/2

1 + tan2α
. (A4b)
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FIG. 17. (a) Top view of a Stranski-Krastanov island of quadrilateral pyramid shape, which is situated on the nanowire radial surface
covered by a wetting layer. (b), (c) Sections in the y − z and x − z planes along the two red lines in (a). The distances used for the calculation
of dy(x) [Eq. (A8)] are displayed.

The intersection points A and B exist only if Eq. (A3) has
real-valued solutions, i.e., if the argument of the square root
in Eqs. (A4a) and (A4b) is zero or positive:(

r2
WL − s2)tan2α − 2srWL tan α � 0

⇔ s � scrit = rWL[(1 + tan2α)
1/2 − 1]/ tan α. (A5)

This means that the pyramid half base length s is always
below or equal to the critical half base length scrit . For exam-
ple, scrit = 13.4 nm for rWL = 50 nm and α = 30◦.

2. Wetting-layer surface AWL,seg

Next, we consider the wetting-layer (WL) surface AWL,seg

bound by y = +xS or y = −xS and the corresponding
pyramid-WL intersection lines L1 or L2 (Fig. 3). AWL,seg is
required for the calculation of the area of the WL surface
covered by the pyramid. AWL,seg is obtained by numerical

integration along x of the distance dy between y = +xS or
y = −xS and L1 or L2,

AWL,seg =
∫ xS

−xS

dy(x)dx. (A6)

According to Fig. 17, the distance dy(x) is a function of the
x position and given by

dy(x) = Ltot − L(x)

tan α
. (A7)

With Ltot = tan α(xS−s) and L(x) = rWL−(r2
WL − x2)1/2,

we obtain

dy(x) = xS − s − rWL − (
r2

WL − x2
)1/2

tan α
. (A8)
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FIG. 18. (a) Cross-section view and (b) top view of a Stranski-
Krastanov island of quadrilateral pyramid shape, which is situated
on the nanowire radial surface covered by a wetting layer. Different
surface points P1, P2, P3 on the island are marked as well as
the geometric quantities used for the calculation of the distance
t f between theses points and the wetting-layer surface. In (a), P1,
P′

1, P2, P′
2, P3, and P′

3 are projected onto the x − z section plane
at y = 0.

3. Distance of pyramid surface points to the underlying
nanowire wetting layer

Figure 18 illustrates the distance t f of surface points on a
pyramidal island to the nanowire wetting layer. If P(xP; yP; zP)
denotes a surface point and P′(xP′ ; yP′ ; zP′ ) (yP′ = yP) denotes
the corresponding point defined by the intersection between
the radial line MP (M: point on the wire axis with yM = yP)

and the wetting-layer surface, this distance is

t f = PP′ = [(xP − xP′ )2 + (zP − zP′ )2]1/2. (A9)

For given xP′ , the angle ϕ between the line MP and the z
axis is

ϕ = arcsin

(
xP′

rWL

)
. (A10)

For convenience, we define that ϕ > 0 if x > 0 and ϕ < 0
if x < 0. Therefore, the equation for the line MP is

z(x) = −rWL + x · tan
(π

2
− ϕ

)
, (A11)

which allows one to calculate zP′ , the z coordinate of P’, by
substituting x by xP′ . The coordinates of P are obtained as
follows. In the case of the ±x pyramid facets (points P1, P′

1 in
Fig. 18; |yP′ | � |xP′ |), the intersection of the line MP with the
line HA yields

xP = rWL + s tan α

tan α + tan (π/2 − ϕ)
. (A12)

zP is obtained by substituting x by xP in Eq. (A11).
In the case of the ±y pyramid facets (points P2, P′

2 and P3,
P′

3 in Fig. 18, |xP′ | � |yP′ |) we calculate xP as the x coordinate
of the intersection of the line MP with the line z = zP =
tan α(s − |yP|),

xP = rWL + tan α(s − |yP|)
tan (π/2 − ϕ)

. (A13)

For those points on the ±y facets for which |yP| > s (e.g.,
point P3), the additional restriction |xP| � xC holds. xC denotes
the x coordinate magnitude of the intersection points of a
x − z wire section with the curved pyramid wetting-layer
intersection lines L1 or L2,

xC = {(y − s)[2rWL − (y − s) tan α] tan α}1/2. (A14)

APPENDIX B: SELF-RELAXATION ENERGY OF A
HETEROEPITAXIAL CYLINDRICAL SHELL

The self-relaxation energy of the heteroepitaxial cylin-
drical shell on the nanowire is quantified on the basis of
linear elasticity theory and Hooke’s law. According to the
assumed strain state in the cylindrical shell solely, the strain
components in the directions parallel and tangential to the
nanowire are nonzero and the tangential component εt (r)
depends on the radial distance r. For the calculation of the
strain energy density of the heteroepitaxial cylindrical shell
on the nanowire, we write the strain and stress tensors in Voigt
notation:

ε =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

ε0

εt

0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, σ = Cε =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

c11 c12 c12 0 0 0
c12 c11 c12 0 0 0
c12 c12 c11 0 0 0
0 0 0 c44 0 0
0 0 0 0 c44 0
0 0 0 0 0 c44

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

ε0

εt

0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

c11ε0 + c12εt

c12ε0 + c11εt

0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (B1)
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where C denotes the elastic stiffness matrix in the case of cubic crystal symmetry. Then the strain energy density (energy per
unit volume) w(r) is given by

w(r) = 1
2σε = 1

2 c11
(
ε2

0 + ε2
t

) + c12ε0εt . (B2)

Multiplication of Eq. (B2) with the nanowire circumference and integration over r yields the elastic strain energy �EFM,el per
nanowire length L of the shell for the entire circumference,

�EFM,el

L
=

∫ r0

rWL

2πrw(r)dr. (B3)

For a shell (radius r0) deposited onto a preexisting wetting layer (radius rWL), the integration runs from r = rWL to r = r0

with εt (r) given by Eq. (5).
As we consider an area of the size k−1 (k: Stranski-Krastanov island areal density), which has a quadratic shape with length

k−1/2, Eq. (B3) is multiplied with the length k−1/2 and with the fraction k−1/2/(2πrWL) relating the square edge length to the
total nanowire circumference. By subtraction of the strain energy in the case of planar growth of the same amount of material,
V w(rWL), we obtain the self-relaxation energy �EFM,rel of the deposited shell:

�EFM,rel = 1

2krWL

{[(
ε2

0 − ε0
∂εt

∂r
rNW

)
(c11 + c12) + c11

2
r2

NW

(
∂εt

∂r

)2
](

r2
0 − r2

WL

)

+2

3

∂εt

∂r

[
ε0(c11 + c12) − c11

∂εt

∂r
rNW

](
r3

0 − r3
WL

) + c11

4

(
∂εt

∂r

)2(
r4

0 − r4
WL

)}

− V

{
c11

[
ε2

0 + ε0
∂εt

∂r
(rWL − rNW) + 1

2

(
∂εt

∂r

)2

(rWL − rNW)2

]
+ c12ε0

[
ε0 + ∂εt

∂r
(rWL − rNW)

]}
. (B4)
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