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Charge transport in oxygen-deficient EuTiO3: The emerging picture of dilute metallicity
in quantum-paraelectric perovskite oxides
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We report on a study of charge transport in EuTiO3−δ single crystals with carrier density tuned across several
orders of magnitude. Comparing this system with other quasicubic perovskites, in particular strontium titanate,
we draw a comprehensive picture of metal-insulator transition and dilute metallicity in this ABO3 family. Because
of a lower electric permittivity, the metal-insulator transition in EuTiO3−δ occurs at higher carrier densities
compared to SrTiO3. At low temperature, a distinct T 2 resistivity is visible. Its prefactor A smoothly decreases
with increasing carrier concentration in a similar manner in three different perovskites. Our results draw a
comprehensive picture of charge transport in doped quantum paraelectrics.
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During the last decade, the metal-insulator transition
(MIT) in weakly doped SrTiO3 has attracted renewed in-
terest. The pure compound is a highly insulating quantum
paraelectric [1], which on the one hand becomes ferroelec-
tric by a partial substitution of Sr by Ca (Sr1−xCaxTiO3,
0.002 � x � 0.12) [2,3]. On the other hand, it becomes
metallic upon reduction (SrTiO3−δ) [4] and even super-
conducting [5] at remarkably low carrier concentrations,
which identified SrTiO3 as the most dilute superconduc-
tor [6]. Furthermore, a ferroelectriclike transition inside
the superconducting phase has been observed in com-
pounds with both Ca substitution and oxygen vacancies
(Sr1−xCaxTiO3−δ) [7]. Apart from reduction, SrTiO3 has been
subjected to other variants of n-type doping by, e.g., substi-
tuting Ti4+ with Nb5+ (SrTi1−xNbxO3) [4,8–10], or Sr2+ with
La3+ (Sr1−xLaxTiO3) [10–13]. In all three cases a T 2 behavior
of the resistivity is found [14–16]. For many systems, the
prefactor A of ρ(T ) = ρ0 + AT 2 is related to the electronic
specific heat coefficient γ , since both depend on the Fermi
energy EF, as is expressed in the Kadowaki-Woods ratio
A/γ 2 [17]. Furthermore, EF itself depends on the carrier
density n and one may expect a particular scaling behavior
in A(n) as shown for metallic SrTiO3−δ [16,18].

In order to investigate these phenomena in other systems,
EuTiO3 is a prime candidate, because both materials are
similar in many aspects. Sr2+ and Eu2+ have almost the
same ionic radius [19]. Both compounds have the ideal cubic
perovskite structure (space group Pm3̄m) at room tempera-
ture and undergo a structural phase transition to tetragonal
(I4/mcm) upon cooling [20,21], and both are quantum para-
electrics [1,22,23]. Nevertheless, there are also clear differ-
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ences. SrTiO3 crystals are transparent, whereas EuTiO3 is
black, which can be understood from band-structure calcu-
lations yielding a band gap of 1 eV [24], whereas SrTiO3

has a gap of 3.2 eV [25]. SrTiO3 is nonmagnetic in contrast
to EuTiO3 where Eu2+ has a large, local magnetic moment
of 7μB. These moments order antiferromagnetically below
TN = 5.5 K in a G-type configuration [26,27].

The research on n-doped EuTiO3 is sparse. To our knowl-
edge only five publications exist: One report deals with
poly- and single-crystalline EuTi1−xNbxO3 with x � 0.3 [28]
and another two with single-crystalline Eu1−xLaxTiO3 (x �
0.1 [29,30]). Studies of oxygen-deficient EuTiO3 are re-
stricted to ceramics [31] and thin films [32]. Here, we present
a detailed study of single-crystalline EuTiO3−δ tuned from
semiconducting to metallic via reduction. We derive the elec-
tron mobility and discuss its temperature dependence in com-
parison to that of SrTiO3. We find an AT 2 resistivity behavior
of metallic EuTiO3−δ where A systematically decreases with
increasing charge-carrier content, which is discussed in a
larger context of charge transport in weakly doped perovskite
oxides.

The EuTiO3 crystals were grown by the floating-zone tech-
nique. We used polycrystalline powders of Eu2O3 (chemical
purity 99.99%), TiO (99.5%), and TiO2 (99.99%) as starting
materials. The powders were mixed for 1 h and the mixture
was pressed to a cylindrical rod at 50 MPa. In order to
avoid emergence of Eu3+ via oxygen capture, we skipped
preliminary powder reactions and put the pressed rod directly
into the floating-zone system. Centimeter-sized single crystals
were grown in argon atmosphere using a growth speed of
10 mmh−1 and a relative rotation of the rods of 30 rpm. X-ray
powder diffraction measurements verified phase purity and
Laue images confirmed single crystallinity.

The as-grown crystal was cut into cuboid pieces with all
faces being {100} planes. In order to induce electron doping,
the samples were annealed in sealed fused-quartz tubes with
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FIG. 1. (a) Resistivity ρ(T ) of semiconducting pristine EuTiO3

determined by dc measurements (black dashed line) and dielectric
spectroscopy (green solid line) in comparison to metallic EuTiO3−δ

which were cut from the same single crystal and oxygen reduced.
(b) Charge-carrier concentrations n of all samples deduced from
Hall effect measurements at various temperatures. The upper inset
in (a) shows Arrhenius plots of n(T ) and of the conductivity σ (T )
together with linear fits (dotted lines). The lower inset is an enlarged
view of the ρ(T ) anomalies at TN = 5.5 K, which is n independent,
in agreement with a previous report [31]. Note the scale breaks in
both main panels.

low argon pressure (�10−5 mbar) and titanium metal powder
(99.99%) acting as oxygen catcher. The quartz tubes were
heated for 10 h at temperatures between 650 ◦C and 850 ◦C
depending on the intended carrier concentration. In order to
have an indicator for homogeneity, in each run two samples
with different thicknesses (0.2 and 0.4 mm) were annealed
simultaneously in the same quartz tube. Resistivity and Hall
effect measurements were carried out by a standard four-
probe and six-probe method, respectively, using a home-built
dipstick setup and a commercial 3He insert (Heliox, Oxford
Instruments) for wet cryostats.

Figure 1 shows the resistivity ρ and charge-carrier den-
sity n as a function of temperature—both in semilogarith-
mic scales—for different EuTiO3−δ samples. In contrast to
SrTiO3, which is highly insulating, the dc conductivity of pris-
tine EuTiO3 is measurable down to about 80 K [Fig. 1(a)] and
is complemented with dielectric spectroscopy measurements
(see Appendix) to even lower temperature. Its carrier density
obtained from Hall effect measurements [Fig. 1(b)] is tem-
perature dependent and ranges from n = 1016 cm−3 at room

temperature down to n ≈ 1013 cm−3 at the lowest measurable
temperature (≈130 K). The activated behavior is clearly seen
in the Arrhenius plots of both conductivity and carrier density
(upper inset of Fig. 1). The corresponding fits yield very
similar activation energies (100 meV from conductivity and
120 meV from carrier density), but both are much smaller
than the theoretically expected intrinsic band gap of 1 eV [24]
meaning that the pristine EuTiO3 is weakly impurity doped.

To induce a MIT, the aforementioned annealing technique
is used. Annealing temperatures below 600 ◦C seem to have
no effect on the oxygen content, since the ρ(T ) curves
remain unchanged (not shown). For annealing temperatures
above 750 ◦C we obtain metallic samples with temperature-
independent carrier densities that cover a range of 1020 cm−3

to 1021 cm−3 (see Fig. 1). Above 130 K the ρ(T ) curves are
ordered by carrier density, i.e., σ increases upon increasing
n and, in reverse, the n(T ) curves are ordered by the high-
temperature conductivity. At low temperatures, some of the
ρ(T ) curves are crossing each other, which may partly arise
from different residual resistivities and/or some uncertainty
in determining the exact geometries. For annealing temper-
atures 600 ◦C < Tann < 750 ◦C, the simultaneously annealed
samples of different thicknesses show large deviations in both
ρ(T ) and n. This indicates inhomogeneous charge-carrier
concentrations and thus these samples are not taken into
account here. In this context, it is worth mentioning that a
certain gradient in the oxygen-defect concentration is nat-
urally expected for postannealed single crystals. However,
above a certain critical concentration the wave functions of
the induced charge carriers overlap sufficiently and a metallic
state with an averaged homogeneous charge-carrier density
results.

The absence of homogeneous samples between pristine
and metallic EuTiO3−δ hinders an exact determination of the
MIT. The lowest carrier density of 1020 cm−3 yields an upper
boundary for the critical carrier density nc of the MIT and is
about four orders of magnitude larger than the corresponding
one (≈1016 cm−3) of SrTiO3 [4]. This difference can be
understood by comparing the permittivities ε of EuTiO3 and
SrTiO3. While SrTiO3 has an extremely large ε of roughly
20 000 at low temperatures [1], that of EuTiO3 is smaller by
a factor of 50. We find ε ≈ 400 (see Appendix) in agreement
with previous single-crystal data [22], whereas smaller values
are reported for ceramics [23,33].

Of course, these values were obtained for pristine EuTiO3.
For doped samples, one defines an effective Bohr radius a∗

B =
aBεme/m∗, which renormalizes aB ≈ 0.5 Å of the hydrogen
atom by taking into account the permittivity ε and the band
mass m∗. The so-called Mott criterion [34] compares a∗

B as a
measure for the overlap of the electronic wave functions to
the average distance between donor atoms n−1/3. The huge
low-temperature ε of SrTiO3 results in an effective Bohr
radius of about 6700 Å, compared to a∗

B ≈ 130 Å for EuTiO3.
Here, we use m∗ = 1.5me as determined for the lowest ly-
ing conduction band of SrTiO3−δ [35] for both SrTiO3 and
EuTiO3. The much smaller value of a∗

B explains that nc of
EuTiO3 is about four orders of magnitude larger than that
of SrTiO3. In passing, we also note that the influence of
the above-mentioned inhomogeneities in the oxygen-defect
concentrations is suppressed more rapidly with increasing
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FIG. 2. (a) Effective Bohr radius a∗
B versus critical charge-carrier

density nc of various doped semiconductors (taken from [36]) in
comparison to the observed MIT of EuTiO3−δ and related doped
oxides SrTiO3 [4] and KTaO3 [38,39]. Dashed lines represent the
scaling behavior n1/3

c a∗
B = K with different values of K . (b) Mobility

μ(T, n) of the metallic EuTiO3−δ samples in comparison to that of
SrTiO3−δ .

a∗
B. Figure 2(a) shows the scaling behavior n1/3

c a∗
B = K as

dashed lines for different values of K . Experiments on doped
semiconductors have detected a sharp MIT at a critical density
of nc and the available data follows a scaling relation with
K = 0.25 [36,37], which corresponds to the so-called Mott
criterion [34]. In perovskite oxides, there is no experimental
data resolving a sharp MIT at nc and metallicity is observed
in EuTiO3, SrTiO3 [4], and KTaO3 [38,39] at carrier densities
which are much larger than expected according to the Mott
criterion. Nevertheless, these carrier densities scale with a∗

B.
Figure 2(b) displays the mobility μ = 1/(neρ) of metallic

EuTiO3−δ as a function of temperature in double-logarithmic
scales. Below 40 K all μ(T ) curves approach constant values,
which are ordered by carrier density n, i.e., μ(n) systemati-
cally decreases with increasing n. The additional kinks result
from the magnetic order at TN = 5.5 K as already shown
in Fig. 1(a) for ρ(T ). In the high-temperature regime, the
mobility curves decrease due to increasing electron-phonon
scattering and seem to approach an n-independent power law.
Such a behavior has been already observed in SrTiO3 [40].
For comparison, we also show the mobility data of four
SrTiO3−δ crystals with 1017 cm−3 � n � 1020 cm−3. Because
SrTiO3−δ is already metallic for very low carrier densities,
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FIG. 3. Resistivity ρ of EuTiO3−δ as a function of T 2. The
dashed lines are fits of the form ρ(T ) = ρ0 + AT 2. With increasing
n the prefactor A decreases and the temperature range of the T 2

behavior increases.

higher mobilities than in EuTiO3−δ are reached in the low-
temperature regime, but even across both compounds all
curves remain ordered by increasing n. Toward high tem-
perature, the mobility curves μ(T, n) of SrTiO3−δ merge
and fall below those of EuTiO3 above about 200 K. This is
surprising in view of the structural phase transition of EuTiO3,
which is in that temperature range [20,31]. In contrast, the
transition in SrTiO3−δ appears at Ts � 105 K [1,41] and lin-
early decreases with increasing charge-carrier content [42].
Using x-ray- and Raman-scattering measurements, we derive
Ts � 260 K on our pristine EuTiO3 and Ts � 200 K for the
highest n = 8.4 × 1020 cm−3 (to be published elsewhere).
However, neither SrTiO3−δ nor EuTiO3−δ show any anoma-
lies in the mobility data reflecting the structural transitions.
Recently, both the magnitude and temperature dependence
of the mobility in SrTiO3−δ have attracted attention [43,44].
Mischenko et al. [43] argue that a polaronic approach can
lead to a scattering rate larger than the thermal energy of
carriers in agreement with the data. Ab initio calculations by
Zhou et al. [44] reproduce the experimentally observed T −3

temperature dependence of the mobility of SrTiO3−δ [40], but
the calculated absolute value is an order of magnitude larger
than the experimental data. Moreover, in these theoretical
approaches the antiferrodistortive soft mode does not play a
key role, in agreement with the absence of anomalies in the
measured mobility data.

Figure 3 shows the resistivity ρ as a function of T 2 together
with fits of the form ρ(T ) = ρ0 + AT 2 (dashed lines). The
fits deviate from the data for high temperatures and with
increasing carrier density the temperature range of the T 2

behavior systematically increases, which is in agreement with
the findings for SrTiO3−δ [16]. In EuTiO3−δ we have an
additional deviation at low temperatures that is related to
the magnetic transition at TN = 5.5 K. Figure 4(a) shows the
prefactor A from these fits as a function of n in double-
logarithmic scales. Here, we compare A(n) for EuTiO3−δ to
that of SrTiO3−δ , Sr1−xLaxTiO3, and SrTi1−xNbxO3 [14–16],
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FIG. 4. (a) Prefactor of the AT 2 resistivity versus carrier con-
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line in (a) represents A(n) calculated for a three-band model; the
corresponding exponent α of A ∝ nα is shown in (b) (see text for
details). Color boundaries indicate band edges of doped SrTiO3 [35].

and we also include A(n) of the nontitanate perovskite
K1−xBaxTaO3 [45]. All titanate systems follow a general trend
as is marked by dotted black lines, which are guides to the eye
and indicate power laws A ∝ nα with α = −4/3,−2/3,−1.
Band-structure calculations for n-doped SrTiO3 [15] yield
a model with three bands that are filled consecutively with
increasing n. The critical carrier densities nc1 (nc2), at which
the filling of the second (third) band sets in, are known
from experiments [35] and illustrated by background-color
boundaries. Below nc1, where only the first band is filled, a
power law n−4/3 is seen as is expected for a single parabolic
band with EF ∝ n2/3 and a simple A ∝ E−2

F relation. When the
second band starts to be filled at nc1, the exponent α of A ∝ nα

suddenly increases and finally approaches −1, which does not
change much above nc2.

The increase of α is a natural consequence of a three-band
system. If we consider the most simple case of three parabolic
bands with band minima at energies Ei, effective masses mi,
and densities of states gi(E ) ∝ m3/2

i

√
E − Ei, then each band

contributes

ni(EF) = 1

3π2

(
2mi

h̄2

)3/2 ∫ EF

Ei

√
E − Ei dE (1)

to the total electron density n(EF) = ∑
i ni(EF). We use

the band masses m0 = m2 = 1.5me and m1 = 3.5me from
Shubnikov–de Haas measurements of SrTiO3−δ [35] and ad-
just E1,2 to 2 and 10 meV, respectively, to match the experi-
mental critical carrier densities [46]. From the inverse function
EF(n) we calculate A(n) ∝ E−2

F (n) which describes the data
of the doped titanates over almost the entire range of n, as
is shown by the thick line in Fig. 4(a). This also holds for

the exponent α of A ∝ nα obtained from the slope of log A vs
log n [Fig. 4(b)]. In view of the simple model, which neglects
deviations from the parabolic band shapes as well as their
anisotropy, this good agreement with the experimental data
is remarkable. The available A(n) data of the nontitanate per-
ovskite K1−xBaxTaO3 [45] fit into this picture as well, because
this material has lower effective masses (0.55–0.8me) [39].
Consequently, at a given carrier concentration n, the Fermi
energy is larger and the prefactor A is lower compared to
the titanates. A more sophisticated theoretical treatment could
provide a generalized uniform description of the A(n) behav-
ior for an even larger variety of metallic perovskite oxides
with low carrier densities.

In summary, we present a detailed report of the metal-
insulator transition in oxygen-deficient single-crystalline
EuTiO3, which shows many similarities with that in SrTiO3.
However, it sets in at a much higher carrier concentration
(factor 104), which results from the smaller permittivity of
EuTiO3, implying a smaller effective Bohr radius a∗

B, i.e., a
smaller overlap of the electronic wave functions. We show
that metallicity in three perovskite oxides scales with the
effective Bohr radius a∗

B, but it emerges at a carrier density
much larger than suggested by the Mott criterion. The low-
temperature mobility of metallic EuTiO3 and SrTiO3 system-
atically increases with decreasing charge-carrier concentra-
tion across both materials. We find an AT 2 behavior in ρ(T )
of metallic EuTiO3−δ where the prefactor A(n) systematically
decreases with increasing charge-carrier density n and even
quantitatively agrees with A(n) of doped SrTiO3. This general
behavior of A(n) can be described within a three-band model.
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support by the Alexander von Humboldt Foundation and Zhe-
jiang Provincial Natural Science Foundation of China under
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APPENDIX: DIELECTRIC SPECTROSCOPY

The dielectric and transport properties of pristine EuTiO3

toward higher resistivities were determined by contact-based
impedance spectroscopy. These measurements were per-
formed in a commercial 4He-flow cryo-magnet (Quantum
Design PPMS) on crystals in capacitor geometry with met-
allized surfaces A ≈ 4 mm2 and thickness d ≈ 0.5 mm along
a cubic [100] axis. We used a high-impedance frequency
response analyzer (Novocontrol) and a vector network an-
alyzer (ZNB8, Rohde & Schwarz) to cover a joint fre-
quency range 1 Hz � ν � 100 MHz with voltage stimulation
below 1 Vrms.

As expected for semiconductors, Schottky-type depletion
layers at the contact interfaces cause a capacitive contri-
bution CC , which together with the contact resistance RC

form an RC element in series with the intrinsic sample
impedance. This gives rise to Maxwell-Wagner-type relax-
ational effects [48], but for frequencies 2πν > 1/RCCC the
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contacts effectively are short-circuited [49,50]. The crossover
from contact-dominated to intrinsic response is clearly seen in
the permittivity ε as well as in the conductivity σ . The low-
T/high-ν limit of the frequency- and temperature-dependent
data represents the intrinsic quasistatic ε [Fig. 5(a)]. The
corresponding intrinsic σ , marked in green in Fig. 5(b) agrees
well with the inverse dc resistivity 1/ρdc [see Fig. 1(a)].

EuTiO3 is a quantum paraelectric where long-range or-
der is prevented by quantum fluctuations. The fingerprint of
quantum-paraelectric behavior is a Curie-like rise of the per-
mittivity with decreasing temperature followed by a saturation
at an elevated ε(T → 0), which can be modeled by the well-
known Barrett formula [47]

ε(T ) = C

(T
/2) coth(T
/2T ) − T0
+ ε∞. (A1)

Here, T
 represents the influence of quantum fluctuations
and T0 is the paraelectric Curie temperature. The fit of the
high-frequency data of ε(T < 200 K) reveals T
 � 160 K
and T0 � −190 K. The value of T
 agrees with a previous
report [22] and, remarkably, it is four times larger compared to
SrTiO3 [1,51] indicating much stronger quantum fluctuations
in EuTiO3. Our T0 value differs in magnitude from [22]
where a considerably smaller temperature range could be
evaluated, but is also negative denoting rather antiferroelectric
correlations in EuTiO3. As shown in the inset of Fig. 5(a),
ε(T ) has a clear anomaly at TN = 5.5 K, which results from a
significant magnetoelectric coupling [22].
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FIG. 5. (a) Temperature-dependent ε′ measured for frequencies
1 Hz � ν � 100 MHz. The steep rise of ε′(T, ν ) for high-T/low-ν
results from contact contributions. The intrinsic low-T/high-ν be-
havior of ε′(T, ν ) is fitted via the Barrett formula (dashed line) [47].
The inset shows the anomaly of ε′(T, ν ) at TN = 5.5 K. (b) Corre-
sponding conductivity data σ ′(T ). The inset shows an Arrhenius plot
of the intrinsic σ ′(T ) with a linear fit (black line).
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