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Probing the quantum phase transition in Mott insulator BaCoS2 tuned
by pressure and Ni substitution
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We present a muon spin relaxation study of the Mott transition in BaCoS2 using two independent control
parameters: (i) pressure p to tune the electronic bandwidth and (ii) Ni substitution x on the Co site to tune the band
filling. For both tuning parameters, the antiferromagnetic insulating state first transitions to an antiferromagnetic
metal and finally to a paramagnetic metal without undergoing any structural phase transition. BaCoS2 under
pressure displays minimal change in the ordered magnetic moment Sord until it collapses abruptly upon entering
the antiferromagnetic metallic state at pcr ∼ 1.3 GPa. In contrast, Sord in the Ni-doped system Ba(Co1−xNix )S2

steadily decreases with increasing x until the antiferromagnetic metallic region is reached at xcr ∼ 0.22. In both
cases, significant phase separation between regions with static magnetic order and paramagnetic/nonmagnetic
regions develops when approaching pcr or xcr , and the antiferromagnetic metallic state is characterized by
weak, random, static magnetism in a small volume fraction. No dynamical critical behavior is observed
near the transition for either tuning parameter. These results demonstrate that the quantum evolution of both
the bandwidth- and filling-controlled metal-insulator transition at zero temperature proceeds as a first-order
transition. This behavior is common to magnetic Mott transitions in RNiO3 and V2O3, which are accompanied
by structural transitions without the formation of an antiferromagnetic metal phase.

DOI: 10.1103/PhysRevMaterials.3.045001

I. INTRODUCTION

The Mott metal-insulator transition (MIT), known to pro-
vide a platform for emergent phenomena such as high-
temperature superconductivity and colossal magnetoresis-
tance, remains one of the most intensely studied topics in
condensed matter physics [1–6]. This transition can occur as
a thermal phase transition or as a quantum phase transition
(QPT) near zero temperature. In the latter case, the transition
is typically controlled by varying the electronic bandwidth
using hydrostatic or chemical pressure or by varying the band
filling via chemical substitution. The Mott transition usually
occurs from an antiferromagnetic insulator (AFI) phase to a
paramagnetic metal (PMM) phase and is often accompanied
by a structural phase transition. In some Mott systems, a direct
one-step transition from an AFI to a PMM phase is observed,
while in others the transition occurs in two steps involving an
intermediate antiferromagnetic metal (AFM) phase. In order
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to understand fully the physics of the Mott transition, the
following challenges need to be met: (i) disentangling the
different contributions of the charge, magnetic, and structural
interactions; (ii) establishing whether the transition is first
order or continuous; (iii) clarifying the similarities and dif-
ferences between the one-step and two-step transitions; and
(iv) comparing the effects of bandwidth control versus filling
control.

Here, we attempt to address these challenges by eluci-
dating the mechanism of the quantum MIT in the quasi-
two-dimensional system Ba(Co1−xNix )S2 [7–11], where the
MIT can be controlled either by pressure or by the par-
tial substitution of Co for Ni [9]. The crystal structure,
shown in Fig. 1(a), consists of alternately stacked side-sharing
(Co, Ni)S5 pyramids, where the Co and Ni ions form a square
lattice. Previous studies have shown that the unsubstituted
(x = 0) BaCoS2 compound is an antiferromagnetic insulator
with a Néel temperature TN = 300 K at ambient pressure.
Neutron scattering studies [9] indicate that Co2+ is in the
high spin state with an ordered moment of ∼3μB, which is
progressively reduced upon Ni substitution. As shown in the
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FIG. 1. (a) Crystal structure of BaCoS2. Schematic (b) temperature-pressure and (c) temperature-doping phase diagrams of BaCoS2 and
BaCo1−xNixS2, respectively (adapted from Refs. [12,13]). PMI stands for paramagnetic insulator, AFI for antiferromagnetic insulator, PMM
for paramagnetic metal, and AFM for antiferromagnetic metal. The conductive metal-insulator transition occurs at the broken vertical lines.

phase diagrams in Figs. 1(b) and 1(c), the Mott transition from
AFI to PMM occurs at a critical pressure of pcr ∼ 1.3 GPa
[12,13] or Ni concentration of xcr ∼ 0.22 [7,14]. Contrary
to the commonly studied systems RNiO3 (R = rare earth)
and V2O3, the Mott transition of BaCoS2 does not involve
any structural distortions and it occurs in two steps with the
formation of an intermediate AFM phase. Because only elec-
tronic degrees of freedom come into play, BaCoS2 is a model
system to investigate the Mott MIT. A study of the evolution
of the magnetic properties across the MIT would enable a
comparison with the previously studied RNiO3 and V2O3

systems, possibly clarifying the role of structural transitions
and of the intermediate AFM phase in the Mott transition.

To achieve this, we have carried out a systematic muon
spin relaxation (μSR) study of the MIT in BaCoS2 using
p and x as control parameters for the bandwidth-tuned and
filling-tuned transitions, respectively. μSR is an ideal probe
for our purpose, since it can independently determine the
magnitude of the local ordered moment and the volume
fraction of the magnetically ordered regions, as well as detect
dynamic magnetic critical behavior via measurements of the
1/T1 relaxation rate. Since μSR is a pointlike real-space mag-
netic probe which detects magnetic transitions in time space,
we use the term “magnetic order” in this paper as implying
static spin freezing while not referring to specific spatial
spin correlation length. Taking advantage of these features,
significant progress was made by recent μSR studies of the
aforementioned prototypical Mott systems RNiO3 and V2O3

[15], where the substitution of rare-earth ions of different size
and the application of hydrostatic pressure in V2O3 enable
a bandwidth-controlled Mott transition, accompanied by a
first-order structural transition. In both systems, the QPT from
the AFI phase to the PMM phase occurs through a gradual
reduction of the magnetically ordered volume fraction near
the QPT until it reaches zero at the transition, while the
magnitude of the ordered moment in the ordered regions of
the sample remains unchanged until dropping abruptly to zero
in the PMM state. No dynamical critical behavior occurs.
These are typical features expected in the case of a first-order
phase transition, as illustrated in Fig. 2. Such behavior was
previously observed in weak itinerant magnets like MnSi
and (Sr, Ca)RuO3, where the magnetic transition is tuned by
hydrostatic pressure [16] or the Ca/Sr substitution [16]. In

MnSi, Fe substitution on the Mn site turns this transition to
a continuous transition, as shown by a recent μSR experiment
[17] and a theoretical study [18].

In this paper, we show that the Mott QPT in BaCoS2 is
also first order for both pressure and Ni substitution. For
both tuning parameters, the magnetically ordered volume
fraction steadily decreases near the AFI-to-AFM transition
and reaches zero at the AFM-to-PMM transition, revealing
a broad region of phase separation between magnetically
ordered and disordered regions. In the case of pressure, the
ordered moment retains its maximal value until an abrupt

FIG. 2. Schematic illustration of the thermal or quantum evolu-
tion of the ordered moment, magnetically ordered volume fraction,
and relaxation rate in the case of continuous (left) and first-order
(right) transitions. Phase separation seen in the gradual change of the
ordered volume fraction is a sufficient but not necessary condition
for a first-order transition.
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reduction occurs upon entering the AFM state, whereas the
Ni substitution shows a more gradual decrease of the ordered
moment with increasing Ni concentration. In both cases, the
quantum evolution to the PMM state occurs without dynami-
cal critical behavior. These observations lead to the conclusion
that both the bandwidth- and filling-controlled Mott transi-
tions in BaCoS2 are first order. We also confirmed absence
of static magnetism in the x = 1 end-member compound
BaNiS2.

II. EXPERIMENTAL DETAILS

Polycrystalline samples of Ba(Co1−xNix )S2 were synthe-
sized using a conventional solid-state reaction method, as
described in detail elsewhere [14,19]. μSR experiments under
pressure were performed at the GPD instrument (μE1 beam-
line) of the Paul Scherrer Institute (Villigen, Switzerland)
[20]. Time differential and ambient pressure μSR measure-
ments were performed using the General Purpose Surface-
Muon Instrument (GPS) [21] with a standard low-background
veto setup at the πM3 beam line of the Paul Scherrer Institute
in Villigen, Switzerland, and using the Los Alamos Meson
Physics Facility (LAMPF) spectrometer with a helium gas-
flow cryostat at the M20 surface muon beam line (500 MeV)
of TRIUMF in Vancouver, Canada. In a μSR experiment,
positive muons μ+ with nearly 100% spin polarization are
implanted into the sample one at a time. The muons ther-
malize at interstitial lattice sites, where they act as magnetic
microprobes [22,23]. In a magnetically ordered material, the
muon spin precesses in the local field Bμ at the muon site with
the Larmor frequency νμ = γμ/(2π )Bμ (muon gyromagnetic
ratio γμ/(2π ) = 135.5 MHz T−1).

Pressures up to 2.0 GPa were generated in a double-
walled, piston-cylinder type of cell made of MP35N material,
specially designed for μSR experiments [20,24–26]. Daphne
oil was used as a pressure-transmitting medium. The pressure
was measured by tracking the superconducting transition of
a small indium plate using ac magnetic susceptibility. The
sample filling factor of the pressure cell was maximized,
resulting in ∼40% of the muons stopping in the sample and
the rest in the pressure cell. Therefore, the μSR data in the
whole temperature range were analyzed by decomposing the
signal into a contribution of the sample and a contribution of
the pressure cell according to

A(t ) = ASPS(t ) + APCPPC(t ), (1)

where AS and APC are the initial asymmetries and PS(t)
and PPC(t) are the muon-spin polarizations belonging to the
sample and the pressure cell, respectively. The pressure cell
signal was modeled with a damped Kubo-Toyabe function
[27]. The response of the sample consists of a magnetic and a
nonmagnetic contribution:

PS(t ) =
N∑

i=1

Vm
[
αie−λi

T t cos
(
γμBi

μt
) + β ie−λi

Lt
]

+ (1 − Vm)e−λnmt . (2)

Here, N = 2 for x = 0 and N = 1 for x �0.15. αi

and β i = 1 − αi are the fractions of the oscillating and

nonoscillating μSR signal. Vm denotes the volume fraction of
the magnetically ordered part of the sample, and Bi

μ is the
average internal magnetic field at the muon site. λT

i and λL
i

are the depolarization rates representing the transverse and
longitudinal relaxing components of the magnetic parts of
the sample. The transverse relaxation rate λT

i is a measure
of the width of the static magnetic field distribution at the
muon site and is also affected by dynamical effects (spin
fluctuations) [28]. The longitudinal relaxation rate λL = 1/T1

is determined solely by dynamic magnetic fluctuations. λnm

is the relaxation rate of the nonmagnetic part of the sample.
The total initial asymmetry Atot = AS(0) + APC(0) � 0.285 is
a temperature-independent constant. The fraction of muons
stopping in the sample ranged between AS(0)/Atot �0.40(3)
and AS(0)/Atot �0.45(3) depending on the pressure, and
was assumed to be independent of temperature for a given
pressure. The μSR time spectra were analyzed using the
open-source software package MUSRFIT [29].

III. RESULTS

We first present the data for pressure-tuned BaCoS2.
Figure 3(a) displays representative zero-field (ZF) μSR time
spectra taken at 2 K for various pressures, revealing clear
oscillations for pressures up to p = 1.28 GPa. This indicates
the existence of a well-defined internal field, as expected in the
case of long-range magnetic order. Note that two distinct pre-
cession frequencies occur in the μSR spectra, which indicates
that two magnetically inequivalent muon stopping sites are
present in BaCoS2. Below, we show and discuss the pressure
evolution of the magnetic quantities for one component, since
the second component behaves similarly. The ZF oscillation
frequency and amplitude are directly proportional to the size
of the ordered moment and the magnetically ordered volume
fraction, respectively. Slight damping of the oscillations is
visible over the time window displayed. In general, damping
may be caused by the finite width of the static internal field
distribution or by dynamic spin fluctuations. In the present
case, the damping is predominantly due to the former effect, as
the latter possibility was excluded by applying a longitudinal
external field (data not shown). When the system enters the
AFM state for p = 1.33–1.5 GPa, we observe relaxation
occurring only in a small fraction of the signal with no well-
defined oscillations, indicating the existence of disordered
static magnetism in a small volume fraction of the sample.

Using the data analysis procedure described above, we
obtained quantitative information about the oscillation fre-
quency ν, the relaxation rates λT and λL, the magnetic volume
fraction VM, and the magnitude of the static internal field at
the muon site. The latter is calculated as Bint = �/γμ, where
� = [(2πν)2 + λT

2)]1/2. We note that � is proportional to
the size of the local ordered moment. Figure 3(b) displays
this quantity for BaCoS2 at various pressures ranging from
ambient to 1.5 GPa. Here and elsewhere, we display the
fields and the relaxation rates for only one component in the
model, since the second component behaves similarly. Up
to p = 1.28 GPa, � increases continuously from zero as the
temperature is decreased below TN (marked by black arrows),
indicative of a continuous phase transition as a function of
temperature for these pressures. The value of � at the lowest
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FIG. 3. (a) Muon spin polarization in zero field for BaCoS2

recorded at T = 2 K under various applied pressures. The solid
curves represent fits to the data by means of Eq. (2). (b) The
temperature dependence of the static internal field size �(T ) =
[(2πν )2 + λT

2)]1/2 under various applied hydrostatic pressures. The
arrows mark the magnetic ordering temperature TN. (c) Same as (b),
but displaying the magnetically ordered volume fraction.

measured temperature (∼2 K) is virtually unchanged as the
applied pressure increases from 0 to 1.28 GPa. However, �

is reduced drastically for p = 1.35 GPa, at which point the
system is in the AFM state. For p = 1.5 GPa, � is barely
distinguishable from zero.

The magnetically ordered volume fraction is plotted as a
function of temperature for several pressures in Fig. 3(c). For
p � 1.0 GPa, the magnetically ordered phase at 2 K occupies

close to 100% of the sample volume. This is reduced to
70% for p = 1.28 GPa, close to the AFI-to-AFM transition
at 1.33 GPa, indicating that the ground state of BaCoS2 is
characterized by intrinsic phase separation between magnet-
ically ordered and disordered phases at this pressure. The
ground-state magnetic volume fraction is further reduced to
30% for p = 1.35 GPa in the AFM phase, and 10% or less for
higher pressures in the AFM phase.

The corresponding results for the Ni-doped system are
illustrated in Fig. 4. As seen in Fig. 4(a), long-lived oscilla-
tions are observed only in the ZF spectrum for x = 0, while
the spectra for x � 0.15 display fast relaxation without any
oscillations. This ZF relaxation, which can be decoupled in a
longitudinal field, points to fairly disordered static magnetism
for these high values of x. The ZF relaxation rate decreases
with increasing x, indicating a steady reduction of the internal
field at the muon site. This is demonstrated in Fig. 4(b), which
displays the temperature dependence of � for x between 0
and 0.3. The low-temperature value of � decreases steadily
as x increases, reaching zero around the expected doping
level of ∼0.25 marking the AFM-to-PMM transition. This
is in contrast to BaCoS2 under pressure, which showed no
change in � until an abrupt drop in the AFM state. On the
other hand, the behavior of the magnetically ordered volume
fraction for Ni substitution seen in Fig. 4(c) is similar to that of
the pressure case, showing a steady reduction of the ground-
state ordered volume fraction to zero at the AFM-to-PMM
transition. We also confirmed that the end-member compound
BaNiS2 exhibits no relaxation or oscillations, indicating an
absence of static magnetism.

These results can be summarized in Fig. 5, which displays
TN , VM, and � extrapolated to zero temperature and normal-
ized by its value for pure BaCoS2 at ambient pressure, each
as a function of p [Fig. 5(a)] and x [Fig. 5(b)]. With pressure
tuning, � (and therefore the ordered moment) displays little
change until an abrupt reduction upon entering the AFM
state, whereas Ni doping causes a smooth reduction to zero
upon entering the PMM state. This behavior, reminiscent of
the restoration of a continuous QPT observed in Fe-doped
(Mn,Fe)Si tuned by pressure [17], may be related to effects
of disorder [30] introduced by (Co,Ni) substitution. On the
other hand, both pressure and Ni doping show a significant
reduction of VM in the vicinity of the QPT, indicating phase
separation between antiferromagnetic and paramagnetic re-
gions. Such behavior is consistent with a first-order quantum
phase transition, not a continuous transition. For both tuning
methods, the AFM state is characterized by a small magnetic
volume fraction, weak internal field, and lack of clear oscil-
lations in the ZF spectra, indicative of weak, random, static
magnetism in this state.

The first-order versus continuous nature of the QPT can
be further clarified by investigating any associated dynamical
critical behavior. We performed detailed measurements of
BaCoS2 with p = 1.5 GPa and Ba(Co1−xNix )S2 with x = 0.2
in a small longitudinal field (LF) just strong enough to decou-
ple the effect of the static random local field. These values of
p and x place the system near the QPT, so any quantum critical
dynamics from a continuous QPT would be observable by
μSR. The temperature dependence of the dynamic relaxation
rate 1/T1 under these conditions is shown as blue diamonds
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FIG. 4. (a) Muon spin polarization in zero field for
Ba(Co1−xNix )S2 recorded at T = 2 K for various values of x.
The solid curves represent fits to the data by means of Eq. (2).
(b) The temperature dependence of the static internal field size
�(T ) = [(2πν )2 + λT

2)]1/2 for various values of x. The arrows
mark the magnetic ordering temperature TN. (c) Same as (b), but
displaying the magnetically ordered volume fraction.

in Figs. 6(a) and 6(b) for the pressure- and Ni-tuned samples,
respectively, along with the static relaxation parameter � in
red squares for comparison. For both samples, the magni-
tude of 1/T1 is less than 1% of the static relaxation rate
�(T = 0) and no clear peak is observed at TN . This differs
from the case of continuous transitions in (Mn,Fe)Si [17]
and dilute spin glasses CuMn and AuFe [31], in which the
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FIG. 5. The (a) pressure and (b) doping dependence of the nor-
malized magnetic ordering temperature TN/TN (x = 0, p = 0), the
normalized zero-temperature static field size �/� (x = 0, p = 0),
and the zero-temperature magnetically ordered volume fraction VM

for BaCoS2 under pressure and BaCo1−xNixS2, respectively. Here,
� implies �(T → 0). The broken vertical lines denote the phase
boundary between insulating and metallic phases. The shaded area
in (a) refers to the AF metallic region.

temperature dependence of 1/T1 exhibits a clear peak at the
ordering/freezing temperature with a peak value close to 10%
of the static field parameter [17,31]. The absence of dynamical
critical behavior in the present data gives further evidence for
first-order quantum evolution in BaCoS2 for both pressure and
doping control.

IV. DISCUSSION

The μSR results presented here provide unambiguous evi-
dence for a first-order Mott QPT in BaCoS2 accessed by pres-
sure (bandwidth control) and Ni doping (filling control). This
finding is consistent with the recent observation of first-order
quantum evolution in the canonical bandwidth-controlled
Mott insulators RNiO3 and V2O3, despite the fact that no
structural transition accompanies the MIT in BaCoS2. The
similarity among disparate Mott systems suggests that first-
order quantum phase transitions are ubiquitous in strongly
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FIG. 6. The static field size � = [(2πν )2 + λT
2)]1/2 and the

dynamic relaxation rate 1/T1 (a) for BaCoS2 at the applied pressure
of p = 1.5 GPa and (b) for the Ni-doped sample of BaCo1−xNixS2

with x = 0.2.

correlated Mott systems [32,33], in agreement with previous
theoretical predictions [15,34–41].

In prior studies, the first-order nature of the Mott metal-
insulator transition manifested in hysteresis in dc conductivity
measurements reported for V2O3 [5,33] and NdNiO3 [42].
Such measurements do not contain information about the
volume of metallic or insulating phases. However, volume
fraction information related to spatial phase separation has
been extracted from μSR for RNiO3 [4,15,43] and V2O3

[15], magnetic susceptibility for V2O3 [44], time-dependent
thermopower for NdNiO3 [45], and ARPES spectral weight
for (La,Sr)3Mn2O7 [46]. More recently, the length scale and
real-space pattern of this phase separation have been observed
by scanning probes, including nanoscale infrared optics stud-
ies of VO2 [47] and V2O3 [48], scanning photoemission for
V2O3 [49], and STM measurements of Sr3(Ir,Ru)2O7 [50].

The widespread phase separation appearing near the first-
order QPT in this and similar systems merits further consid-
eration. Equilibrium thermodynamics typically stipulates that
phase separation associated with a first-order transition can
occur only on the coexistence curve, where the two phases
have the same free energy [39]. In other words, for a given
pressure or chemical composition, phase separation would be

expected only at a single temperature that lies on the coexis-
tence curve. However, in many solid-state systems, phase sep-
aration is observed by a variety of techniques well away from
the coexistence curve, sometimes extending down to zero
temperature, as observed in many of the above-mentioned
experimental studies. Kirkpatrick and Belitz [39,41] proposed
a possible explanation for this phenomenon by consider-
ing the presence of quenched disorder, which may couple
to the order parameter and lead to the existence of static
droplets of the minority phase within the majority phase. Their
argument applies not only to Mott transition systems, but
also to itinerant-electron helical-/ferromagnets MnSi [16,51]
and (Sr,Ca)RuO3 [16,52] and heavy-fermion systems such as
UGe2 and others [53]. It should be noted, however, that a
larger disorder can effectively alter a first-order transition to
behaviors closer to a second-order transition [18,40], as found
in (Mn,Fe)Si [17] (see illustration in Fig. 1 of Ref. [17]).

First-order Mott QPTs such as the one observed in BaCoS2

are reminiscent of the magnetic phase transition observed
at the antiferromagnetic/superconducting phase boundary in
unconventional superconductors, including high-Tc cuprates,
FeAs systems, A3C60, and heavy fermion systems. Similar
behavior is also found in 4He at the boundary between the
solid hexagonal-close-packed (hcp) phase and the superfluid
phase [54]. In these systems, the superconducting/superfluid
phase is accompanied by inelastic excitations associated with
short-range correlations having a periodicity characteristic
of the competing order (i.e., magnetic or solid hcp). These
excitations are referred to as the magnetic resonance mode in
unconventional superconductors and rotons in superfluid 4He
[54], as discussed elsewhere [54,55]. Given the similarities
with nonsuperconducting Mott systems, the universality of
inelastic magnetic excitations may extend to BaCoS2, RNiO3,
V2O3, and other materials. Therefore, the present results call
for further investigations of the role of inelastic soft modes in
nonsuperconducting Mott transition systems.

Another new aspect of the MIT that emerges from the
present work is that the AFM region between the AFI and
PMM states is characterized by weak, random, static mag-
netism in a very small volume fraction of the sample. It seems
plausible that the magnetic volume is confined to islands
embedded in the surrounding PMM phase, suggesting a sce-
nario of metallic conduction through percolation. One open
question is the distinction, if any, between the above scenario
of separation between AFI and PMM phases and the magnetic
phase separation observed in V2O3 and RNiO3 coexisting with
insulating bulk conductivity. One possibility is that conductive
percolation is achieved in BaCoS2 but not in V2O3 and RNiO3.
The length scale and texture of this phase-separated state
cannot be probed by μSR, so suitable techniques such as
scanning tunneling or magnetic force microscopes and/or
spatially resolved optical probes [48] should be used to obtain
complementary information in future studies.

V. CONCLUSIONS

The present μSR results unambiguously demonstrate that
the QPT from AFI to PMM in BaCoS2 induced by pres-
sure (bandwidth control) and by Ni doping (filling control)
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proceeds as a first-order transition without dynamic critical
behavior. Upon approaching the QPT from the AFI phase,
the magnetically ordered volume fraction decreases steadily
until it reaches zero at the PMM phase, resulting in a broad
region of electronic phase separation. Sudden destruction of
the ordered magnetic moment at the QPT in BaCoS2 under
pressure and the absence of any dynamical critical behavior
in BaCo1−xNixS2 further supports the notion of a first-order
transition in these materials. Similar behavior is observed in
RNiO3 and V2O3, indicating that the basic first-order nature
of the Mott transition persists whether or not the MIT is
associated with structural phase transition (RNiO3 and V2O3)
or the development of an intermediate AFM state (BaCoS2).
We expect the present findings to provide further guidance
in the quest to understand the complex process of phase
transitions in strongly correlated Mott systems.
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