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The anomalous Hall effect (AHE) is a well-known fundamental property of ferromagnetic metals, commonly
associated with the presence of a net magnetization. Recently, an AHE has been discovered in noncollinear
antiferromagnetic (AFM) metals. Driven by nonvanishing Berry curvature of AFM materials with certain
magnetic space-group symmetry, anomalous Hall conductivity (AHC) is very sensitive to the specific type of
magnetic ordering. Here, we investigate the appearance of AHC in antiperovskite materials family ANMn3 (A =
Ga, Sn, Ni), where different types of noncollinear magnetic ordering can emerge. Using symmetry analyses
and first-principles density-functional theory calculations, we show that with almost identical band structure the
nearly degenerate noncollinear AFM �5g and �4g phases of GaNMn3 have zero and finite AHC, respectively.
In a noncollinear ferrimagnetic M-1 phase, GaNMn3 exhibits a large AHC due to the presence of a sizable net
magnetic moment. In the noncollinear antiperovskite magnets, transitions between different magnetic phases,
exhibiting different AHC states, can be produced by doping, strain, or spin transfer torque, which makes these
materials promising for novel spintronic applications.
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I. INTRODUCTION

It is known that the anomalous Hall effect (AHE) emerges
in metals with broken time-reversal symmetry and strong
spin-orbit coupling (SOC) [1]. Usually, the AHE is found
in ferromagnetic (FM) metals, where a transverse voltage
generated by a longitudinal charge current is sensitive to the
net magnetization. The intrinsic AHE is driven by a fictitious
magnetic field in the momentum space associated with the
Berry curvature, a quantity inherent in the electronic band
structure [2]. With the magnitude and direction determined
by the magnetization and SOC, this fictitious magnetic field
controls the charge current in a similar way as a real mag-
netic field in the ordinary Hall effect. The AHE vanishes in
conventional collinear antiferromagnetic (AFM) metals due
to the anomalous Hall conductivities being opposite in sign
and hence canceling each other for the two ferromagnetic
sublattices with opposite magnetization. In other words, the
existence of symmetry combining time reversal and lattice
translation prohibits the AHE. This observation suggested
that the presence of a nonvanishing net magnetic moment is
the necessary condition to break the related symmetry and
produce the AHE [3].

It appeared, however, that the AHE can be observed in
certain types of noncollinear antiferromagnets, such as Mn3X
alloys (X = Ga, Ge, Ir, etc.) [4–8]. In these metals, the Mn
moments are arranged in a Kagome-type lattice within the
(111) plane. The magnetic space-group symmetry operations
in these compounds cannot eliminate the total Berry curva-
ture, leading to a nonvanishing AHE [4]. The presence of
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a sizable AHE in noncollinear AFM metals is interesting
for AFM spintronics, where an AFM order parameter, as a
state variable, can be controlled on a much shorter time scale
compared to magnetization in ferromagnets [9–11].

Importantly, specifics of magnetic ordering in noncollinear
AFM materials associated with different magnetic space-
group symmetries have a strong impact on the AHE [12,13].
For example, it was found that the AHC tensors have a
different form in Mn3X (X = Ga, Ge, and Sn) and Mn3Y
(Y = Rh, Ir, and Pt) compounds, due to different magnetic
moment configurations. One can expect therefore that a sig-
nificant change in the anomalous Hall conductivity (AHC)
can emerge at the magnetic phase transition associated with
switching between different noncollinear magnetic orderings.
Realizing such an effect in practice would be interesting for
potential spintronic applications, and therefore exploring the
AHE in possible material systems with competing and tunable
noncollinear magnetic phases is valuable.

Antiperovskite materials are potential candidates for the
control of the AHE by tunable noncollinear magnetism.
Antiperovskites have a perovskite structure, where cation
and anion positions are interchanged [Fig. 1(a)]. Abundant
functional properties have been discovered in these materi-
als, such as superconductivity [14], magnetoresistance [15],
and magnetovolume [16–18], magnetocaloric [19,20], and
barocaloric [21] effects. Manganese nitride antiperovskites
ANMn3 (A = Ga, Cu, Ni, etc.) are typically metallic and
often reveal complex magnetic orderings [16,22,23]. Various
magnetic phases, such as noncollinear AFM �5g and �4g

phases and a noncollinear ferrimagnetic M-1 phase, have been
found in these compounds (Fig. 1). Transformations between
these magnetic phases can be induced by perturbations, such
as doping, pressure, and temperature [23–25]. It has also been
predicted that the transition between the �5g and �4g phases
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FIG. 1. Different noncollinear magnetic phases in AFM antiper-
ovskite GaNMn3: (a) �5g, (b) �4g, and (c) M-1. Red arrows denote
magnetic moments.

can be achieved using a spin transfer torque [26]. These prop-
erties make ANMn3 compounds promising for a functional
control of the noncollinear magnetism and thus interesting for
exploring the AHE in different magnetic phases.

In this paper, we consider gallium manganese nitride
GaNMn3 as a representative antiperovskite material to investi-
gate the magnetic phase dependent AHC of the whole ANMn3

family. The high-temperature paramagnetic phase of GaNMn3

has a cubic crystal structure with the space group Pm3̄m. The
�5g phase emerges below room temperature [Fig. 1(a)] and
represents the most common noncollinear AFM phase of the
ANMn3 compounds. In this phase, to avoid the frustration
from the triangular geometry of the Ga-Mn Kagome-type lat-
tice in the (111) plane, the magnetic moments of the three Mn
atoms form a chiral configuration with the 120° angle between
each other. The �4g magnetic structure is another common
noncollinear AFM phase in the ANMn3 family, which can be
obtained from the �5g phase by rotating all magnetic moments
around the [111] axis by 90° [Fig. 1(b)]. Both the �5g and �4g

phases have zero net magnetization. GaNMn3 also exhibits a
noncollinear ferrimagnetic M-1 phase [Fig. 1(c)], which can
be stabilized by stoichiometric deficiency or high pressure
[23]. In this phase, the Mn magnetic moments are antifer-
romagnetically (ferromagnetically) coupled in (between) the
Ga-Mn (001) planes, resulting in collinear AFM sublattices
within these planes. On the other hand, the magnetic mo-
ments in the Mn-N (002) planes are arranged noncollinearly
[Fig. 1(c)], leading to the net magnetic moment along the
[001] direction.

Using symmetry analyses and first-principles density-
functional theory (DFT) calculations, we explore the AHE
of the three noncollinear magnetic phases of GaNMn3. We
show that with nearly identical band structure the nearly de-
generate AFM �5g and �4g phases have zero and finite AHC,
respectively. A similar behavior is exhibited by noncollinear
antiferromagnetic antiperovskites SnNMn3 and NiNMn3. In
a noncollinear ferrimagnetic M-1 phase, GaNMn3 exhibits a
large AHC due to the presence of a sizeable net magnetization.
With a possibility to control the appearance of these magnetic
phases by external stimulus, the predicted variation of the
AHC between different magnetic phases in the same material
points to a useful approach of designing the AHE-based
functional devices for spintronic applications.

II. SYMMETRY ANALYSIS

Within the linear response theory, the intrinsic AHC is
expressed as the integral of the total Berry curvature (�αβ)

TABLE I. Matrix elements of the AHC tensor for different mag-
netic phases in GaNMn3. Here, the ordinary Cartesian coordinates
are used, i.e., x̂||[100], ŷ||[010], and ẑ||[001].

Magnetic phase �5g �4g M-1

Magnetic
space group R3̄m R3̄m′ P4

AHC tensor

⎡
⎣0 0 0

0 0 0
0 0 0

⎤
⎦

⎡
⎣ 0 σxy −σxy

−σxy 0 σxy

σxy −σxy 0

⎤
⎦

⎡
⎣ 0 σxy 0

−σxy 0 0
0 0 0

⎤
⎦

over the Brillouin zone (BZ) of the crystal [1,27]:

σαβ = − e2

h̄

∫
BZ

d3�k
(2π )3 �αβ (�k), (1)

where the total Berry curvature �αβ = ∑
n fn(�k)�γ

n (�k) is the
sum of the Berry curvatures �n,αβ (�k) corresponding to the in-
dividual bands n, fn(�k) is the Fermi distribution function, and
indices (α, β ) denote Cartesian coordinates. The expression
for the Berry curvature �n,αβ (�k) is given by [1,27]

�n,αβ (�k) = − 2ih̄2
∑
m �=n

〈ψn,�k|vα|ψm,�k〉〈ψm,�k|vβ |ψn,�k〉
[Em(�k) − En(�k)]

2 , (2)

where ψn,�k is the Bloch function and �v is the velocity op-
erator. Space-group symmetry of a material determines the
presence or absence of a finite AHC. For example, since
�n,αβ (�k) is odd with respect to time-reversal symmetry, i.e.,
�n,αβ (−�k) = −�n,αβ (�k), the total Berry curvature �αβ and
hence the AHC are zero for nonmagnetic materials. Sim-
ilarly, if there is symmetry operation Ô transforming �k to
�k′ (i.e., �k′ = Ô�k), such as twofold rotation or mirror re-
flection, for which Ô�n(�k′) = −�n(�k), the AHC vanishes
[12,13]. In noncollinear AFM materials, such as GaNMn3,
various magnetic phases are associated with different mag-
netic space-group symmetries (Table I), resulting in different
AHC.

The �5g phase of GaNMn3 is characterized by a lattice of
magnetic “whirls” composed of noncollinear Mn magnetic
moments in the (111) plane [Fig. 2(a)]. This arrangement
forms the magnetic space group R3̄m, which has three mirror
planes perpendicular to the (111) plane. Mirror symmetry
M preserves the spin component perpendicular to the mirror
plane and reverses the spin components parallel to the mirror
plane. As shown in Fig. 2(a), the magnetic moments of the
Mn atoms at the mirror planes [indicated by the dashed
lines in Fig. 2(a)] are always perpendicular to this plane.
Therefore, application of the symmetry transformations M =
M01̄1, M101̄, or M1̄10 preserves the original configuration of
magnetic moments. The invariance under these three mirror-
symmetry transformations causes the AHE in the �5g phase
to vanish. For example, under the M1̄10 symmetry operation,
the Berry curvature is transformed as M1̄10�xy(ky, kx, kz ) =
−�xy(kx, ky, kz ), which implies that the integral over the
whole Brillouin zone in Eq. (1) leads to a zero σxy. Similarly,
�yz and �zx are odd with respect to M01̄1 and M101̄, respec-
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FIG. 2. Symmetry operations for noncollinear AFM phases �5g

(a) and �4g (b) in the (111) Ga-Mn plane of GaNMn3. (a) The �5g

phase preserves mirror planes (1̄10), (101̄), and (01̄1) (denoted by
dashed lines) and it is invariant under symmetry transformations
M = M01̄1, M101̄, or M1̄10. (b) The �4g phase does not preserve the
mirror planes, but is invariant under the product of mirror symmetry
M and time-reversal symmetry T . Red arrows denote the magnetic
moments. Dotted lines denote the mirror planes.

tively. Table IV in Appendix B shows details of different
symmetry transformations.

This odd property of the Berry curvature in GaNMn3

under the mirror-symmetry transformations is broken in the
�4g phase. In this phase, the Mn magnetic moments form a
lattice of “vertices” in the (111) plane, in which the mag-
netic moments of the Mn atoms within the mirror plane
are parallel to this plane [Fig. 2(b)]. This configuration
corresponds to the magnetic space group R3̄m′, in which
the mirror symmetries are broken. As seen from Fig. 2(b),
mirror-symmetry transformation M reverses all the magnetic
moments.

In contrast, the product of mirror symmetry M and time-
reversal symmetry T is preserved in the �4g phase. As shown
in Fig. 2(b), when reversal of all moments by the mirror-
symmetry operation M is followed by the time-reversal sym-
metry transformation T all the moments are reversed back to
their initial configuration. The presence of the combined T M
symmetry makes the Berry curvature an even function of wave
vector �k. For example, applying the T M1̄10 transformation
we obtain T M1̄10�xy(ky, kx, kz ) = �xy(−kx,−ky,−kz ). This
even property of the Berry curvature with respect to T M1̄10,
T M[01̄1], and T M[101̄] makes the AHC nonzero in the �4g

phase. The complete analysis of the T M symmetry transfor-
mations is given in Table IV in Appendix B.

Magnetic space-group symmetry determines the shape of
the AHC tensor. While in the �5g phase, all the nine com-
ponents of the AHC tensor are zero; in the �4g phase, corre-
sponding to the magnetic space group R3̄m′, the AHC tensor is
nonzero. Table I shows that there are six nonvanishing matrix
elements of the AHC tensor in the �4g phase with only one
σxy being independent.

In the noncollinear ferrimagnetic M-1 phase, the unit cell
is a tetragonal

√
2 × √

2 × 1 supercell of the conventional
cubic unit cell without any distortion [Fig. 1(c)]. In this phase,
GaNMn3 has a net magnetization along the [001] direction.
Therefore, a nonzero AHC is expected in this case similar to
that in ferromagnetic metals. Table I shows the AHC tensor for
the magnetic space-group symmetry P4 corresponding to the

TABLE II. Calculated lattice parameters a and AHC σxy for
different magnetic phases of ANMn3 (A = Ga, Ni, Sn).

a(Å) σxy ( �−1 cm−1)

ANMn3 �5g �4g M-1 �5g �4g M-1

GaNMn3 3.87 3.87 3.82 0 40 377
NiNMn3 3.84 3.84 0 130
SnNMn3 3.99 3.99 0 133

M-1 phase. Like in collinear ferromagnetic metals, the AHC
tensor has two nonzero components with only one σxy being
independent.

III. METHODS

Next, we perform first-principles DFT calculations to ob-
tain the AHC of the three noncollinear magnetic phases
of GaNMn3. The DFT calculations are performed using a
plane-wave pseudopotential method with the fully relativistic
ultrasoft pseudopotentials [28] implemented in QUANTUM-
ESPRESSO [29]. The exchange and correlation effects are
treated within the generalized gradient approximation [30].
We use the plane-wave cutoff energy of 52 Ry, the charge
density cutoff energy of 520 Ry, and the k-point mesh
of 16 × 16 × 16 for the cubic �5g and �4g phases and
12 × 12 × 16 for the tetragonal M-1 phase in GaNMn3. Spin-
orbit coupling is included in all the calculations. The elec-
tronic structure is converged to 10−7 eV/cell. The lattice
parameters are obtained by fitting the calculated total energy
to the Murnaghan equation of state [31].

The AHC is calculated using the PAOFLOW code [32]
based on pseudoatomic orbitals [33,34]. Tight-binding Hamil-
tonians are constructed from the non-self-consistent DFT
calculations with a 16 × 16 × 16 k-point mesh for the �5g

and �4g phases and a 12 × 12 × 16 k-point mesh for the M-1
phase. Then, the AHC are calculated with a 48 × 48 × 48 k-
point mesh for the �5g and �4g phases and a 46 × 46 × 48 k-
point mesh for the M-1 phase using the adaptive broadening
method. We find satisfactory convergence of the calculated
AHC for a k mesh of denser than 40 × 40 × 40. Increasing the
grid size to 100 × 100 × 100 changed the AHC negligibly.

The symmetry determined geometries of the AHC tensor
are obtained using the FINDSYM code and the linear response
symmetry code [35]. The figures are created using VESTA
[36] and gnuplot [37].

IV. RESULTS

The calculated lattice parameters of GaNMn3 in different
magnetic phases are listed in Table II. For the �5g phase
of GaNMn3, we find a = 3.869 Å, which is close to the
experimental and previously calculated values [22,23,38–40]
and is identical to the calculated lattice parameter of �4g.
The calculated lattice parameter of the M-1 phase is smaller,
which is consistent with the emergence of the M-1 phase in
GaNMn3 under high pressure in experiment. We find that the
�5g phase is the ground state of GaNMn3, while the total
energies of the �4g and M-1 phases are higher by 0.49 and
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FIG. 3. (a)–(c) The calculated band structure (a), Berry curvature
�xy along the high-symmetry path (b), and the color map of �xy

in the (1̄10) plane (c) for the �5g phase of GaNMn3. (d)–(f) The
calculated band structure (d), �xy along the high-symmetry path (e),
and the color map of �xy in the (1̄10) plane (f) for the �4g phase of
GaNMn3. The inset of (b) shows the Brillouin zone. The solid lines
and the dashed line in (c) and (f) denote the Fermi surfaces and the
mirror plane M1̄10.

164.35 meV/f.u., respectively. This result is consistent with
the experimental observations showing the appearance of the
�5g phase in GaNMn3 at low temperature [21,22,24].

The calculated local magnetic moment in the �5g and �4g

phases is about 2.16 μB/Mn atom, which is in a qualitative
agreement with the experimental and previously calculated
values [22,23,38,39]. As expected, the noncollinear AFM
configuration leads to a zero net magnetic moment. For the
ferrimagnetic M-1 phase, we obtain 2.00 μB per Mn atom in
the (001) plane and 1.47 μB per Mn atom in the (002) plane,
resulting in the net magnetic moment of 1.80 μB/f.u pointing
along the z direction.

Since �5g and �4g have similar magnetic structures, we
first investigate the AHE in these two phases of GaNMn3.
Figure 3(a) shows the band structure of the �5g phase. Five
bands cross the Fermi energy (EF ). These dispersive bands
are largely composed of the Mn-3d orbitals. It is seen that in
some directions the bands are very close to each other. For
example, along the �-Z and R-� directions, there are nearly
degenerate bands.

Figure 3(b) shows the calculated Berry curvature �xy. It is
seen that there are peaks along the R-� direction, which ap-
pear, according to Eq. (2), due to the small band separation be-
tween the three bands crossing EF along this direction close to
the � point [see Fig. 3(a)]. Along the �-Z direction, the Berry
curvature �xy is zero within the computation accuracy. This
is due to the mirror symmetry M1̄10 which holds along this

high-symmetry direction, resulting in M1̄10�xy(0, 0, kz ) =
−�xy(0, 0, kz ), and hence �xy(0, 0, kz ) = 0.

In order to demonstrate the odd nature of the Berry curva-
ture under the mirror symmetry M1̄10, we plot in Fig. 3(c) the
color map of �xy around the � point in the (110) plane, which
is perpendicular to the (1̄10) plane. It is seen that hot spots
(i.e., regions where the absolute values of the Berry curvature
are large) appear around the k points where the Fermi surfaces
of different bands [indicated by solid lines in Fig. 3(c)] cross.
As is evident from Fig. 3(c), �xy changes sign with respect
to the mirror-symmetry transformation M1̄10 [reflection with
respect to the dashed line in Fig. 3(c)]. Clearly, integration
of the �xy over the whole Brillouin zone using Eq. (1) leads
to zero AHC (within the computational accuracy) for the �5g

phase. As seen from Fig. 5(a), this property is independent of
energy (Fermi energy).

Figure 3(d) shows the band structure of GaNMn3 in the
�4g phase. The �4g phase can be obtained from the �5g phase
by rotation of all magnetic moments around the [111] axis
by 90°; in the absence of SOC the band structures of the
two phases should be identical. Thus, the subtle differences
in the band structures in Figs. 3(a) and 3(d) are due to SOC.
These differences are seen, particularly, along the �-Z and
�-R directions, where there is a slight increase in the band
splitting around the Fermi energy.

Figure 3(e) shows the calculated Berry curvature of
GaNMn3 in the �4g phase and reveals pronounced peaks
in �xy along the �-Z and �-R directions. According to the
T M1̄10 symmetry, �xy is an even function of the wave vector
�k, i.e., T M1̄10�xy(ky, kx, kz ) = �xy(−kx,−ky,−kz ). This is
reflected in the calculated color map of �xy around the �

point in the (110) plane, which is shown in Fig. 3(f). It is
seen that the hot spots of �xy appear nearly at the same
locations as for the �5g phase [Fig. 3(c)]. However, in the �4g

phase, they are distributed symmetrically and have the same
sign, proving that �xy is an even function with respect the
T M1̄10 symmetry transformation. The AHC is calculated by
integration of �xy according to Eq. (2). Figure 5(a) shows
that σxy is finite as a function of energy and at the Fermi
energy σxy = −40 �−1 cm−1. Clearly, the difference in the
AHC between the �5g and �4g phases is due to the different
magnetic space-group symmetry of these phases.

Figure 4(a) shows the calculated band structure of
GaNMn3 in the M-1 phase along high-symmetry directions
in the Brillouin zone. The band structure is more intricate
compared to those for the �5g and �4g phases, because of a
larger unit cell and more complex magnetic configuration. The
presence on the net magnetic moment breaks time-reversal
symmetry, which makes the AHC nonzero. Figure 5(b) shows
the calculated Berry curvature �xy along the high-symmetry
directions. It is seen that there are number of pronounced
broad peaks which are associated with the multiple low dis-
persive bands around the Fermi energy, which are coupled
by the spin-orbit interaction. Figure 5(b) shows the calculated
AHC as a function of energy in the M-1 phase. At the Fermi
energy, σxy = 377 �−1 cm−1, which is much larger than the
AHC in the �4g phase, due to the presence of the net magnetic
moment in the M-1 phase. It is notable that σxy can be strongly
enhanced in the M-1 phase by hole doping. For example, at
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FIG. 4. Calculated band structure (a) and Berry curvature �xy

(b) of GaNMn3 in the M-1 phase along high-symmetry paths in the
Brillouin zone. The inset of (b) shows the Brillouin zone.

E = EF − 0.1 eV, the calculated value of σxy is as large as
816 �−1 cm−1 which is larger than the AHC in Fe (σxy ∼
700 �−1 cm−1 [41]).

Similar properties are expected for other antiperovskite
compounds, which may exhibit the noncollinear magnetic
�4g or �5g phases. For comparison, we have calculated the
AHC of antiperovskites NiNMn3 and SnNMn3, in which the
�4g phase exists at room temperature [16]. Consistent with
the experiment, our calculations find that the �4g phase is
the ground state for these compounds. The calculated energy
difference 
E = E5g − E4g is 0.19 meV/f.u. for NiNMn3 and
0.16 meV/f.u. for SnNMn3. Large AHC over 100 �−1cm−1

is predicted for the �4g phase of NiNMn3 and SnNMn3, as
indicated in Table II. The AHE in the �4g phase of NiNMn3

has been recently observed experimentally, which confirms
our results [42]. Contrary to GaNMn3, we find that the
M-1 magnetic configuration is unstable in the NiNMn3 and
SnNMn3 antiperovskites.

FIG. 5. (a), (b) Calculated AHC σxy as a function of energy for
the �5g and �4g (a) and M-1 (b) phases of GaNMn3.

V. DISCUSSION

Our results demonstrate that in the family of antiperovskite
compounds, as represented by ANMn3, the AHC is strongly
dependent on the specific magnetic configuration. A signif-
icant change in the AHC can be produced by transitions
between different magnetic phases. Such transitions can be
driven by an external stimulus, provided that the energies of
the different noncollinear magnetic phases are engineered to
be nearly degenerate.

In experiment, the �5g phase is found in the ANMn3

compounds with A = Zn, Ga; and the �4g phase is found
for A = Ni, Ag, Sn [16]. The M-1 phase can be produced
by nonstoichiometry and pressure [23]. These facts imply the
sensitivity of the noncollinear magnetic phases to the chemi-
cal composition and lattice volume. Recently, monocrystalline
ANMn3 films have been successfully grown on different
substrates, such as SrTiO3, BaTiO3, and LSAT [43,44]. This
opens a possibility to engineer antiperovskite compounds with
nearly degenerate energies of the different magnetic phases
by proper doping and suitable epitaxial strain produced by
the substrate. In particular, the dynamic strain generated by
a piezoelectric substrate, such as PMN-PT, can be used to
realize the reversible switching between different magnetic
phases.

Furthermore, since the AHC is odd under time-reversal
symmetry, the antiferromagnetic �4g phase with a reversed
Néel vector [corresponding to 180◦ rotation of all magnetic
moments in the (111) plane] is expected to have AHC of
opposite sign. The Néel vector can be switched using a spin
transfer torque induced by a spin-polarized current [26], and
its switching can be detected by the sign change of AHC.
This functionality can be engineered by stoichiometry design
of the antiperovskite compounds to tune the energy barrier
between the two �4g states of the opposite Néel vector (
E =
E5g − E4g) to a lower positive value. These possibilities make
the ANMn3 family of materials a promising platform for the
AHE based applications of spintronic devices.

VI. SUMMARY

In this paper, we have studied the intrinsic AHC in different
noncollinear magnetic phases of GaNMn3, as a representative
of a broader materials family of antiperovskite compounds
ANMn3 (A is a main group element). Based on the symmetry
analysis and first-principles DFT calculations, we showed that
the nearly degenerate noncollinear AFM �5g and �4g phases
of GaNMn3 have zero and finite AHC, respectively. This dif-
ference was explained by the different magnetic space-group
symmetry of these phases. We also predicted that GaNMn3, in
the noncollinear ferrimagnetic M-1 phase, exhibits large AHC

TABLE III. AHC matrix tensors for �5g and �4g magnetic phases
with x̂||[1̄10], ŷ||[1̄1̄2], and ẑ||[111].

Magnetic phase �5g �4g

AHC tensor

⎡
⎣0 0 0

0 0 0
0 0 0

⎤
⎦

⎡
⎣ 0 σ ′

xy 0
−σ ′

xy 0 0
0 0 0

⎤
⎦
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TABLE IV. Symmetry transformations of wave vector k and Berry curvature �.

Transformation of k Transformation of �

M[1̄10] M[1̄10](ky, kx, kz ) = (kx, ky, kz )
M[1̄10]�xy(ky, kx, kz ) = −�xy(kx, ky, kz )
M[1̄10]�zx (ky, kx, kz ) = −�yz(kx, ky, kz )
M[1̄10]�yz(ky, kx, kz ) = −�zx (kx, ky, kz )

M[01̄1] M[01̄1](kx, kz, ky ) = (kx, ky, kz )
M[01̄1]�xy(kx, kz, ky ) = −�zx (kx, ky, kz )
M[01̄1]�yz(kx, kz, ky ) = −�yz(kx, ky, kz )
M[01̄1]�zx (kx, kz, ky ) = −�xy(kx, ky, kz )

M[101̄] M[101̄](kz, ky, kx ) = (kx, ky, kz )
M[101̄]�xy(kz, ky, kx ) = −�yz(kx, ky, kz )
M[101̄]�yz(kz, ky, kx ) = −�xy(kx, ky, kz )
M[101̄]�zx (kz, ky, kx ) = −�zx (kx, ky, kz )

TM 1̄10 T M1̄10(ky, kx, kz ) = (−kx, −ky, −kz )
T M[1̄10]�xy(ky, kx, kz ) = �xy(−kx, −ky,−kz )
T M[1̄10]�yz(ky, kx, kz ) = �zx (−kx, −ky,−kz )
T M[1̄10]�zx (ky, kx, kz ) = �yz(−kx, −ky,−kz )

TM[01̄1] T M[01̄1](kx, kz, ky ) = (−kx, −ky, −kz )
T M[01̄1]�xy(kx, kz, ky ) = �zx (−kx, −ky, −kz )
T M[01̄1]�yz(kx, kz, ky ) = �yz(−kx, −ky, −kz )
T M[01̄1]�zx (kx, kz, ky ) = �xy(−kx, −ky, −kz )

TM[101̄] T M[101̄](kz, ky, kx ) = (−kx, −ky, −kz )
T M[101̄]�xy(kz, ky, kx ) = �yz(−kx, −ky, −kz )
T M[101̄]�yz(kz, ky, kx ) = �xy(−kx, −ky, −kz )
T M[101̄]�zx (kz, ky, kx ) = �zx (−kx, −ky, −kz )

which is comparable to the AHC in elemental ferromagnets,
such as iron, and calculated the AHC of antiperovskites
SnNMn3 and NiNMn3 exhibiting the �4g ground state. We
argued that by doping and strain it is possible to engineer
the ANMn3 compounds where the energy difference between
these magnetic phases could be small, so that an external
stimulus, such as the dynamic strain or the spin transfer
torque, could produce switchable magnetic phase transitions.
Our paper demonstrates that the antiperovskite family of non-
collinear magnetic materials is a good platform to realize the
multiple AHE states in a single compound, which is promising
for novel spintronic applications.

Note added. After the submission of our paper, we became
aware of two relevant works on the anomalous Hall effect in
ANMn3 compounds [42,45].
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APPENDIX A: GEOMETRY DEPENDENCE OF AHC

The AHC tensor depends on geometry used in transport
measurements. Table I (Sec. II) above shows the AHC tensor
for GaNMn3 (001) growth orientation corresponding to the
standard Cartesian coordinates with x along [100], y along
[010], and z along [001] directions. For the GaNMn3 (111)
sample, the AHC can be measured for a charge current parallel
to the Ga-Mn Kagome lattice. Here we show the AHC tensor
for a GaNMn3 (111) sample, with x pointing along [1̄10], y
along [1̄1̄2], and z along [111] directions. The respective AHC
tensor σ[111] can be obtained from

σ[111] = R σ[001] R−1, (A1)

where σ[001] is the AHC tensor for GaNMn3 (001) and R
represents the respective rotation matrix. The resulting AHC
tensors for �4g and �5g phases are shown in Table III, where
σ ′

xy = −68 �−1 cm−1.

APPENDIX B: M AND TM SYMMETRY OPERATIONS
ON THE BERRY CURVATURE

Table IV shows details of different symmetry transforma-
tions.
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