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Coherent diffraction imaging of a progressively deformed nanocrystal
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Imaging ordered materials with coherent x rays holds great potential to improve our understanding of
phenomena in complex materials systems where emergent behavior can arise due to coupling of spin, lattice,
and orbital degrees of freedom. Coherent diffractive imaging (CDI) is a lensless imaging technique for probing
the structure of materials in three dimensions. Central to the success of the CDI method is the inversion of
propagated wave field information to recover a quantitative image of the illuminated crystalline structure. Present
challenges faced with existing approaches to image recovery are often due to nonuniqueness of wave propagated
forms of the electron density information that can cause prohibitive stagnation of the reconstruction algorithm.
Here we report on a major advancement in image recovery that is able to recover the three-dimensional image of
a 492 nm gold single crystal undergoing progressive deformation to a highly strained condition without the use
of a priori information. Our findings also demonstrate the significance of robust image recovery techniques for
revealing high resolution topological structure.
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I. INTRODUCTION

Coherent diffractive imaging (CDI) is a form of lensless
microscopy that can permit high resolution imaging where
the use of conventional optics is not feasible [1–5]. The
Bragg coherent x-ray diffractive imaging (BCXDI) variant
of CDI utilizes the periodicity in crystalline materials to
image nanoscale structure with a typical sensitivity below a
single angstrom in both two and three dimensions [6,7]. The
largely nondestructive penetration of electromagnetic waves
enables BCXDI to probe nanoscale materials and provide
strain information at the surface and throughout the bulk.
When combined with ultrafast pulses of coherent x rays as
provided by an x-ray free electron laser (XFEL), BCXDI is an
enabling tool for the study of time-varying dynamic structural
phenomena in nanoscale materials [8,9]. BCXDI therefore
holds great promise for understanding complex systems where
the interplay between spin, lattice, and orbital degrees of
freedom give rise to emergent behavior and multifunctional
properties. The ability that BCXDI holds for directly imaging
materials and quantitative mapping of defects and strain in
three dimensions at the surface and in the bulk, can greatly
increase our understanding of how new phases emerge and
influence material properties [7,10–12].

BCXDI is performed experimentally by illuminating a
sufficiently sized nanoscale crystal with a spatially coherent x-
ray wave field such that the Bragg reflected wave is collected
in the far-field Fraunhofer limit. If the coherence lengths
exceed the dimensions of the nanocrystal, a two-dimensional
projection of the resulting diffraction pattern is recorded. If the
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nanocrystal object is greater in size than the illuminating field,
utilizing the extents of the wave field and a series of spatially
overlapping recordings is often sufficient to provide adequate
sampling [13–15]. The third dimension is obtained by col-
lating successive recordings of two-dimensional projections
that result from either conformal rotations of the nanocrystal
that rotate the Ewald sphere through the diffraction pattern, or
continuous tuning of the x-ray energy to expand the Ewald
sphere through the diffraction pattern [6,16–20]. Prior re-
finements to the experimental geometry ensure that the ac-
quired three-dimensional image is oversampled relative to the
Shannon-Nyquist sampling frequency (i.e., twice the highest
spatial frequency of the visible diffraction pattern fringes). An
image of the electron density map of the nanocrystal object is
recovered by inversion of the acquired scattering intensity of
the wave field. With sufficient oversampling and appropriate
constraints, iterative computational methods are able to recon-
struct lost phase information from intensity measurements to
recover the real-space image [21–23].

Essential to the utility of BCXDI is the inversion of
the diffracted wave field from an isolated crystalline object.
BCXDI measurements are however routinely performed on
crystalline materials that are deformed from their ideal struc-
ture due to the presence of strain that can result from phenom-
ena including dislocations, surface effects, phase transitions,
density waves, and chemical reactions. The presence of strain
that results in a significant distortion away from a regular
arrangement of atoms throughout the material can prohibit
recovery of the real-space image as existing methods for
inversion fall short without further a priori knowledge of the
materials condition. As a result, recent efforts have focused
on providing a route to robust reconstruction to circumvent
stagnation in existing iterative methods [24,25].
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Here we demonstrate robust inversion in the absence
of a priori information where existing methods fail to re-
cover three-dimensional images of a nanoscale crystal sub-
ject to controlled and progressively applied deformation. The
method presented herein is of general application to CDI
image recovery and was found to be particularly effective for
highly strained nanoscale crystals.

Coherent diffractive imaging experiments record the scat-
tering intensity field I (q) in the form of an interference pattern
that closely approximates the square modulus of the Fourier
transform of the object function ρ̂(q) (see the Appendix).
Inversion is routinely accomplished using a discrete Fourier
transform such as the fast Fourier transform (FFT) to recover
the electron density map of the object ρ(r) = |ρ(r)|eiφ(r). It
was previously shown that Fourier amplitude inversion in one
dimension is susceptible to nonuniqueness while in higher
dimensions, it is pathologically rare [14,26]. If the object
contains phase information beyond the range of |φ(r)| � π

2 ,
it is found empirically that such objects pose a greater chal-
lenge for phase retrieval and often contain spatially periodic
amplitude gaps in the recovered electron density. This is
understood as resulting from the equivalence in the Fourier
transform modulus of all wave field propagation distances
between the real object and the detector plane where in
general the propagated wave will acquire fringes with in-
creasing phase information [23]. If the object contains phase
information that occupies a range beyond π , there is an
increased possibility that the object will resemble a propa-
gated version of itself (that is spatially truncated) [26,27].
Standard projection algorithms might therefore stagnate on
the propagated wave field of the object where a greater
number of similar solutions are likely to exist. In such cases,
attempts to restrict the phase during inversion is unlikely to
eliminate propagated wave fields from the recovered object.
It is for this reason that a general route to image recov-
ery of objects with phase spanning a range beyond π is
needed.

II. EXPERIMENTAL METHODS

A. Reweighted two-dimensional phase retrieval

Reweighted two-dimensional (2D) phase retrieval provides
a more robust approach that is less prone to stagnation at a
propagated wave field of the object than standard gradient
search methods as it does not seek a single minimum and
explores the solution space to a broader extent. Its formulation
is contrasted with that of the standard hybrid input-output
(HIO) algorithm [23,28,29]. Reciprocal-space ε2

M and real-
space ε2

S error metrics are employed as with the HIO method
that enforce (1) a reciprocal-space modulus constraint P̂M op-
erating on the object amplitude such that |ρ̂(q)| = √

I (q) and
(2) a real-space support constraint operator PS which sets to
zero a proportion of voxels that are outside of a given volume
where the object is assumed to exist. The support constraint
spatially restricts a proportion of equivalent solutions that are
propagated away from the object and consist of a spatially
broader amplitude distribution. The reciprocal-space modulus
constraint was modified to include a weighting factor W (r)
that penalizes voxels that vary significantly between iteration

(see the Appendix):

ε2
M (ρ) = ‖W (n)(r) [PMρ(r)(n) − ρ(r)(n)]‖2

2,

W (n)(r) = (|ρ(r)(n−1)| + ε0)−1, (1)

where ε0 � |ρ(r)(n−1)| is a positive constant relaxation pa-
rameter, PM = F P̂MF−1 where F is the Fourier transform,
and n is the current iteration.

The rationale here is to eliminate solutions that can be
attributed to propagated wave fields of the true object with
inherent spatial variations in amplitude that are strongly de-
pendent on propagation distance. At the object plane, these
variations are minimal. Application of a weighting factor
to the reciprocal-space modulus constraint was found to
greatly improve stability in the reconstruction process. To
define the iteration step �ρ (n), rather than moving by a fixed
one-dimensional proportion in the steepest-descent (steepest-
ascent) direction for points within (outside) the support region
respectively, each direction is ascribed one of two coupled
multiplication factors τ (n) = (αβ) that are optimized to orthog-
onalize successive steps (see the Appendix):

�ρ (n) = − 1
2αPS∇ρL(ρ (n) ) + 1

2βPS∇ρL(ρ (n) ), (2)

where L(ρ) = ε2
M(ρ) − ε2

S(ρ) is the error metric difference.
Optimization of τ (n) proceeds iteratively to establish orthogo-
nality between ρ (n+1) and ρ (n) + �ρ (n). If however α = 1 and
β = const., Eq. (2) reduces to the standard HIO algorithm.

The reweighted 2D phase retrieval algorithm begins with a
calculation of the initial step length �ρ (0) according to Eq. (2)
where α = 1 and β = 0.9. The gradient of the error metric
difference ∇ρL(ρ (0) ) in Eq. (2) is initially calculated assuming
τ = 0. The initial step is used to calculate the next iteration
with ρ (1) = ρ (0) + �ρ (0). For subsequent iterations n, τ (n) =
τ (n−1) + �τ (n−1) where �τ = −H−1∇τ ψ (τ) [Eq. (S10)],
H is the Hessian matrix of ψ (τ) and ψ (τ) = L(ρ + �ρ)
[Eq. (S5)]. The Hessian matrix H is then updated according
to the symmetric rank 1 (SR1) quasi-Newton method [see
Eq. (A11)]. We then define the following metric:

ετ = ‖∇τ ψ (τ)‖2
2, (3)

as a measure of orthogonality between ρ (n) and ρ (n) + �ρ (n)

[see Eq. (A7)]. If ετ is above a prescribed threshold, τ (n) is
used to recompute �τ (n−1) according to Eq. (S10). The pro-
cess of updating the Hessian matrix and recomputing �τ (n−1)

is repeated until ετ falls below the prescribed threshold at
which point �τ (n−1) is kept and used with τ (n−1) to compute
�ρ (n) and in turn ρ (n+1).

B. Sample preparation

Au nanocrystals were synthesised via thermal dewetting
of a thin Au film. Clean flexible silicon substrates 30 μm in
thickness were annealed in O2 at 900◦C for 13 h to grow an
oxide layer of 100 nm. 10 nm of Au was then deposited us-
ing sputter deposition at room temperature and subsequently
annealed at 800 ◦C for 12 h during which dewetting of the Au
film resulted in the growth and formation of Au nanocrystals
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FIG. 1. Bragg coherent x-ray diffraction imaging experiment. (a) Experimental geometry showing mechanical deformation stage. Inset
shows a schematic of the bending process and an SEM image of Au nanocrystals on a silicon surface (1 μm scale bar). (b) Line scans of each
diffraction pattern showing characteristic asymmetry in the fringe visibility which is attributed to the presence of strain in the nanocrystal.

with well faceted crystalline morphology. Au nanocrystals
with dimensions ranging from 100 nm up to 1 μm were
observed using scanning electron microscopy.

C. BCXDI experimental procedure

To demonstrate the efficacy of the reweighted 2D phase
retrieval method for the recovery of phase information from
a deformed crystalline object, a BCXDI experiment was
carried out at beamline I13-1 of the Diamond Light Source
synchrotron facility [30]. Au nanocrystals a few hundred
nanometers in size were synthesized on a clean flexible silicon
substrate 30 μm thick. The sample was subsequently mounted
on a deflection stage that permitted incremental flexing of the
substrate by measured amounts while maintaining a fixed axis
along the center line (see Fig. 1). The substrate was deflected
by an initial amount of 10 μm (equivalent to a strain within
the substrate of 3.75 × 10−7) to ensure stable mounting during
subsequent measurements.

The x-ray beam was monochromated with a paired quartz
crystal monochromator and focused with a Fresnel zone plate.
An order sorting aperture was used to discard higher orders of
the zone plate. Diffraction data were recorded at a distance of
2.5 m using a Medipix silicon x-ray photon counting detector
with a pixel size of 55 μm2. The {111} Bragg reflection of a
single Au nanocrystal, positioned at the fixed central axis, was
then illuminated with 9.0 keV x rays and a speckle pattern
recorded. The third dimension of the diffraction pattern was
obtained by the rocking curve method with an increment of
0.005 deg to satisfy oversampling requirements. Each frame
was exposed for 60 s.

Incremental deformation of the silicon substrate and hence
the Au nanocrystal by a series fixed amounts was subse-
quently enacted while three-dimensional diffraction data were
recorded at each interval. Each tensile strain increment is
listed in Table I and ranges from 3.750 × 10−7 to 6.000 ×
10−7. Figure 1(b) shows a series of line scans of each
recorded speckle pattern showing characteristic asymmetry in
the fringe visibility that is attributed to the presence of strain
(see also Fig. S1).

III. RESULTS AND DISCUSSIONS

Phase reconstruction was performed by using both the
hybrid input-output (HIO) algorithm and the reweighted 2D
phase retrieval method for comparison. Inclusion of other
algorithms such as error reduction either preceding or after
HIO was found to have no appreciable impact on the outcome.
Ten reconstructions were performed for each increment of
the mechanical deformation of the Au nanocrystal. Each
reconstruction commenced with random phase information
with uniform amplitude and was allowed to continue for
10,000 iterations. For the HIO algorithm β = 0.9. For each
reconstruction, the support was updated every 50 iterations
using the shrink-wrap method. For the reweighted 2D phase
retrieval method, τ was updated with up to 20 iterations of
the symmetric rank 1 (SR1) quasi-Newton method for each
iteration of the algorithm. As reconstruction was performed
in the reciprocal-space coordinate system, the final result was
geometrically corrected to yield the object in the direct-space
rectilinear coordinate system.

The inset of Fig. 1(a) shows a scanning electron micro-
graph of the as synthesized Au nanocrystals which appear
with faceted morphology due to the equilibrium structure
acquired during the thermal annealing process. Figure 2 shows
the reconstructed amplitude of the single Au nanocrystal at an
isosurface of 75% for the least deformed [Figs. 2(a) and 2(b)]
and the most deformed [Figs. 2(c) and 2(d)] experimental
configurations. Figures 2(a) and 2(c) show the amplitude re-
constructed with the standard HIO algorithm while Figs. 2(b)
and 2(d) are reconstructed with the reweighted 2D phase

TABLE I. Deformation increments of flexible substrate.

Increment Strain (×10−7) Increment Strain (×10−7)

1 3.750 5 5.250
2 4.125 6 5.625
3 4.500 7 6.000
4 4.875
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FIG. 2. Amplitude reconstruction of Au nanocrystal. (a) and (b) Reconstructed amplitude at a 75% isosurface of the Au nancorystal for
the least deformed condition using (a) the HIO algorithm and (b) the Reweighted 2D algorithm. (c) and (d) Reconstructed amplitude at a 75%
isosurface of the Au nancorystal for the final and most deformed condition using (c) the HIO algorithm and (d) the Reweighted 2D algorithm.
It is clearly seen that reconstruction with the HIO algorithm is incomplete and exhibits characteristic drops in amplitude. In contrast, the
reweighted 2D algorithm is able to recover the correct amplitude. (i) and (ii) show alternative projections.

retrieval algorithm. For the least deformed case, the phase
is predominantly within the range of π , as can be seen in
Fig. 4(h). In this case, both algorithms have performed well
and were able to reconstruct the complete morphology to
sufficiency. In all reconstruction attempts, the reweighted 2D
phase retrieval algorithm recovered the object without missing
density due to wave field propagation. This is distinguished
from a thin section of missing density that features in the
crystal that is likely due to damage or twinning in the local
vicinity (see the supplementary video [31]). The success rate
of the HIO algorithm was significantly lower at 20%. Crys-
tallographic {111} facets are clearly visible and the size of
the nanocrystal is consistent with a nominal length of 492 nm
in each instance. The spatial resolution of each reconstruction
was 15 nm.

For the most deformed case, the phase range is beyond π

as is seen in Fig. 4(n) (discussed below). In this case, the HIO
algorithm fails to completely reconstruct the amplitude and
exhibits characteristic periodic drops in amplitude (discussed
above) that are known to occur when the total phase range is
beyond π . Similar effects are observed for intermediate defor-
mation conditions. The reweighted 2D reconstruction method
however is able to reconstruct the complete amplitude of
the object while maintaining morphological features found in
the reconstructed amplitude for the least deformed condition.
In addition, the reweighted 2D reconstruction method was
found to yield narrow amplitude distributions when contrasted
with the HIO algorithm as shown in Fig. S2 (Supplemental
Material) suggesting that the solution obtained is closer to the
unpropagated object [31].

FIG. 3. Reconstructed phase information with increasing deformation. (a(i))–(g(i)) Reconstructed amplitude at a 75% isosurface with phase
information mapped onto the surface of the Au nancorystal. (a(ii))—(g(ii)) Slice through the Au nanocrystal normal to the x-axis direction
showing phase information. (a(iii))—(g(iii)) Slice through the Au nanocrystal normal to the z-axis direction showing phase information.
Deformation of the nanocrystal increases from (a) to (g). Increased tensile strain accompanied by phase ripples are observed with increased
deformation of the nanocrystal.
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

(k)

(l)

(m)

(n)

FIG. 4. Normalized histogram of phase information. (a)–(g) Phase distribution for the Au nanocrystal reconstructed with ten attempts
of the HIO algorithm. Deformation is increasing from (a) to (g). Error bars indicate the standard deviation which is indicative of lack of
reproducibility in the phase information. (h)–(n) Phase distribution for the Au nanocrystal reconstructed with ten attempts of the reweighted
2D phase retrieval algorithm. Deformation is increasing from (h) to (n). Phase information is largely positive in value indicating the presence
of tensile strain. Error bars are appreciably narrow indicating good reproducibility in the phase information. The distribution broadens with
increasing deformation but remains centered on a positive phase value implying that there is a general increase in positive phase or tensile
strain.

Figure 3 shows the reconstructed amplitude of the single
Au nanocrystal at an isosurface of 75% for all increments
of mechanical deformation, increasing from Fig. 3(a) to
Fig. 3(g) for the reweighted 2D phase retrieval algorithm.
In (i), the phase information is mapped onto the surface
of the nanocrystal and clearly shows predominantly positive
phase information which is indicative of tensile strain given
that phase information φ is related to the atomic displace-
ment from the ideal position u by φ = Q · u [7,32]. In (ii),
the Au nanocrystal is sliced into two halves normal to the
x-axis direction to reveal phase information along the plane.
In (iii), slicing occurs normal to the z-axis direction. Phase
information is seen that is increasingly dominated by tensile
strain as the mechanical deformation increases. In addition,
ripples in the phase information begin to emerge with a period
of 65 nm along the length of the nanocrystal (y axis), which is
aligned with the Q vector. This is clearly visible in Fig. 5.

A trend toward more tensile strain with increasing de-
formation is readily observed in Fig. 4 where normalized
histograms of the mean phase information are plotted for
both the HIO [Figs. 4(a)–4(g)] and reweighted 2D phase
retrieval algorithms [Figs. 4(h)–4(n). Deformation increases
from Figs. 4(a)–4(g) and Figs. 4(h)–4(n). For the HIO al-
gorithm, phase information histograms show no appreciable
trend with increasing deformation. Moreover, the standard
error is comparable to the occurrence rate which implies
that there is significant variation in phase between each re-
construction attempt. For the reweighted 2D phase retrieval
algorithm, phase information histograms show predominantly
positive phase with a narrow standard error. With increasing
deformation, the phase distribution remains largely centered
on 1.2 rad while broadening around this point indicates that
more regions within the nanocrystal are experiencing tensile
strain.
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(a)

(b)

FIG. 5. Phase line scans. (a) Phase line scan along the center line
in the y-axis (Q-vector) direction of the Au nanocrystal for the least
deformed condition. (b) Phase line scan along the center line in the
y-axis (Q-vector) direction of the Au nanocrystal for the final and
most deformed condition. A phase ripple with periodicity of ∼65 nm
is observed.

Figure 5 shows phase line scans along the center line in the
y-axis (Q-vector) direction for the least and most deformed
condition. The origin of phase ripples is consistent with the
formation of a regular distribution of dislocations oriented
along the y-axis direction (normal to the Burgers vector).
Individual dislocations were previously observed in BCXDI
experiments and necessarily feature a phase pattern with a
2π rotation [10,11]. Although such broad phase variations
are not observed, it is conceivable that the resolution of our
measurements prohibit visualization of single dislocations.
Other defects such as stacking faults due to shear banding
could also induce the observed phase patterns [33,34].

IV. CONCLUSION

In summary, the use of the reweighted 2D phase retrieval
algorithm to recover phase information in BCXDI experi-
ments where the phase is known to extend beyond a range
of π was demonstrated. The phase reconstruction method
demonstrated herein is generally applicable to CDI including
both materials science and biological studies. The adoption
of reweighted 2D phase retrieval for BCXDI experiments will
permit the study of a broad range of materials where phenom-
ena of interest are coupled to lattice distortions. In addition,
when conducting ultrafast stroboscopic BCXDI measure-
ments, as performed at an x-ray free electron laser (XFEL)
facility, our findings can enable investigation of dynamic time
varying phenomena such as structural phase transitions with
high resolution in three dimensions where large lattice distor-
tions are pervasive throughout the material structure and are
often prohibitively challenging to reconstruct. Such findings
will inform theoretical models and computational simulations

of the behavior of prototypical nanoscale materials during a
transition state and will serve as a platform for the develop-
ment of next generation materials and devices.
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APPENDIX: REWEIGHTED TWO-DIMENSIONAL PHASE
RETRIEVAL ALGORITHM

When coherent diffractive imaging (CDI) measurements
are performed phase information is lost and instead we obtain
only the reciprocal space scattering intensity distribution I (q)
in the form of an interference pattern. This is closely approx-
imated by the square of the modulus of the Fourier trans-
form of the object function ρ̂(q) such that: I (q) = |ρ̂(q)|2 =
|ρ̂(q)eiφ(q)|2. Provided the diffraction pattern is sufficiently
oversampled relative to the Nyquist frequency it is possible
to recovery the spatially dependent phase shift information
φ(r) and subsequently the electron density map of the object
ρ(r) = |ρ(r)|eiφ(r).

The complex real-space density ρ(r) is recovered using
iterative projections between real space and reciprocal space
while applying a constraint at each turn. The reciprocal-space
modulus constraint P̂M requires the objects amplitude to be
proportional in some way to the original measurement on
some set M such that P̂M|ρ̂(q)|eiφ(q) = |ρ̂0(q)| eiφ(q), for
all q in M. In addition to the reciprocal-space constraint,
defining a support region in real space where the object’s
density is unrestricted was found to aid in convergence of the
reconstruction process. The real-space support constraint PS

when applied to the density ρ(r) sets all points to zero which
are outside of some region S , i.e., r /∈ S , while the remaining
points are unchanged.

Two-dimensional iterative projection phase retrieval is
constructed by considering error metrics for the aforemen-
tioned modulus and support constraints after n iterations:

ε2
M(ρ) = ∥∥W (n)(r) T (n)

M (r)
∥∥2

2,

T (n)
M = PMρ(r)(n) − ρ(r)(n), (A1)

W (n)(r) = (|ρ(r)(n−1)| + ε0)−1,

ε2
S (ρ) = ∥∥T (n)

S (r)
∥∥2

2,
(A2)

T (n)
S = PSρ(r)(n) − ρ(r)(n),

where W (r) is a weighting factor that was found to greatly im-
prove stability in the reconstruction process, PM = F P̂MF−1

where F is the Fourier transform, and ε0 � |ρ(r)| is a relax-
ation parameter. The gradients of ε2

M and ε2
S are given by

∇ρ ε2
M = −2W (r) TM(r), (A3)

∇ρ ε2
S = −2 TS, (A4)
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from which is can be seen that iterative step lengths of
− 1

2∇ρ ε2
M and − 1

2∇ρ ε2
S will reduce the error metrics to zero. A

fixed point of the solution space is then sought by minimizing
(maximizing) the error within (outside) the support region
respectively between successive steps:

min
α

max
β

ψ (α, β ).

Using the error metric difference L(ρ) = ε2
M(ρ) − ε2

S(ρ)
yields

ψ (α, β ) = L(ρ(r) + α�ρS + β�ρS), (A5)

�ρS = − 1
2 PS∇ρ L(ρ),

(A6)
�ρS = 1

2 PS∇ρ L(ρ),

where PS = I − PS. Values for α and β are sought that bring
successive steps of Eq. (A5) to zero:

∂ψ

∂α
=

〈
−1

2
PS∇ρ L(ρ)|PS∇ρL(ρ(r) + α�ρS + β�ρS)

〉
= 0,

∂ψ

∂β
=

〈
1

2
PS∇ρ L(ρ)|PS∇ρL(ρ(r) + α�ρS + β�ρS)

〉
= 0.

(A7)

Equation (A7) can be utilised by rewriting α and β as a
vector such that

∇τ ψ (τ) = 〈�ρ |∇ρ L(ρ(r) + τ · �ρ)〉 = 0,

τ =
(

α

β

)
, �ρ =

(
�ρS

�ρS

)
, ∇ρ =

(
PS∇ρ

PS∇ρ

)
, (A8)

where |τ| � 2.5. Minimization of Eq. (A8) to locate station-
ary points for τ can proceed via a number of routes with

varying degrees of numerical accuracy and speed. An iterative
approach to determine τ utilizes the second-order gradient of
Eq. (A8) or equivalently the Hessian H of ψ :

H =
⎛
⎝ ∂2

∂α2
∂2

∂α∂β

∂2

∂β∂α
∂2

∂β2

⎞
⎠ ◦ ψ (τ), (A9)

which is required to be symmetric and indefinite (H0,0 � 0,
H1,1 � 0). The step length �τ used to compute the next
iteration of τ (n) is then given by

�τ = −H−1∇τ ψ (τ). (A10)

The Hessian matrix is updated iteratively using the sym-
metric rank 1 (SR1) quasi-Newton method, which is a gener-
alization of the secant root-finding method. It is given by

H−1 → H−1 + �H−1,

�H−1 = ‖�τ − H−1ν‖2
2

(�τ − H−1ν) · ν
, (A11)

ν = ∇τ ψ (τ + �τ) − ∇τ ψ (τ).

With an initial starting point of τ (0) = 0, by considering
Eq. (A10) and moving in the steepest descent-ascent direction
where �τ (0) = (1

1) yields an initial Hessian H(0) with elements
that equate to −∇τ ψ (0) and a unit step in τ. To avoid
potential overestimation of feedback in the ascent direction
due to nonsmoothness in the error metric difference L(ρ), it
is advantageous to relax feedback in the first iteration so that
τ (1) = �τ (0) = ( 1

β0
), where β0 ∈ [0, 1). This single relaxation

step is equivalent to a single step of the hybrid input-output
algorithm. Subsequent steps will iteratively optimize τ (n) to
ensure that successive step directions are orthogonal.
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