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The interaction between electronic and nuclear spins in the presence of external magnetic fields can be
described by a spin Hamiltonian, with parameters obtained from first principles, electronic structure calculations.
We describe an approach to compute these parameters, applicable to both molecules and solids, which is based
on density functional theory (DFT) and real-space, all-electron calculations using finite elements (FE). We report
results for hyperfine tensors, zero field splitting tensors (spin-spin component), and nuclear quadrupole tensors
of a series of molecules and of the nitrogen-vacancy center in diamond. We compare our results with calculations
using Gaussian orbitals and plane-wave basis sets, and we discuss their numerical accuracy. We show that
calculations based on FE can be systematically converged with respect to the basis set, thus allowing one to
establish reference values for the spin Hamiltonian parameters, at a given level of DFT.
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I. INTRODUCTION

Electron spins in molecules, nanostructures, and solids
are important resources in many areas including spintronics
[1] and quantum information science [2]. For instance, high-
spin magnetic molecules can be utilized as single-molecule
magnets and are promising platforms for next-generation data
storage devices [3]; in the solid state, spin-carrying deep cen-
ters in semiconductors can serve as quantum bits for quantum
information processing [4]. In order to understand the physical
properties of electron spins in molecules and solids, one needs
to describe the interaction of electron and nuclear spins, in the
presence of external electromagnetic fields. Such a description
may be achieved by using spin Hamiltonians, with parameters
derived from experiments or from calculations. For systems
with a single effective electron spin, the leading terms in the
spin Hamiltonian are [5–7]:

H = μBB · g · S +
∑

N

γN B · IN +
∑

N

S · AN · IN

+ S · D · S +
∑

N

IN · PN · IN , (1)

where μB is the Bohr magneton, S is the effective electron
spin, B is the external magnetic field, IN and γN are the
spin and gyromagnetic ratio of the N th nucleus, and g, A,
D, and P are rank-2 tensors that characterize the strength of
electron Zeeman interaction, hyperfine interaction, zero-field
splitting, and nuclear quadrupole interaction, respectively.
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Nuclear spin-spin interactions and the chemical shielding
effect in nuclear Zeeman interactions are neglected in Eq. (1).

The spin Hamiltonian parameters g, A, D, and P may
be obtained by electron paramagnetic resonance (EPR), nu-
clear quadrupole resonance (NQR), and related spectroscopic
techniques [8]. Theoretically their values can be determined
by first-principles electronic structure calculations, which
also provide important information complementary to experi-
ments. For example, in the case of spin defects in solids often
times the atomistic structure and charge state of the defect
are not straightforward to determine, experimentally. Com-
paring the computed spin Hamiltonian parameters for can-
didate structures and charge states with experimental results
is a useful means to identify the properties of the defect. In
addition, first-principles calculations can provide insights into
the structure-property relations of molecules and spin defects,
thus facilitating the rational design of molecules and materials
with desirable spin properties. Finally, by simulating spin sys-
tems under external perturbations such as mechanical strain
or applied electromagnetic fields, one can obtain valuable
information and guidance for the experimental manipulation
of electron spins [9,10].

Therefore, in order to devise predictive computational
strategies, the development of robust methods for the calcu-
lation of spin Hamiltonian parameters is an important task. In
spite of important progress in the fields of materials science
[11–18] and quantum chemistry [19–25], there is not yet a
general and well established computational protocol that can
reliably predict various spin Hamiltonian parameters with a
high accuracy for broad classes of systems. At present, the
method most often adopted for spin Hamiltonian parame-
ter calculations is density functional theory (DFT). While
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calculations using ab initio wave-function-based methods
have also appeared in the literature [26,27], they have so far
been limited to relatively small molecular systems due to their
high computational cost. To solve the Kohn-Sham equations
in DFT, single particle electronic wave functions are usu-
ally represented using basis sets, with Gaussian-type orbitals
(GTO) and plane waves (PW) being among the most popular
choices for molecular and extended systems, respectively. In
PW-based DFT calculations, pseudopotentials are employed
and the electronic wave functions near the nuclei are not
explicitly evaluated, and one generally needs to perform a
so-called projected augmented wave (PAW) reconstruction
[28] to extract all-electron wave functions for the calculation
of certain spin Hamiltonian parameters. Besides PW, there are
studies exploring other basis sets including numerical atomic
orbitals [29], linearized augmented plane-wave [30], linear
muffin-tin orbitals [31,32], and GTO [33] for the calculation
of A tensors and V tensors (electric field gradient tensor, see
Sec. II C) for solids.

In this work we present calculations of spin Hamiltonian
parameters carried out, for the first time, using a real-space
finite-element (FE) formulation of DFT [34,35]. The FE basis
is a piece-wise continuous polynomial basis [36] that allows
for systematic convergence of calculations with increasing
polynomial order and decreasing element size. An important
attribute of the FE basis is its spatial adaptivity that can
provide increased resolution in specific regions of interest
in real space, while using coarser descriptions elsewhere.
In the present context, the FE basis can be chosen to have
higher resolution in the core region to accurately describe
the highly oscillatory nature of the single particle wave func-
tions, and a coarser resolution far from the core where the
orbitals are smoother. Further, FE-based calculations can be
performed with either open or periodic boundary conditions,
and therefore molecular and extended systems can be treated
on an equal footing. There are several advantages in using
FE-based DFT calculations for computing spin Hamiltonian
parameters. The cusp of the wave functions near the nuclei
can be more efficiently represented than with GTO basis sets,
and this is an important requisite to compute quantities such
as the Fermi contact component of the A tensor. In addition,
FE-based calculations can be systematically converged with
respect to the basis set size in a more straightforward manner
than GTO-based calculations, and they do not mandate the
use of pseudopotentials and PAW reconstructions, as required
when using PWs.

The rest of the paper is organized as follows. In Sec. II we
present the formalism for computing the spin Hamiltonian pa-
rameters in Eq. (1), except those involving spin-orbit coupling
contributions. Specifically, we consider the isotropic (Fermi
contact) and the spin dipolar contribution to the hyperfine A
tensor, the spin-spin component of the zero-field splitting D
tensor, and the nuclear quadrupole P tensor. The calculation
of the g tensor and the spin-orbit contributions to the A and
D tensors will be subjects for future studies. In Sec. III we

discuss our results for both molecules and solids, and Sec. IV
concludes the paper.

II. REAL SPACE COMPUTATION OF SPIN
HAMILTONIAN PARAMETERS

The adaptivity of the FE basis to accurately and efficiently
describe the all-electron Kohn-Sham orbitals is determined by
the size of finite elements and the order of the polynomial
basis functions. The FE mesh can be chosen adaptively (h
refinement), so as to assign smaller elements to regions re-
quiring higher resolution (e.g., around the nuclei) and coarser
elements elsewhere. In addition, for a given mesh, the order
of the polynomial basis functions can be chosen (p refine-
ment) to provide a high order function approximation. While
both refinement approaches can be used to obtain systematic
convergence, h refinement is suitable for realizing spatial
adaptivity, and p refinement provides the flexibility to realize
higher accuracy over the complete simulation domain.

A. A tensor

The isotropic (Fermi contact) and the spin dipolar compo-
nent of the A tensor are given by:

Aiso = − 1

3S
μ0γeγN h̄2ns(rN ), (2)

Adip
ab = 1

2S

μ0

4π
γeγN h̄2

×
∫ |r − rN |2δab − 3(r − rN )a(r − rN )b

|r − rN |5 ns(r)dr, (3)

where a, b = x, y, z, S is the effective electron spin (S = 0
for a singlet, 1

2 for a doublet, etc.), ns is the electron spin
density, rN is the position of the nucleus, (r − rN )a is the
a-direction component of r − rN , and γe and γN are gyromag-
netic ratios for electron and nuclei, respectively. γN for various
nuclear isotopes can be obtained from standard databases,
e.g., Ref. [37].

As can be seen from Eq. (2), the isotropic (Fermi contact)
component of the A tensor exhibits a strong dependence
on the electron spin density at the nuclei. An all-electron
A-tensor calculation in real space requires very refined finite
elements near the nuclei to accurately compute the electron
spin density. The spatial adaptivity of the finite element
mesh (h refinement) is hence extremely useful here. On the
other hand, the dipolar component of the A tensor involves
an integration with 1

r5 and 1
r3 kernels. This requires high

accuracy in the electronic spin density within a certain region
surrounding the nuclei, which can be systematically improved
through the p refinement.

B. D tensor

The spin-spin component of the D tensor evaluated using
the Kohn-Sham wave functions is given by [16,38]

Dab = 1

2S(2S − 1)

μ0

4π
(γeh̄)2

⎡
⎣ occ.∑

i< j

χi j

∫∫
�∗

i j (r, r′)
r̃2δab − 3r̃ar̃b

r5
�i j (r, r′)drdr′

⎤
⎦ , (4)
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where the summation is over all pairs of occupied orbitals,
and �i j (r, r′) are 2 × 2 determinants formed from orbitals φi

and φ j , �i j (r, r′) = 1√
2
[φi(r)φ j (r′) − φi(r′)φ j (r)], χi j = ±1

for parallel and antiparallel spins, respectively, r̃ is a scalar
representing |r − r′|, r̃a represents the a-direction compo-
nent of the vector r − r′. The operator r̃2δab−3r̃a r̃b

r5 is the ab
element of the Hessian of the Green’s function of − 1

4π
∇2,

i.e., G(r, r′) = 1
|r−r′ | . Since the operator, ∂2G(r,r′ )

∂ra∂r′
b

, is invariant
under particle exchange, the real-space integrals in Eq. (4) can
be split into direct (Mi j,D

ab ) and exchange terms (Mi j,E
ab ) given

by

Mi j,D
ab =

∫∫
φi(r)φ j (r′)

∂2G(r, r′)
∂ra∂r′

b

φ∗
i (r)φ∗

j (r′)drdr′ , (5)

and

Mi j,E
ab =

∫∫
φi(r)φ j (r′)

∂2G(r, r′)
∂ra∂r′

b

φ∗
i (r′)φ∗

j (r)drdr′ . (6)

Equations (5) and (6) can be rewritten as

Mi j,D
ab =

∫∫
∂ (φi(r)φ∗

i (r))

∂ra
G(r, r′)

∂ (φ j (r′)φ∗
j (r′))

∂r′
b

drdr′ ,

(7)

and

Mi j,E
ab =

∫∫
∂ (φi(r)φ∗

j (r))

∂ra
G(r, r′)

∂ (φ∗
i (r′)φ j (r′))

∂r′
b

drdr′ .

(8)

While the equivalence of Eqs. (5) and (6) with Eqs. (7) and
(8) is trivial to see for molecular systems (using integration by
parts), showing the equivalence for periodic systems requires
a more complex manipulation (see Supplemental Material
[39]).

In order to evaluate the double integrals in Eqs. (7) and (8),
we note that the kernel of extended interactions is the Green’s
function of − 1

4π
∇2, and we take recourse to the solution of

the Poisson equation. Thus, we obtain

Mi j,D
ab =

∫
∂ (φi(r)φ∗

i (r))

∂ra
	

j j,D
b (r)dr (9)

and

Mi j,E
ab =

∫
∂ (φi(r)φ∗

j (r))

∂ra
	

i j,E
b (r)dr , (10)

where ∇2	
j j,D
b (r) = −4π

∂ (φ j (r)φ∗
j (r))

∂rb
and ∇2	

i j,E
b (r) =

−4π
∂ (φ∗

i (r)φ j (r))
∂rb

. Thus, finally, the D tensor can be expressed
as

Dab = 1

2S(2S − 1)

μ0

4π
(γeh̄)2

occ.∑
i< j

χi j
(
Mi j,D

ab − Mi j,E
ab

)
. (11)

The computationally expensive part of the D-tensor cal-
culation involves the solution of Poisson problems, which
are solved on the same FE mesh that represents the KS
wave functions. However, this computation is embarrassingly
parallel over the pairs of orbitals φi and φ j . We note that,
unlike the A tensor, the dipole-dipole integral entering the
D-tensor expression [Eq. (4)] does not explicitly depend on

the nuclear coordinates, and thus we expect the D tensor to
be less sensitive to the cusps in the spin density at the nuclei.
Therefore, a p refinement is ideal to systematically improve
the accuracy in the calculation of D.

C. Electric field gradient tensor

The nuclear quadrupole interaction P tensor is directly
related to the electric field gradient (EFG) V tensor. We
denote the nuclear quadrupole moment by Q and the quantum
number (a component) of the nuclear spin as I (Ia); the nuclear
quadrupole Hamiltonian is given by [5]

HQ = I · P · I

= eQ

6I (2I − 1)

∑
a,b

Vab

[
3

2
(IaIb + IbIa) − δabI (I + 1)

]
,

(12)

where the EFG V tensor is the second derivative of the
electrostatic potential at the nucleus:

Vab = [∇a∇bV (r)]|r=rN

=
⎧⎨
⎩∇a∇b

⎡
⎣−

∫
dr′ n(r′)

|r − r′| +
∑
I �=N

ZI

|r − rI |

⎤
⎦

⎫⎬
⎭
∣∣∣∣∣∣
r=rN

.

(13)

Here n is the electron density (defined as positive), and ZI and
rI are the charge and position of the Ith nucleus in the system,
respectively.

Calculation of the nuclear contribution to the V tensor
[second term in Eq. (13)] is trivial and only requires the
knowledge of the nuclear charges and the respective positions
of the nuclei. We note that the electronic contribution to the V
tensor is given by the Hessian of the electrostatic potential. To
this end, from a converged self-consistent DFT calculation,
we extract the Hartree potential and compute the Hessian at
the FE quadrature points. By construction, every nucleus is
on an FE node in the FE mesh. Thus, the value of the Hessian
at each nucleus is obtained via a projection of the quadrature
point values to nodal value. As the V tensor involves point-
wise second-order derivatives, a careful convergence study of
both h and p refinement is required.

III. RESULTS AND DISCUSSIONS

We carried out calculations of spin Hamiltonian parameters
for a series of molecules/radicals and the nitrogen-vacancy
(NV) center in diamond. For the calculation of the NV center,
the −1 charge state was considered, which is the most relevant
charge state for NV-based quantum information processing.
A 64-atom supercell of diamond and 
-point sampling of the
Brillouin zone were used. In the following discussion of A and
V tensors of the NV center, we focus on the nitrogen atom
and the three carbon atoms with dangling bonds (DB). All
calculations were performed with the PBE functional [40].
When treating charged systems we included a neutralizing
jellium background. All structures were optimized with plane-
wave DFT using the QUANTUM ESPRESSO code [41], and the
same structures were used for all-electron calculations.
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TABLE I. Isotropic hyperfine tensor [see Eq. (2)] (MHz) computed by DFT with finite-element (FE), Gaussian-type orbital (GTO), and
plane-wave (PW) basis sets. For PW calculations three different treatments of the core-relaxation effect are considered, which include Slater
exchange (Slater-X), exchange (X), and exchange+correlation (XC) in the perturbative potential for the calculation of spin densities at the
core region.

System Atom FE GTO(EPR-III) GTO(IGLO-III) PW(Slater-X) PW(X) PW(XC) Expt.

CN (S = 1
2 ) 13C 504.21 500.50 509.63 539.55 536.04 566.57 588 [50]

14N −12.81 −12.47 −12.25 −14.87 −15.15 −12.43 −13 [50]
BO (S = 1

2 ) 11B 1007.71 998.17 1002.34 983.68 980.02 1009.31 1027 [51]
17O −7.34 −7.18 −7.26 −7.83 −8.13 −7.24

AlO (S = 1
2 ) 27Al 590.80 646.95 564.18 560.09 626.93 766 [52]

17O 11.47 12.20 −15.22 −14.78 −22.99
NH (S = 1) 14N 11.27 10.20 9.77 24.24 22.00 33.60 20 [53]

1H −53.52 −53.13 −47.74 −51.60 −51.60 −51.60 −70 [53]
Diamond NV 14N −2.32 −2.60 −2.60 −2.56 2.23 [54], −2.51 [55], −2.53 [56]
(S = 1) DB 13C 98.72 100.27 99.05 108.51 146.7 [55]

All-electron FE calculations were performed with the DFT-
FE code [35] using adaptive real-space meshes. The tensor
elements were converged with respect to the FE basis through
h and p refinements, within 1–2 MHz for the A tensor, 5 ×
10−4 cm−1 for the D tensor and 0.05 a.u. for the V tensor of
molecules. Convergence of the spin Hamiltonian parameters
for the NV center with respect to the FE basis is presented
later in the discussion.

In order to verify our FE results, we also performed PW-
based calculations for all systems and GTO-based calculations
for molecules. PW calculations of the A and V tensors were
carried out with the GIPAW code using the GIPAW pseu-
dopotentials (PP) [42]. PW calculations of the D tensor were
conducted with two different PP: GIPAW and ONCV [43].
We followed the numerical method in Ref. [16] to evaluate
Eq. (4) in reciprocal space, using normalized pseudo wave
functions [9,10,44,45] (without PAW reconstructions) from
the QUANTUM ESPRESSO code. A kinetic energy cutoff of 200
Ry was used for PW calculations of molecules; for the NV
center we used 100 Ry for computational efficiency. GTO
calculations of A, D, and P tensors were carried out with the
ORCA code [46]. Two Gaussian basis sets were considered:
EPR-III [47] and IGLO-III [48], both of which are designed
for an accurate representation of core electrons. We also
tested a series of general-purpose basis sets from Dunning and

co-workers (cc-pVDZ, cc-pVTZ, cc-pVQZ, and cc-pV5Z)
[49], but we found that the values of A, D, and P tensors
converge poorly as a function of the basis set and the poor
convergence prevented any meaningful extrapolation to the
complete basis set limit. We present GTO results obtained
with cc-basis sets in the Supplemental Material [39].

Tables I and II show the isotropic (Fermi contact) and spin
dipolar component of the A tensor for several molecules (CN,
BO, AlO, NH) and the NV center. Due to the symmetry of
the systems considered here, the dipolar A tensor has only
one independent component (except for DB carbons in the
NV center). Denoting the principal values of the dipolar A
tensor as Adip

11 , Adip
22 , Adip

33 (|Adip
11 | = |Adip

22 | = 1
2 |Adip

33 |), we show

Adip
33 in Table II. In PW calculations we tested three different

treatments of core relaxation (Slater exchange only, exchange
only, and exchange correlation) implemented in the GIPAW

code [15]. Experimental values are also shown in the ta-
bles for reference. We note that all of the results presented
here, in addition to numerical errors which are quantified
and discussed in detail below, suffer from systematic errors
introduced by the use of a specific, approximate exchange-
correlation functional, the PBE functional. A previous study
has shown that more advanced functionals, such as certain
hybrid and meta-GGA functionals, may improve the agree-
ment with experiments, relative to GGA functionals, for the A

TABLE II. Spin dipolar hyperfine tensor [see Eq. (3)] (MHz) computed by DFT with finite-element (FE), Gaussian-type orbital (GTO),
and plane-wave (PW) basis sets. The eigenvalue with the largest absolute value is shown.

System Atom FE GTO(EPR-III) GTO(IGLO-III) PW Expt.

CN (S = 1
2 ) 13C 115.33 118.47 117.43 124.20 89.9 [50]

14N 44.51 42.62 42.40 45.25 30.8 [50]
BO (S = 1

2 ) 11B 53.71 53.38 53.76 55.37 54 [51]
17O −47.83 −46.47 −45.97 −51.55

AlO (S = 1
2 ) 27Al 114.23 111.67 112.51 106 [52]

17O −122.65 −116.42 −127.57
NH (S = 1) 14N −47.87 −45.82 −46.01 −49.59 −46 [53]

1H 58.08 58.50 59.92 58.02 60 [53]
Diamond NV (S = 1) 14N −0.07 −0.05 −0.13 [54], 0.37 [55], 0.33 [56]

DB 13C 54.87 58.34 52.9 [55]
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TABLE III. The spin-spin component of the zero-field splitting tensor [see Eq. (4)] (cm−1) computed by DFT with finite-element (FE),
Gaussian-type orbital (GTO), and plane-wave (PW) basis sets. Scalar parameters D = 3

2 D33 are reported. Scalar parameters E = 1
2 (D22 − D11),

if nonzero, are reported in brackets.

System FE GTO(EPR-III) GTO(IGLO-III) PW(GIPAW) PW(ONCV) Expt.

O2 (S = 1) 1.894 1.893 1.843 1.642 1.695 3.960 [57]a

CH2 (S = 1) 0.894 (0.051) 0.895 (0.052) 0.895 (0.052) 0.896 (0.052) 0.908 (0.049) 0.760 (0.068) [58]
NH (S = 1) 1.861 1.862 1.857 1.795 1.815 1.860 [59]
C5H+

5 (S = 1) 0.123 0.120 0.110 0.123 0.123 0.187 [60]
Diamond NV (S = 1) 0.100 0.101 0.100 0.096 [61]

aExperimental value for O2 is dominated by the spin-orbit component. The spin-spin component is estimated to be 1.57 cm−1 by ab initio
wave-function-based calculations [21].

tensor of small radicals and transition metal complexes [24].
However, there is yet no consensus on which functional is
the most accurate one, in general, for the calculation of the
A tensor or other spin Hamiltonian parameters.

We found that in general, GTO results obtained with
EPR-III and IGLO-III basis sets are similar, with a mean
absolute deviation (MAD) of 3.2 (0.6) MHz for Aiso (Adip)
for the systems considered here. FE and GTO results agree
well: The MAD between FE and GTO@EPR-III results is
2.5 (1.5) MHz for Aiso (Adip). However, for the Al atom
in AlO, FE and GTO@IGLO-III yield different values of
Aiso by 56 MHz (9%). We expect the difference to originate
from inaccuracies of the IGLO-III basis set used in GTO
calculation; for example, we found that GTO calculations
using different cc-basis sets yield large variations, between
580 to 520 MHz, for the Aiso value of Al (see Supplemental
Material [39]). Overall, the agreement between FE and GTO
results serves as a verification of our FE implementation for
the calculation of the A tensor. We note that EPR-III and
IGLO-III sets are specialized GTO basis designed for spin
Hamiltonian parameter calculations, and they are not available
for all elements (for instance, an EPR-III basis set for Al is not
available). FE-based calculations, on the other hand, can be
performed for any element in the periodic table and the results
can be systematically converged with respect to the basis set.

We found that PW calculations agree well with all-electron
FE and GTO calculations for Adip, while they deviate for Aiso.
For Adip, the MAD between FE and PW results is 2.7 MHz,
while the MAD for Aiso ranges from 13–17 MHz depending on
the treatment of core relaxation in PW calculations. Notably,
in the case of the AlO molecule, PW calculations predicted
a different sign for the Aiso of the O atom compared to all-
electron FE and GTO calculations.

PW and FE calculations for the NV center yielded qual-
itatively similar values for Aiso and Adip for both nitrogen
and DB carbons. The larger value of Aiso compared to Adip

for the nitrogen atom reveals a strong s character of the spin
density on the nitrogen. The spin density on the DB carbons
has instead a significant p-type contribution as revealed by
the comparable values of Aiso and Adip. There is a sizable
difference between DFT results and experimental values for
the Aiso of DB carbons (30%), which might be due to the use
of a small (64-atom) supercell for the NV center.

In Table III we present the computed zero field splitting
D tensor for several spin-triplet molecules/radicals (O2, CH2,
NH, C5H+

5 ) as well as for the NV center. We report the scalar

parameter D = 3
2 D33, where D11, D22, D33 are principal val-

ues of the D tensor such that |D11| � |D22| � |D33|. For low
symmetry systems such as the CH2 carbene, we additionally
report the scalar parameter E = 1

2 (D11 − D22).
Overall, GTO results show a weak dependence on the basis

set, with a MAD of 0.016 cm−1 between values obtained with
EPR-III and IGLO-III basis sets. PW calculations show a
weak dependence on the chosen pseudopotential, with a MAD
of 0.017 cm−1 between ONCV and GIPAW results. Similar
to the case of the A tensor, GTO and FE results agree well,
with a MAD of 0.001 cm−1 between FE and GTO@EPR-III
values. Due to the use of pseudo wave functions for the
evaluation of Eq. (4) and the lack of PAW reconstruction,
PW results deviate from all-electron ones, with a MAD of
0.064 cm−1 between FE and PW@GIPAW values. For the
case of the NV center, results from FE, PW, and experiments
appear to be in good agreement.

Table IV summarizes the electric field gradient V tensor
for several closed-shell molecules (HCN, NCCN, N2, H2O)
and for the NV center. Following the convention of the NQR
spectroscopy literature, we report the quadrupole coupling
constants eQV33, where V11,V22,V33 are principal values of
the V tensor such that |V11| � |V22| � |V33|. When computing
the eQV33 values in Table IV we considered isotopes with
nonzero nuclear quadrupole moment Q, and the values of Q
are obtained from Ref. [37]. For low symmetry systems, we
additionally report η = |V22−V11

V33
|.

Unlike the A tensor, which depends on charge density
differences, the V tensor depends on the absolute value of the
charge density and thus it is more sensitive to the details of the
electronic structure. Differences are indeed observed for GTO
calculations with different basis sets (MAD = 0.09 MHz), as
well as between GTO and FE calculations (MAD = 0.18 MHz
between FE and GTO@EPR-III). PW results significantly
deviate from all-electron GTO and FE results, with a MAD of
0.76 MHz between FE and PW values. In the case of the NV
center, PW and FE yield similar nuclear quadrupole coupling
for nitrogen, in qualitative agreement with experiment, while
for DB carbons the predicted V33 values using PW and FE
have opposite signs.

Finally, to demonstrate the convergence of the FE results
with respect to the basis set, in Table V we show A, D,
and V tensors for the NV center computed with different
FE polynomial degrees. We denote calculations with nth-
order polynomials as FEn. For the A-tensor and V -tensor
calculations a mesh size of 0.1 Bohr was used surrounding
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TABLE IV. Quadrupole coupling constants eQV33 [see Eq. (13)] (MHz) computed by DFT with finite-element (FE), Gaussian-type orbital
(GTO), and plane-wave (PW) basis sets. The scalar parameters η = |V22−V11

V33
|, if nonzero, are reported in brackets.

System Atom FE GTO(EPR-III) GTO(IGLO-III) PW Expt.

HCN (S = 0) 2H 0.20 0.21 0.22 0.20
11C −2.95 −2.87 −2.77 −3.73
14N −4.72 −4.85 −4.79 −5.07 −4.02 [20]

NCCN (S = 0) 14N −4.72 −4.80 −4.75 −4.99 −4.27 [20]
11C −1.84 −1.95 −1.76 −2.72

N2 (S = 0) 14N −5.08 −5.52 −5.46 −5.77 −4.65 [20]
H2O (S = 0) 2H 0.31 (0.12) 0.31 (0.13) 0.32 (0.13) 0.30 (0.13) 0.31 (0.14) [62]

17O 10.10 (0.81) 10.69 (0.74) 10.90 (0.74) 10.85 (0.72) 10.17 (0.75) [62]
Diamond NV (S = 1) 14N −7.30 −7.47 −6.68 [55]a

DB 11C 1.96 (0.03) −1.77 (0.10)

aComputed from P‖ parameter reported in Ref. [55] by eQV33 = 4I (2I − 1)P‖/3.

the nuclei, while for the D-tensor calculation the mesh size
was 0.5 Bohr. We see in Table V that our results for the A
tensor are well converged at the FE6 level, as indicated by
the small difference (less than 3%) between FE5 and FE6
results. Similarly, D-tensor values are well converged at the
FE5 level. The numerical value of the V tensor is sensitive to
the details of the electronic wave functions around the nuclei,
as mentioned previously, and its convergence is indeed more
challenging compared to that of the A and D tensors. We
performed V -tensor calculations with polynomial degrees up
to 7. At the FE7 level, most of the computed V tensor elements
are converged within 10%, based on asymptotic estimates
obtained by power law extrapolations.

IV. CONCLUSIONS

In this work, we presented an approach to compute
spin Hamiltonian parameters based on DFT, which uses all-

electron calculations and finite element basis sets to solve the
Kohn-Sham equations. The approach can be applied to both
solids and molecules and offers the important advantage of
straightforward convergence of the calculations with respect
to the basis set, which can be systematically achieved by
refinement of the finite element basis.

We reported calculations of the Fermi contact and dipolar
component of the A tensor, the spin-spin component of the
D tensor, and the nuclear quadrupole P tensor for several
molecules and for the NV center in diamond. We presented
detailed comparisons of results obtained using FE, GTO, and
PW basis. For molecules, we showed that all-electron results
obtained with FE basis sets are in good agreement with those
obtained with GTO basis sets.

The approach introduced in our work represents the first
step towards building a robust protocol for the first-principles
prediction of various spin Hamiltonian parameters based on
finite element density functional theory. There are multiple

TABLE V. The principle values of A (top, in MHz), D (center, in cm−1), and V (bottom, in a.u.) tensors for the
NV center computed by FE-based DFT using different finite-element polynomial degrees.

14N DB 13C

Adip
11 Adip

22 Adip
33 Aiso Adip

11 Adip
22 Adip

33 Aiso

FE3 0.033 0.033 −0.066 −2.362 −27.303 −27.592 54.896 100.492
FE4 0.034 0.034 −0.067 −2.307 −27.199 −27.654 54.853 99.708
FE5 0.035 0.035 −0.070 −2.319 −27.189 −27.664 54.854 99.016
FE6 0.035 0.035 −0.070 −2.316 −27.171 −27.696 54.867 98.721

D11 D22 D33

FE3 −0.0327 −0.0327 0.0654
FE4 −0.0321 −0.0321 0.0642
FE5 −0.0329 −0.0329 0.0658

N DB C

V11 V22 V33 V11 V22 V33

FE5 0.865 0.865 −1.731 −0.033 −0.127 0.160
FE6 0.804 0.804 −1.609 −0.081 −0.136 0.217
FE7 0.761 0.761 −1.520 −0.122 −0.129 0.251
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prospects of future work in this direction, both in terms of
the level of physics and computational efficiency. It is im-
portant to extend the current formalism to include relativistic
effects since proper treatment of scalar relativistic effects
will be crucial for accurate calculations of spin Hamiltonian
parameters of heavy elements. The ability to include spin-
orbit coupling effects will also allow for the computation
of additional spin Hamiltonian parameters, including the g
tensor and the spin-orbit component of the A and D tensor.
Further, it would be interesting to develop and test more
advanced density functionals, such as meta-GGAs and hybrid
functionals, and to establish which functional performs better,
compared to experiments. With regards to the computational
efficiency, the FE basis functions can be enriched using
compactly supported precomputed enrichment functions [63],
which will drastically reduce the computational cost, while
providing systematic convergence. Finally, we plan to utilize
a combination of all-electron and pseudopotential-based cal-
culation under the same framework, where certain atoms of
interest are treated at the all-electron level and other atoms
are treated using pseudopotential approximation, which will

enable the computation of spin Hamiltonian parameters in
systems involving thousands of atoms.
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