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For several decades, the striking contradiction between the Huang diffuse scattering experiments, resistivity
recovery data, and predictions derived from density functional theory (DFT) remained one of the mysteries of
defect physics in molybdenum. Since the 1970s, observations of Huang x-ray diffuse scattering appeared to
indicate that a self-interstitial atom (SIA) defect in Mo adopts a 〈110〉 dumbbell configuration. However, the
low temperature defect diffusion data supported the DFT prediction of a different, highly mobile 〈111〉 SIA
defect structure in the same metal. Using DFT simulations, we show that an SIA adopts a symmetry-broken
configuration in all the group 6 metals: chromium, molybdenum, and tungsten. The symmetry-broken defect
structure, a 〈11ξ〉 dumbbell, where ξ is an irrational number, agrees with nudged elastic band analyses of
〈110〉 to 〈111〉 transformations. Direct simulations of Huang diffuse scattering by symmetry-broken defect
configurations predicted by DFT explain why no zero intensity lines were observed in experiment and resolve
the long outstanding question about the structure of defects in Mo and similar metals. A 〈11ξ〉 defect migrates
on average one dimensionally through a sequence of three-dimensional nonplanar [11ξ ] to [ξ11] or [1ξ1]
transitions. Barriers for defect migration in nonmagnetic Cr, antiferromagnetic Cr, Mo, and W derived from
DFT calculations, 0.052, 0.075, 0.064, and 0.040 eV are well correlated with the onset of defect migration
temperatures observed experimentally.
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I. INTRODUCTION

The group 6 metals chromium, molybdenum, and tungsten
are elements of profound technological significance. Cr is
an indispensable component of stainless steels, preventing
corrosion through passivation. It also improves the resistance
to swelling of ferritic-martensitic steels exposed to irradiation
[1]. Mo, W, and their alloys are refractory metals with high
melting points, mechanically stable at high temperature. They
are used in a variety of high temperature applications [2,3],
for example Mo-25%Re alloys are materials for rocket engine
components [4]. Tungsten is a candidate material for divertor
and plasma-facing components of a fusion power plant [5,6].

Mechanical properties of metals depend on their mi-
crostructure [7]. To model how the microstructure of Cr, Mo,
W, and their alloys evolves under irradiation, it is essential to
know the structure and thermally activated mobility parame-
ters of self-interstitial atom (SIA) defects. Huang scattering
experiments [8–10] appear to show that an SIA in Mo adopts
a 〈110〉 configuration, consistent with the diffuse scattering
pattern produced by a field of atomic displacements with
orthorhombic symmetry. However, this is at odds with density
function theory (DFT) predictions that SIA defects in all the
body-centered cubic transition metals, with the exception of
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ferromagnetic iron, adopt straight linear 〈111〉 dumbbell or
crowdion configurations [11–13].

According to the resistivity recovery experiments on elec-
tron irradiated materials [14,15], the temperatures T SIA

m of
the onset of long range migration of SIA defects in Cr, Mo,
and W are 40, 35, and 27 K, respectively. In many other
bcc transition metals T SIA

m is below 6 K, which is the lowest
temperature accessible to observations. If one assumes that
a defect adopts a 〈110〉 configuration then, irrespectively of
whether its migration follows a three-dimensional translation-
rotation pathway [16] or a two-dimensional pathway [17]
(Fig. 1), in comparison with iron where T SIA

m = 120 K, the
experimentally observed values of T SIA

m in group 6 metals
are too low. On the other hand, if an SIA adopted a linear
〈111〉 configuration and diffused one dimensionally [18], the
corresponding temperatures T SIA

m would be significantly lower
than what is observed experimentally.

Fitzgerald and Nguyen-Manh [18] argued that the rela-
tively high values of T SIA

m in group 6 elements were a conse-
quence of the double peak structure of the 〈111〉 interatomic-
string potential, affecting the Peierls barrier for the
motion of SIA defects. The argument was based on solutions
of a constrained one-dimensional Frenkel-Kontorova model,
parametrized using DFT calculations. However, the study
involved no direct DFT analysis of SIA migration barriers or
possible deviations from purely one-dimensional diffusion.

A recent direct DFT nudged elastic band (NEB) study
showed that the barrier for one-dimensional diffusion of a
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FIG. 1. Sketch illustrating a two-dimensional transition pathway
of migration of a 〈110〉 dumbbell proposed by Jacques and Robrock
[17].

〈111〉 SIA dumbbell defect in tungsten was just 2 meV [19],
and that it had a simple single-peak structure. A straight 〈111〉
dumbbell moves from one equilibrium position to another via
a 〈111〉 crowdion saddle point configuration. In a classical
transition state theory approximation [20] the barrier of 2 meV
corresponds to the temperature of onset of SIA migration
of 0.7 K, as detailed in Sec. IV below. Quantum transition
state theory [19] that takes zero-order atomic vibrations into
account, predicts that defects diffuse at even lower temper-
ature. Neither classical nor quantum predictions agree with
experimental observations, and this is unusual given that DFT
calculations normally match experimental data fairly well
[16].

Can an SIA defect adopt neither a straight 〈111〉 nor a
〈110〉 configuration? Olsson [21] noted that the energy of a
〈221〉 dumbbell in Cr was lower than the energy of either
〈111〉 or 〈110〉 defect structures. Han et al. [22] also found
that the energy of a canted 〈111〉 dumbbell in Mo, computed
using a relatively small cell, was slightly lower than that
of a straight 〈111〉 configuration. Ventelon et al. [23] noted
that self-interstitial defects in Cr, Mo, and W might adopt
structures different from a straight 〈111〉 configuration. They

TABLE I. Elastic constants (in GPa units) evaluated using the Le
Page and Saxe [35] method for a two-atom cell and 30 × 30 × 30 k-
point mesh. �0 (Å3) and a0 (Å) are the atomic volume and the lattice
constant, respectively. Calculations were performed using the GGA-
PBE exchange-correlation functional assuming nonmagnetic (NM)
or collinear antiferromagnetic (AFM) states of Cr, and nonmagnetic
states of Mo and W. Experimental lattice constants are taken from
Ref. [36], elastic constants for Cr are from Ref. [37], and for Mo and
W are from Ref. [38].

PBE C11 C12 C44 �0 a0

Cr/AFM 448.12 62.03 102.13 11.72 2.862
Cr/NM 509.67 144.27 105.73 11.49 2.843
Mo 469.07 157.72 99.71 15.77 3.160
W 518.26 199.77 142.09 16.14 3.184
Expt.
Cr 394.1 88.5 103.75 11.94 2.88
Mo 464.7 161.5 108.9 15.63 3.15
W 522.4 204.4 160.6 15.78 3.16

TABLE II. Formation energies EF of point defects in Cr/AFM,
Cr/NM, Mo, and W evaluated using the GGA-PBE exchange-
correlation functional. Calculations were performed using simulation
cells containing 4 × 4 × 4 bcc unit cells. A 〈11ξ〉 dumbbell has the
lowest energy among all the SIA configurations explored in this
study. Vacancy data are also included for completeness. All the
energies are given in eV. The value of parameter ξ depends on the
material and, where applicable, on its magnetic structure.

4 × 4 × 4 Cr/AFM Cr/NM Mo W

〈11ξ〉d 6.361 6.074 7.399 10.249
〈111〉d 6.617 6.247 7.475 10.287
〈111〉c 6.555 6.243 7.479 10.289
〈110〉d 6.515 6.218 7.580 10.576
Tetra 6.918 6.889 8.358 11.717
〈100〉d 7.275 7.256 8.890 12.196
Octa 7.354 7.307 8.916 12.265
Vac 3.004 2.875 2.787 3.223
ξ 0.355 0.405 0.468 0.526

observed that Olsson’s earlier result [21] might be a part of a
general trend spanning the entire group of the three metals,
and investigated the structure of a self-interstitial defect in
tungsten. The results were not fully conclusive, and the case
of molybdenum did not receive attention. Finally the authors
of Ref. [23] concluded in favor of a straight 〈111〉 defect
configuration in tungsten. Recently, Gharaee and Erhart [24]
found that a lower symmetry mixed self-interstitial defect in-
volving a Ti, V, or Re solute atom in W had lower energy than
〈111〉 or 〈110〉 dumbbells. They termed the resulting structure
a bridge interstitial. All the above studies [21,22,24] point to a
possible occurrence of a lower symmetry defect configuration
in group 6 elements, different from either a simple linear 〈111〉

FIG. 2. Results of nudged elastic band calculations illustrating
how the formation energy of an SIA dumbbell varies as a function of
the orientation of the axis of the defect. The orientation changes from
being collinear to the [110] direction (the left edge of the diagram) to
being collinear to the [111] direction (the right edge of the diagram).
The curves were computed taking into account the elastic correction
associated with the use of periodic boundary conditions [13,33,34].
Note that the only curve in the figure that is monotonic refers to Nb,
which is a group 5 metal.
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FIG. 3. The elastic correction E corr
el part of the formation energy

of defects corresponding to the curves shown in Fig. 2.

defect, or a 〈110〉 dumbbell. If this were indeed the case,
the mode of migration of the defect would deviate from pure
one-dimensional motion that is often assumed in tungsten and
other nonmagnetic BCC metals.

Below we resolve the controversy and explain the origin
of disagreement between the Huang scattering and resistivity
recovery experimental results. We also explain elastic after-
effect observations and identify a deficiency associated with
earlier DFT calculations of defects in W, Mo, and Cr. We find
that a canted 〈11ξ 〉 SIA configuration, where ξ is an irrational
number, represents the lowest energy defect structure in all
the metals of group 6 in the periodic table. A migrating de-
fect follows a three-dimensional translation-rotation pathway,
where the average trajectory is parallel to a 〈111〉 crystallo-
graphic direction. The barriers for migration predicted by DFT

TABLE III. Formation energies of selected point defects in
Cr/AFM, Cr/NM, Mo, and W evaluated using a cell containing
5 × 5 × 5 bcc unit cells. A 〈11ξ〉 dumbbell still represents the lowest
energy configuration in all the three metals.

5 × 5 × 5 Cr/AFM Cr/NM Mo W

〈11ξ〉d 6.453 5.919 7.448 10.256
〈111〉d 6.644 6.095 7.519 10.306
〈110〉d 6.548 6.060 7.628 10.579
ξ 0.356 0.397 0.447 0.482

calculations for all the three metals agree with the observed
temperatures of the onset of diffusion of SIA defects.

Using elastic dipole tensors of 〈11ξ 〉 defects, we simulate
Huang diffuse x-ray scattering patterns and find that the
features, using which the defect structures were classified
in experiments performed in the 1970s [9], are surprisingly
similar to those of a 〈110〉 dumbbell, despite the fact that
the structures of defects themselves are different. It is this
unusual manifestation of symmetry-breaking effect, occurring
in a defect structure, that reconciles a number of seemingly
contradictory experimental observations, and resolves the in-
consistency between experiment and ab initio interpretation
of data that remained outstanding for several decades.

II. METHODOLOGY

All the ab initio calculations were performed using Vienna
ab initio simulation package (VASP) [25–28] in the gener-
alized gradient approximation (GGA), using the exchange-
correlation functional by Perdew, Burke, and Ernzerhof (PBE)
[29,30]. Plane wave energy cutoff was set at 450 eV. A

FIG. 4. Atomic structure of a symmetry-broken 〈11ξ〉 SIA dumbbell defect in Mo, simulated using a supercell containing 5 × 5 × 5 bcc
unit cells. Symmetry breaking in the core of the defect gives rise to buckling of the central [111] atomic string containing an extra atom.
Buckling can occurs in one of the three {110} atomic planes equivalent by symmetry with respect to the straight linear 〈111〉 configuration of
the defect.
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FIG. 5. The local density of states (DOS) for one of the two
atoms at the center of 〈111〉 and 〈11ξ〉 dumbbell configurations in
Mo. A plot showing the DOS computed for perfect bcc lattice is
shown for comparison. The position of the Fermi energy for all the
three structures corresponds to the origin of the horizontal axis and
is indicated by a dashed vertical line.

FIG. 6. Distances between successive atoms i and j = i + 1 in a
〈111〉 atomic string containing an extra atom. (Top) Data for a 〈111〉
dumbbell and (bottom) data for a 〈11ξ〉 configuration in Cr/AFM,
Cr/NM, Mo, and W. Positions of atoms were computed using the
GGA-PBE functional.

FIG. 7. Voronoi volumes of atoms belonging to a 〈111〉 atomic
string containing an extra atom. (Top) Data for a 〈111〉 dumbbell
and (bottom) data for a 〈11ξ〉 configuration of a defect in Cr/AFM,
Cr/NM, Mo, and W. All the calculations were performed using the
GGA-PBE functional.

simulation supercell involved 4 × 4 × 4 bcc unit cells. 5 ×
5 × 5 k-points mesh was used in all the calculations. To
explore the cell size effect, we also performed simulations
using a larger supercell containing 5 × 5 × 5 bcc unit cells,
with a 4 × 4 × 4 k-points mesh. Reference perfect lattice cells
were relaxed to a stress-free condition. While keeping the
cell size and shape the same as in the perfect lattice case,
simulation cells containing various SIA configurations were
created and ionic positions relaxed. The maximum residual
force on an atom in a fully relaxed defect configuration was
smaller than 1 × 10−3 eV/Å. Semicore shells were treated
as valence electrons, and 12 valence electron per atoms were
included in every calculation of a defect structure in Cr, Mo,
and W to achieve the sufficient accuracy of evaluation of
interatomic forces in the highly compressed core region of the
defect.

For Mo and W, only nonmagnetic (NM) calculations were
performed. For Cr, we performed NM and collinear magnetic
calculations. Although the electronic ground state of Cr is
believed to have the form of a spin density wave (SDW) [31],
a collinear antiferromagnetic (AFM) state was chosen for
spin polarized calculations. This AFM state has the energy
very close to that of the SDW within the margin of ab initio
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FIG. 8. Two-dimensional plots of electron charge density difference computed for a 〈11ξ〉 dumbbell configuration in the (11̄0) plane in
Cr/AFM, Cr/NM, Mo, and W. Calculations were performed using the GGA-PBE functional. Electron charge density difference is defined as
the self-consistent electron density minus a superposition of atomic charge densities.

calculations [32]. An AFM state was set up by initializing
magnetic moments similar to those of a perfect lattice
configuration, but with magnitudes set to zero near the highly

compressed core of the defect. The final ground state AFM
magnetic structure was determined from a self-consistent
electronic structure calculation.

FIG. 9. Two-dimensional plots of electron charge density difference computed for a 〈111〉 dumbbell configuration in the (11̄0) plane in
Cr/AFM, Cr/NM, Mo, and W. Calculations were performed using the GGA-PBE functional. Electron charge density difference is defined as
the self-consistent electron density minus a superposition of atomic charge densities.
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FIG. 10. Schematic diagram illustrating the migration pathway
of an SIA defect from a [11ξ ] to a [ξ11] dumbbell configuration.
Values of parameter ξ for group 6 metals are listed in Tables II and
III. Note that the initial and final configurations of the defect are
associated with symmetry breaking occurring in two different {110}
planes.

The formation energy of a defect is

EF = Edef(Ndef) − Ndef

Nbulk
Ebulk(Nbulk) − E corr

el , (1)

where Nbulk and Ndef are the numbers of atoms in a reference
cell and in a cell containing a defect, Edef is the total energy
of the cell containing a defect, Ebulk is the energy of the
reference cell, and E corr

el is the elastic correction energy that
needs to be included given that calculations were performed
using periodic boundary conditions. Further detail are given
in Refs. [13,33,34]. Elastic constant tensors Ci jkl involved
in the evaluation of E corr

el were computed using the Le Page
and Saxe method [35] for a two atom simulation cell and a
30 × 30 × 30 k-point mesh. The computed elastic constants
are given in Table I.

Migration energy EM of a defect was computed using the
NEB method [39,40], where EM is defined as the maximum

FIG. 11. Migration energy barriers computed using the nudged
elastic band method, and corresponding to the trajectory of migration
of a symmetry-broken [11ξ ] SIA dumbbell to an adjacent cell, as
illustrated in Fig. 10. Calculations were performed using the GGA-
PBE exchange-correlation functional.

FIG. 12. Energy contribution due to the elastic correction E corr
el

corresponding to the trajectory of migration shown in Figs. 10
and 11.

variation of the formation energy along a transition pathway
linking two equilibrium configurations. Each NEB calculation
involved 11 images, where the residual force on an atom in
each image was lower than 0.01 eV/Å. At each point on
a transition pathway the formation energy of a defect was
corrected for the elastic effects associated with the use of
periodic boundary conditions [13,33,34].

III. FORMATION ENERGY OF SIA DEFECTS
IN Cr, Mo, AND W

DFT calculations of various SIA configurations were per-
formed using a simulation cell containing 4 × 4 × 4 bcc unit
cells. The defect configurations included in the study were
〈111〉 dumbbell, 〈111〉 crowdion, 〈110〉 dumbbell, tetrahedral
site interstitial, 〈100〉 dumbbell, and an octahedral site inter-
stitial. For completeness we have also computed the formation
energy of a monovacancy. The formation energies of defects
are given in Table II. Calculations show that the formation
energies of a 〈110〉 dumbbell, 〈111〉 dumbbell, and 〈111〉
crowdion are similar. These results are compatible with previ-
ous DFT studies [11,12,21,41] showing that a 〈110〉 dumbbell
has lower energy in Cr, whereas a 〈111〉 dumbbell has lower
energy in Mo and W.

Bearing in mind studies by Olsson [21], Han et al. [22],
and Gharaee and Erhart [24], we have also explored if
there were an even more stable SIA configuration, interme-
diate between a 〈110〉 dumbbell and a 〈111〉 dumbbell. To

TABLE IV. Barriers for defect migration in group 6 metals, the
estimated transition state theory onset of migration temperatures, and
the onset of migration temperatures observed in electron irradiated
metals using the resistivity recovery technique [14].

Metal Em (eV) Est. Tm (K) Expt. Tm (K)

Cr/AFM 0.052 18.7 40
Cr/NM 0.075 27.0 40
Mo 0.064 23.5 35
W 0.040 14.7 27
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TABLE V. Elements of dipole tensor Pi j (in eV units) and parameters π1, π2, and π3 computed for 〈11ξ〉, 〈111〉, and 〈110〉 dumbbells in
Cr/AFM. Ab initio calculations were performed using simulation cells containing 4 × 4 × 4 bcc unit cells.

Cr/AFM P11 P22 P33 P12 P23 P31 π1 π2 π3 π2/π1 π3/π1

〈11ξ〉d 18.389 18.389 21.882 4.040 2.058 2.058 1147.0 4.067 16.528 0.00355 0.01441
〈111〉d 18.728 18.728 18.728 4.617 4.617 4.617 1052.2 0.000 42.635 0.00000 0.04052
〈110〉d 20.530 20.530 18.955 4.790 0.000 0.000 1200.6 0.827 15.299 0.00069 0.01274

investigate this, we have carried out NEB calculations, sim-
ulating pathways of rotation of an SIA dumbbell from a [110]
to a [111] configuration in various metals. Figure 2 shows how
the formation energy of a defect varies as a function of the
reaction coordinate. We find a well defined minimum in all
the three metals of group 6, corresponding to the orientation
of the axis of the defect intermediate between the [110] and
[111] directions. No minimum is found in bcc metals of group
5, where the curve is monotonic, as illustrated by the curve for
niobium, which in the periodic table occupies a position next
to molybdenum.

The intermediate between [110] and [111] configuration
of the defect is stabilized by electronic chemical bonding
effects and not by the effects of elastic interaction between
periodically translated images of defects associated with the
use of periodic boundary conditions. To prove this, we have
computed the energy of elastic interaction E corr

el following
Refs. [13,33,34] and plotted it as a function of the NEB
reaction coordinate in Fig. 3. The elastic correction varies
monotonically as a function of the reaction coordinate, and
the shape of the curve in Fig. 3 exhibits no correlation with
the variation of the formation energy of defects shown in
Fig. 2.

From the NEB calculations we took the lowest energy
image and performed further ionic relaxation. In all the group
6 metals, the defect relaxed into a 〈11ξ 〉 dumbbell with
the formation energy and orientation parameter ξ given in
Table II. We find that ξ is an irrational number depending
on the material and, where applicable, its magnetic state. The
configuration that an SIA defect adopts in group 6 metals is
different from a linear 〈111〉 configuration of the defect in
vanadium, niobium, and tantalum [11]. It is also significantly
different from the 〈110〉 dumbbell configuration that an SIA
defect adopts in iron [16], where its structure is stabilized
by magnetic effects. A sketch of the symmetry-broken 〈11ξ 〉
defect structure in Mo is shown in Fig. 4.

To verify that the observed symmetry-broken defect con-
figuration is not an artifact of the finite simulation cell size, we
have also carried out simulations using a larger cell containing
5 × 5 × 5 bcc unit cells. The simulations were performed for

〈11ξ 〉, 〈111〉, and 〈110〉 dumbbells. Their formation energies
are given in Table III. Although the absolute values differ
slightly from those given in Table II, the conclusion that the
〈11ξ 〉 dumbbell is the most stable SIA configuration, remains
unchanged. We have also performed calculations for Mo using
a noncubic simulation cell, containing 4 × 4 × 5 bcc unit
cells. The formation energy of a 〈11ξ 〉 SIA defect in this cell
is 7.400 eV, which is close to the value of 7.399 eV found
using a 4 × 4 × 4 cubic simulation cell. This eliminates any
remaining concern about the effect of the finite simulation cell
size or its noncubic symmetry.

We note that in many DFT codes, including VASP, auto-
matic crystal symmetry identification is applied to the simula-
tion cell at the start of a calculation, to identify the irreducible
k points. This accelerates calculations but constrains ionic
relaxations to a particular crystal symmetry. If a lower energy
configuration exists that does not comply with the initial
symmetry of the simulation cell, a DFT calculation may
not be able to find it, if the space group is defined at the
start of the simulation. In this study, all the 〈11ξ 〉 dumbbell
configurations were explored with no symmetry constraint
applied. We find that the energy and structure that we identify
as the ground state defect configuration, remains unchanged
irrespectively of crystal symmetry constraints.

To understand the origin of symmetry breaking at the
center of the defect, we have calculated the local density of
electronic states (LDOS) projected onto one of the atoms
at the center of 〈111〉 and 〈11ξ 〉 dumbbell configurations in
Mo. LDOS plots for the two defect structures are shown in
Fig. 5. To achieve sufficient accuracy of calculation of DOS,
we used a 9 × 9 × 9 k-point mesh. Calculations involved
relaxed defect configurations simulated using a 4 × 4 × 4
cell and 5 × 5 × 5 k-point mesh. LDOS computed for a
perfect bcc lattice 128 atom cell is shown for comparison.
We see that the DOS for the two defect structures is only
slightly higher at the Fermi energy (corresponding to the
origin of the horizontal axis and indicated by a dashed vertical
line), suggesting that the stabilization of the 〈11ξ 〉 dumbbell
defect structure is not related to the changes in electronic
structure near the Fermi energy εF . On the other hand, the

TABLE VI. Elements of dipole tensor Pi j (in eV units) and parameters π1, π2, and π3 computed for 〈11ξ〉, 〈111〉, and 〈110〉 dumbbells in
Cr/NM. Ab initio calculations were performed using simulation cells containing 4 × 4 × 4 bcc unit cells.

Cr/NM P11 P22 P33 P12 P23 P31 π1 π2 π3 π2/π1 π3/π1

〈11ξ〉d 27.410 27.410 32.365 4.417 2.662 2.662 2533.8 8.181 22.455 0.00323 0.00886
〈111〉d 28.816 28.816 28.816 5.222 5.222 5.222 2491.0 0.000 54.543 0.00000 0.02190
〈110〉d 28.806 28.806 30.494 4.594 0.000 0.000 2587.6 0.950 14.071 0.00037 0.00544
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TABLE VII. Elements of dipole tensor Pi j (in eV units) and parameters π1, π2, and π3 computed for 〈11ξ〉, 〈111〉, and 〈110〉 dumbbells in
Mo. Ab initio calculations were performed using simulation cells containing 4 × 4 × 4 bcc unit cells. Experimental values are taken from the
study by Ehrhart [9] where Mo samples were exposed to electron irradiation at very low temperature.

Mo P11 P22 P33 P12 P23 P31 π1 π2 π3 π2/π1 π3/π1

〈11ξ〉d 38.614 38.614 43.538 6.675 4.631 4.631 4861.4 8.082 58.301 0.00166 0.01441
〈111〉d 39.601 39.601 39.601 7.609 7.609 7.609 4704.6 0.000 115.789 0.00000 0.04052
〈110〉d 39.944 39.944 42.470 6.757 0.000 0.000 4990.4 2.128 30.438 0.00043 0.01274
Expt. 0.05 ± 0.02 0.04± 0.02

DOS for the 〈11ξ 〉 defect increases significantly at the lower
edge of the band, explaining why the energy of the 〈11ξ 〉
dumbbell configuration is lower than the energy of the 〈111〉
configuration.

Figure 6 shows distances between successive atoms in
atomic strings containing an extra atom in Cr/AFM, Cr/NM,
Mo, and W, for a straight 〈111〉 defect configuration (top) and
a symmetry-broken 〈11ξ 〉 configuration (bottom). The curves
differ at the center of the defect, whereas a few lattice param-
eters away from the core the structure of the defects appear
similar. The two atoms at the center of the symmetry-broken
〈11ξ 〉 dumbbell configuration are situated closer together than
in a straight 〈111〉 dumbbell configuration.

In Fig. 7 we plot the Voronoi volume of atoms in the central
〈111〉 string, containing an extra atom. The Voronoi volume of
an atom is computed using the Voro++ program [42]. Atoms
at the center of a 〈11ξ 〉 dumbbell configuration occupy smaller
volumes than in a straight 〈111〉 dumbbell configuration. In
general, a symmetry-broken 〈11ξ 〉 dumbbell defect config-
uration appears more compact than a straight linear 〈111〉
configuration, and the difference is more pronounced in the
case of Cr than in Mo or W.

A somewhat deeper insight into the nature of interatomic
bonding at the core of defects can be gained from a compar-
ison of charge difference plots shown in Figs. 8 and 9. The
plot shown in Fig. 8 illustrates the effect of deformation of
electron charge density due to the buckling of a straight linear
〈111〉 defect configuration. A precursor of symmetry breaking
is already visible at the center of the 〈111〉 defect, where the
symmetry of the charge density distribution is different from
that of atoms in the surrounding perfect lattice.

IV. MIGRATION OF AN SIA DEFECT

Symmetry breaking also has implications for the mi-
gration of 〈11ξ 〉 SIA defects. The defects no longer mi-
grate purely one dimensionally, retaining their straight 〈111〉

structure, as was assumed in Ref. [18]. It is instructive to
compare the case with that of magnetic bcc iron, where
an SIA defect adopts a 〈110〉 dumbbell configuration. In
iron, a migrating SIA defect follows a three-dimensional
translation-rotation pathway. DFT calculations show that a
[110] dumbbell transforms into a [011] dumbbell located
in an adjacent cell, and that the energy barrier for migra-
tion of the defect is close to 0.34 eV [16]. The predicted
value is close to the experimentally measured migration en-
ergy of 0.30 eV and is compatible with the relatively high
observed temperature of the onset of defect migration of
120 K [14].

Bearing in mind that the experimentally observed SIA
defect migration temperatures in Cr, Mo, and W are 40, 35,
and 27 K [14], respectively, we propose that a symmetry-
broken SIA defect migrates though a translation-rotation path-
way similar to that of a defect in Fe. A 〈11ξ 〉 dumbbell
is a structure intermediate between a 〈111〉 and a 〈110〉
configuration. A possible migration pathway therefore might
involve a transition from a [11ξ ] dumbbell structure to a
[ξ11] dumbbell structure situated in an adjacent bcc unit
cell. Symmetry considerations suggest that a [11ξ ] dumb-
bell can also jump to a [1ξ1] configuration. For any 〈11ξ 〉
dumbbell, there are two equivalent forward and two backward
migration pathways along the 〈111〉 direction. A sketch il-
lustrating the pathway of migration of a defect is shown in
Fig. 10.

The pattern of migration above does not involve large
nonelastic relaxation, and is compatible with the elastic after-
effect experimental observations performed in Mo at 4.2 K
[17]. Although there is some reorientation of the SIA during
its migration, it is relatively small if one compares it with
the translation-rotation migration of a 〈110〉 SIA in Fe. In
addition, although every migration step is twice degenerate
(a [11ξ ] defect can transform into adjacent [ξ11] or [1ξ1]
configurations), each step involves a transformation simi-
lar to the one proposed by Jacques and Robrock [17] and

TABLE VIII. Elements of dipole tensor Pi j (in eV units) and parameters π1, π2, and π3 computed for 〈11ξ〉, 〈111〉, and 〈110〉 dumbbells
in W. Ab initio calculations were performed using simulation cells containing 4 × 4 × 4 bcc unit cells.

W P11 P22 P33 P12 P23 P31 π1 π2 π3 π2/π1 π3/π1

〈11ξ〉d 50.921 50.921 57.883 11.925 9.136 9.136 8503.9 16.157 206.078 0.00190 0.01441
〈111〉d 52.754 52.754 52.754 13.128 13.128 13.128 8348.9 0.000 344.712 0.00000 0.04052
〈110〉d 52.557 52.557 56.960 11.277 0.000 0.000 8756.0 6.462 84.777 0.00074 0.01274
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TABLE IX. Parameters used for the evaluation of atomic form factors, see Ref. [45] for further detail.

Element a1 b1 (Å2) a2 b2 (Å2) a3 b3 (Å2) a4 b4 (Å2) c

Cr 10.6406 6.1038 7.3537 0.392 3.324 20.2626 1.4922 98.7399 1.1832
Mo 3.7025 0.2772 17.2356 1.0958 12.8876 11.004 3.7429 61.6584 4.3875
W 29.0818 1.72029 15.43 9.2259 14.4327 0.321703 5.11982 57.056 9.8875

illustrated schematically in Fig. 1. Still, the overall pattern
of thermal migration of a defect is not two dimensional, but
one dimensional, since on average a defect diffuses in a 〈111〉
direction closest to the orientation of the axis of the defect.
This is also different from the case of a 〈110〉 dumbbell in Fe
where it performs three-dimensional diffusion, involving eight
equivalent hopping positions from a given equilibrium defect
site, whereas a 〈11ξ 〉 dumbbell only has four such equivalent
hopping positions.

NEB data for trajectories of migration of a defect from a
[11ξ ] to a [ξ11] dumbbell configuration in group 6 metals
are illustrated in Fig. 11. The corresponding values of elastic
correction energy associated with the use of periodic bound-
ary conditions are shown in Fig. 12. The barrier for defect
migration is defined as the difference between the energies
of the saddle and equilibrium points. The energy barrier for

migration of a defect in Cr/AFM is 0.052 eV, in Cr/NM it
is 0.075 eV, in Mo it is 0.064 eV and in W it is 0.040 eV, as
summarized in Table IV.

In the transition state approximation [20] the jump fre-
quency equals

ν = ν0 exp(−Em/kBT ), (2)

where ν0 is the attempt frequency. In transition state theory it
is often assumed that the attempt frequency is proportional to
the Debye frequency, and hence the Debye temperature θ of
the material.

Using Fe as a benchmark, where θFe = 470 K [36], and
assuming ν = 1 s−1, we find Tm = 124.3 K, where the migra-
tion energy of a 〈110〉 dumbbell is taken as Em = 0.34 eV
[16]. This estimate compares well with the onset of migration

FIG. 13. Patterns of Huang diffuse scattering produced by an ensemble of randomly distributed and average over equivalent crystallo-
graphic orientations 〈100〉 dumbbells.
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FIG. 14. Patterns of Huang diffuse scattering produced by randomly distributed and average over equivalent crystallographic orientations
〈111〉 dumbbells.

temperature of SIA defects of 120 K observed in experiment
[14].

Similarly, using the Debye temperatures θCr = 630 K,
θMo = 450 K, and θW = 400 K taken from Ref. [36], we find
the temperatures characterizing the onset of migration of SIA
defects T SIA

m of 18.7, 27.0, 23.5, and 14.7 K in Cr/AFM,
Cr/NM, Mo, and W, respectively. These values compare well
with the values derived from electron irradiated resistivity
recovery experiments of 40, 35, and 27 K in Cr, Mo, and W
[14]. The comparison is particularly informative given that
the migration barrier for a non-symmetry-broken linear SIA
defect in W is just 2 meV [19], and this corresponds to the
onset of defect migration temperature of just 0.7 K, which is
more than an order of magnitude lower than what is observed
experimentally.

At higher temperatures, more complex migration pathways
could be realized, involving for example a transformation of a
〈11ξ 〉 dumbbell into a 〈111〉 dumbbell, which then performs
a purely one-dimensional migration step, followed by the
formation of another symmetry-broken defect configuration.
The difference between the formation energies of a 〈11ξ 〉 and
a 〈111〉 SIA in Mo and W are 0.071 and 0.050 eV, respectively.
These values are not too dissimilar from the migration energy
associated with the transformation of an SIA defect from a
[11ξ ] to a [ξ11] configuration.

V. INTERPRETATION OF HUANG X-RAY DIFFUSE
SCATTERING PATTERNS

In the preceding sections we showed that an SIA defect in
Cr, Mo, and W adopts a symmetry-broken 〈11ξ 〉 configura-
tion, and its migration follows a translation-rotation pseudo-
one-dimensional pathway that on average is collinear with a
〈111〉 crystallographic direction. This reconciles predictions
derived from DFT calculations, resistivity recovery experi-
ments, and observations of elastic after-effect. The remaining
outstanding question concerns the interpretation of Huang
x-ray diffuse scattering observations that, according to Ehrhart
[9], indicate that an SIA defect in molybdenum adopts a 〈110〉
configuration.

If the concentration of point defects in a material is
small, the symmetry of the long range strain field of such
defects can be determined from Huang diffuse scattering pat-
terns. Huang diffuse scattering intensities, produced by ran-
domly distributed defects adopting all the possible symmetry-
equivalent orientations, are characterized by the momentum
transfer K = h + q, where h is a chosen reciprocal lattice
vector. The scattered intensity distribution has the form [8]

SH (K) = Ndef f 2
h

h2

q2

1

V 2
uc

(γ1π1 + γ2π2 + γ3π3). (3)
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FIG. 15. Patterns of Huang diffuse scattering produced by randomly distributed and average over equivalent crystallographic orientations
〈110〉 dumbbells.

This formula, derived in the kinematic scattering approxima-
tion, shows that the cross section of scattering is proportional
to the total number of defects Ndef in the sample. In the above
equation, fh is the atomic scattering form factor, Vuc = a3

0 is
the volume of a unit cell, h is a reciprocal lattice vector, and q
is a measure of deviation from the Bragg reflection. In Eq. (3)
it is assumed that |q| is small in comparison with |h|. Below,
the values of K, h and q are given in 2π/a0 units. Parameters
γ1, γ2, and γ3 depend on h and q, and also on the anisotropic
elastic constants of the material, where

γ1 = 1

3

(∑
i

Tii

)2

, (4)

γ2 = 1

3

∑
i> j

(Tii − Tj j )
2, (5)

γ3 = 1

2

∑
i> j

(Ti j + Tji )
2, (6)

and

Ti j =
∑

l

ĥlgli(q̂)q̂ j . (7)

Introducing unit vectors ĥ = h/h and q̂ = q/q, we write the
matrix function gli(q̂) as

gi j (q̂) =
(∑

kl

Cik jl q̂k q̂l

)−1

, (8)

where Ci jkl is the elastic constant tensor. Parameters π1, π2,
and π3 depend only on the matrix elements of elastic dipole
tensor Pi j of the defect, computed for a particular orientation,
where

π1 = 1

3

(∑
i

Pii

)2

, (9)

π2 = 1

6

∑
i> j

(Pii − Pj j )
2, (10)

π3 = 2

3

∑
i> j

P2
i j . (11)

Symmetry properties of π1, π2, and π3 are such that the
same values are obtained for any orientation of the defect that
is related to its original orientation by symmetry operations
pertinent to the underlying crystal lattice.

The dipole tensor of a localized defect object can be
computed from macrostresses developing in a simulation box
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FIG. 16. Patterns of Huang diffuse scattering produced by randomly distributed and average over equivalent crystallographic orientations
〈11ξ〉 SIA dumbbells.

due to the presence of a defect in it [33,34,43,44],

Pi j = Vcell
(
Ci jklε

app
kl − σ̄i j

)
, (12)

where

σ̄i j = 1

Vcell

∫
Vcell

σi jdV (13)

is the average macroscopic stress in the simulation box, and
ε

app
kl is the external applied stress. In this study, since we

are using simulation boxes of the same size and shape as
the reference perfect lattice, ε

app
kl = 0. Dipole tensors Pi j of

defects in Cr/AFM, Cr/NM, Mo, and W computed using
Eq. (12) are given in Tables V to VIII. The tables also contain
the computed values of parameters π1, π2, and π3.

An atomic scattering form factor may be approximated by
a sum of Gaussian functions of the form [45]

fκ =
4∑

i=1

ai exp

[
−bi

( κ

4π

)2
]

+ c, (14)

where ai, bi, and c for Cr, Mo, and W are listed in Table
IX The atomic form factor is a constant for a particular
reflection h.

Figures 13 to 16 show patterns of Huang diffuse scattering
computed for randomly distributed 〈100〉, 〈111〉, 〈110〉, and
〈11ξ 〉 SIA defects in Mo. Since the scattering intensity is

linear in Ndef, it is normalized to the number of defects in all
the calculations. The cross section of Huang scattering SH (K)
diverges at q = 0, and in numerical calculations we impose a
maximum cutoff value of intensity of 1 × 107. In choosing the
Bragg reflections h and the range of q we follow Dederichs
[8] and Ehrhart [9]. We simulate Huang scattering patterns for
h = [200], [222], and [022], and take q in the p = (011̄) plane
in reciprocal space. We also investigate the case h = [022]
and p = (100).

In the case of a 〈100〉 dumbbell, we find zero intensity
lines for h = [200] and p = (011̄) and h = [022] and p =
(011̄). In the case of a 〈111〉 dumbbell, only the h = [022]
and p = (100) plot exhibits a zero intensity line. In the case
of 〈110〉 and 〈11ξ 〉 dumbbells, none of the plots exhibit
zero intensity lines. In Fig. 17 we plot a Huang scattering
pattern simulated over a smaller range of values of q, for
the better identification of zero intensity lines. All the pat-
terns corresponding to the 〈100〉, 〈111〉, and 〈110〉 dumbbells
are in agreement with calculations by Dederichs [8] and
Ehrhart [9].

Our analysis shows that the key limiting factor in the
studies by Ehrhart [9] was the fact that only the 〈100〉,
〈111〉, and 〈110〉 dumbbells were included as possible candi-
date structures of SIA defects. The computed Huang diffuse
scattering patterns in Figs. 13–16 show that it is impos-
sible to tell apart the scattering patterns corresponding to
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FIG. 17. Patterns of Huang diffuse scattering by 〈111〉, 〈110〉,
and 〈11ξ〉 randomly distributed and average over the equivalent
crystallographic orientations dumbbell configurations computed for
a [022] reflection in the (100) plane in reciprocal space. Only the
〈111〉 dumbbell configurations produce zero intensity lines parallel
to the [01̄1] direction in reciprocal space.

the 〈110〉 and 〈11ξ 〉 defect structures. Bearing in mind the
compelling evidence for the 〈11ξ 〉 dumbbell as the lowest
energy SIA structure in molybdenum, we conclude that it is
this structure that was mistakenly interpreted as the 〈110〉
defect structure in experiments by Ehrhart [9]. Indeed, none
of the values of π1, π2, and π3 vanish for either the 〈110〉
or 〈11ξ 〉 defect, which is the reason why in a Huang diffuse
scattering experiment one cannot distinguish these two SIA
configurations.

VI. CONCLUSION

We show that a symmetry-broken 〈11ξ 〉 dumbbell repre-
sents the most stable defect configuration of a self-interstitial
atom defect in all the group 6 metals of the periodic table.
Parameter ξ is an irrational number, depending on the material
and its magnetic state. Defects migration follows a rotation-
translation pathway, which on average appears similar to one-
dimensional diffusion in a 〈111〉 crystallographic direction.
Barriers for the migration of defects are significantly larger
than those predicted by a purely one-dimensional migration
model. They are 52 meV in antiferromagnetic Cr, 75 meV in
nonmagnetic Cr, 64 meV in Mo, and 40 meV in W. These
values correlate well with the temperatures characterizing
the onset of migration of defects in various metals observed
experimentally. Huang diffuse scattering patters computed
using the DFT data show that on the basis of experimental
data Ref. [9] and other studies it is not possible to distinguish
between 〈110〉 and 〈11ξ 〉 configurations, and conclusively
identify a defect structure from observations. Defect config-
urations predicted by ab initio simulations in group 6 metals
resolve the controversy associated with the interpretation of
experimental data, and reconcile observations with fundamen-
tal theory.
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