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Higher-order and crystalline topology in a phenomenological tight-binding model of lead telluride
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In this work, we revisit the model of PbTe presented by Fradkin et al. [Phys. Rev. Lett. 57, 2967 (1986)]. We
show that the low-energy theory of this model corresponds to a (higher-order) topological crystalline insulator
in space group Fm3̄m1′, diagnosable by symmetry indicators. We show that the gapless fermions found on
antiphase domain walls are the topological boundary modes of the system, due to a nonvanishing mirror Chern
number. Furthermore, we show that any symmetric completion of the model must be in this same topological
phase. Finally, we comment on the relationship of this model to realistic PbTe, which has recently been predicted
to have a phase which realizes same bulk symmetry indicators.

DOI: 10.1103/PhysRevMaterials.3.041202

Introduction. One of the most striking features of topologi-
cal insulators (TIs) is the presence of protected gapless modes
at surfaces, interfaces, and defects [1,2]. The best-known
examples of this are the helical modes at the boundary of
a two-dimensional “strong” topological insulator [3–5], and
the single Dirac fermion at the two-dimensional boundary
of a three-dimensional “strong” topological insulator [6,7].
Both of these surface modes are protected by time-reversal
symmetry alone. It has recently been appreciated that, with
additional crystalline symmetries, more exotic topologically
protected boundary features may emerge, such as the multiple
Dirac fermions at symmetric boundaries of a mirror Chern
insulator [8–10]. Even more surprising, “higher-order TIs”
with (roto)-inversion symmetries may feature topologically
protected “hinge” modes which propagate on boundaries of
two (or more) fewer dimensions than the bulk [11–21].

In light of these recent developments, we may be tempted
to take a fresh look at the old observation that a simplified
tight-binding model for PbTe was found to host four Dirac
fermions on a two-dimensional antiphase boundary [22–24].
It was realized early on that this effective model did not
quite respect the symmetries of the crystal [25,26], and the
even number of Dirac cones disqualified this model from
being a strong TI regardless [27,28]. Furthermore, realistic
PbTe is known to have zero mirror Chern number [9], and
nevertheless the effective model does not possess the requisite
mirror symmetry. It is natural to ask, then: are the domain
wall fermions of Refs. [22–24] a signifier of any topological
crystalline insulating (TCI) phase?

In this work, we answer this question in the affirmative.
First, we review the model of Ref. [22] (hereafter referred
to as the FDB model), and show how to modify it in order
to respect the symmetries of the cubic space group Fm3̄m1′
(225) [29]. In particular, we will show that the low-energy
effective models obtained from either the FDB model or our
symmetric model are unitarily equivalent. Next, we will show

that our improved tight-binding model captures the transition
between a trivial insulator and a mirror Chern and higher-
order topological insulator (HOTI), with symmetry-indicated
topological index ν = 4 ∈ Z8. Because the dynamics of this
transition are captured by the low-energy effective model,
we will show that the four Dirac cones in the FDB model
at an antiphase domain wall are the boundary modes of this
mirror and higher-order topological insulator. We will show
that any symmetric completion of the FDB model has ν = 4,
with mirror Chern number νm11̄0

= 2 and higher-order “S4”
invariant δS4 = 1 [17,20,21,30]. (Here m11̄0 denotes the mirror
about x̂ − ŷ, and S4 signifies a fourfold rotoinversion.) Finally,
we will connect these results to the recent prediction [30–32]
that PbTe may be, in some cases, a TCI/HOTI. In doing so,
we will see the importance of careful structural determination
for finding small-gap topological materials.

Effective tight-binding model. Let us start by reviewing the
FDB model, exploring its shortcomings, and constructing an
improved model with the same phenomenology. Let us start as
did the authors of Ref. [22] by noting that PbTe has a rocksalt
structure, with the symmetries of space group Fm3̄m1′ (225),
the centrosymmetric, symmorphic space group with a face-
centered-cubic Bravais lattice and octahedral point group.
We take as a basis for the Bravais lattice (we set the lattice
constant a = 1 for simplicity)

t1 = 1
2 (ŷ + ẑ), t2 = 1

2 (x̂ + ẑ), t3 = 1
2 (x̂ + ŷ). (1)

The rocksalt structure has Te atoms located at the 4a Wyckoff
position, with reduced coordinates qa = (0, 0, 0), and Pb
atoms at the 4b Wyckoff position with reduced coordinates
qb = (1/2, 1/2, 1/2). The point group of PbTe is generated
by a threefold rotation C3,111 about the body diagonal of the
unit cell, a fourfold rotation C4x about the x̂ = t2 + t3 − t1

axis, spatial inversion I , and time-reversal symmetry T . The
original model of FDB consisted of spin-1/2 s orbitals on the
4a and 4b Wyckoff positions as a proxy for the Te and Pb
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atoms (whether we start from s or p orbitals, the sign of the
inversion matrix will change, but all topological properties
remain invariant). They added a staggered on-site potential
taking opposite values ±m on the Pb and Te sites, and a
nearest-neighbor spin-dependent hopping. Letting �τ be a set
of Pauli matrices acting in the orbital (Te,Pb) basis, and letting
�σ be the set of Pauli matrices acting on spin, we can write the
Bloch Hamiltonian for the FDB model as

HFDB = mτz + tτy

∑
μ=x,y,z

σμ cos

(
kμ

2

)
, (2)

where we have taken the liberty of restoring a neglected factor
of i in the hopping term to restore time-reversal symmetry
[26,33]. Equation (2) is manifestly time-reversal, inversion,
and C3,111 symmetric; each of these symmetries acts trivially
in the orbital �τ space, and as a rotation (the identity rotation
for inversion) on the spin degrees of freedom. Precisely,
we have for these symmetries {g} that �(g)−1HFDB(k)�(g) =
HFDB(gk), with the matrix representation � specified by

�(C3,111) = exp

[−iπ

3
√

3
(σx + σy + σz )

]
, (3)

�(I ) = I4×4, (4)

�(T ) = iσyK. (5)

The spectrum of this Hamiltonian consists of two sets of
doubly degenerate bands (due to IT symmetry) separated by
a spectral gap which is smallest at the L point (1/2, 1/2, 1/2)
and given by δEL = 2m. Depending on the sign of m, there
is a band inversion at the L point: for m > 0 the valence
bands carry the representation L̄9 of the little group of L [with
inversion eigenvalues (−1,−1)], while for m < 0 the valence
bands carry the representation L̄8 of the little group of L [with
inversion eigenvalues (+1,+1)]. Because there are four L
points in the fcc Brillouin zone, this is not a Z2 nontrivial TI
[28], and so we must look for nontrivial TCI invariants.

Here, however, we run into a problem: The Hamiltonian
HFDB is C4x symmetric, but the matrix representative of C4x

can be seen to be

�(C4) = iτzσy exp(−iπ/4σx ). (6)

This has the unfortunate property that �(C4x )4 = +1, rather
than −1 as needed for a double-valued representation. Re-
pairing this by multiplying by a factor of

√
i is futile, as

then �(C4x ) and �(T ) no longer commute. Thus, the FDB
Hamiltonian does not have the symmetries of the space group
Fm3̄m1′.

To repair the symmetries, we seek hopping terms which
vanish at the L point, are nonvanishing everywhere else, and
transform in the representation given by Eqs. (3)–(5) along
with

�(C4x ) = exp
(
−i

π

4
σx

)
. (7)

In this way, we will replicate the band inversion at L in
our symmetric model. Let us first fix the spin-orbit coupling
(SOC) term. Noting that the matrices τx,yσμ transform in a
pseudovector representation under rotoinversions, we need
them to be multiplied by functions of k which are also

FIG. 1. (a) and (b) Spectrum of the iFDB Hamiltonian given in
Eq. (10), with parameter values T = δ2 = 0.5, δ1 = 0.1. In (a) we
take m = 0.3, while in (b) we take m = −0.3. (c) Wilson loop in
the k2 direction evaluated in the space of the lowest two bands of the
model Eq. (10) with m < 0, as a function of k3, with k1 = 0. We see
that the Wilson loop phases � wind twice around the circle (−π, π ].
This implies that the model is in a topological phase with mirror
Chern number νm11̄0

= 2. (d) Spectrum for the topological phase
of the iFDB model for a ẑ-normal slab. Note the mirror-symmetry
protected Dirac fermion on the 	̄-L̄ line.

pseudovectors. Combining this observation with time-reversal
invariance and the boundary conditions on the Bloch Hamil-
tonian, we find that the simplest choice of SOC term which
vanishes at L is

HSOC = tτy

∑
μ,ν,λ=x,y,z

(
εμνλσμ sin

kν

2
sin kλ

)
. (8)

For now, let us overlook the long (fifth nearest-neighbor)
range of this coupling in light of its mathematical simplicity.
We may be tempted to take mτz + HSOC as our improved
Hamiltonian; however, HSOC vanishes along the whole 	-L
line, rather than just at the L point. To remedy this, we can
add two additional spin-independent hopping terms

Hhop =
∑

μ=x,y,z

[
δ1τz(1 + cos kμ) + δ2τx cos

kμ

2

]
. (9)

We take for our full improved Hamiltonian

HiFDB = mτz + HSOC + Hhop. (10)

When m = 0 with t and δ2 nonzero, this model is gapless
only at the L point. For m �= 0, a nonzero δ1 ensures that the
spectrum of this Hamiltonian is gapped. We see that there is
thus an insulator-to-insulator transition driven by an inversion
of bands at the L point, just as in the original FDB model. We
show the bulk spectrum for positive and negative values of m
in Figs. 1(a) and 1(b).

Topological properties. Let us now examine the topological
nature of this band-inversion transition. We will start by
analyzing the band representations in the model following
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TABLE I. Little group irreps subduced by each of the elemen-
tary band representations in our model. The first column gives the
name of the elementary band representation (EBR). The subsequent
columns give the little group irreps at each of the high-symmetry
points.

EBR 	 X L W

(Ē1g)4a ↑ G 	̄6 X̄6 L̄9 W̄6

(Ē1g)4b ↑ G 	̄6 X̄6 L̄8 W̄7

Refs. [19,30,34]. Following the notation of the Bilbao Crystal-
lographic Server [35–38], our model is induced from orbitals
transforming under the Ē1g representation of the point group
Oh on the 4a site, and a second set of orbitals transforming
in the same representation on the 4b site. The four bands in
our model thus transform under the composite band represen-
tation (Ē1g)4a ↑ G ⊕ (Ē1g)4b ↑ G. These two elementary band
representations subduce representations of the little group Gk
at each of the high-symmetry momenta 	, X, W, and L in the
Brillouin zone; we summarize these representations in Table I
below. In the atomic limit of HiFDB, we have m 	 t, δ1, δ2, and
so the valence bands of our model transform in the (Ē4b ↑ G)
elementary band representation, with occupied little group
representations 	̄6, X̄6,W̄6, L̄9; this can be checked explicitly
using the representation � defined in Eqs. (3)–(5) and (7)
and taking into account the boundary conditions |unk+nigi〉 =
(τz )

∑
i ni |unk〉, where {gi} is a basis for the reciprocal lattice,

and {ni} are integers; this expresses the “tight-binding gauge”
boundary conditions [39]. Upon inverting bands by taking t �
δ2 	 δ1 > 0 > m, |m| � t , we see that the occupied band
irreps at 	, X , and W have not changed. At L, however, the
wave functions now transform under the L̄8 irrep. Examining
the full table of elementary band representations for Fm3̄m1′
[40], we find that the collection (	̄6, X̄6,W̄6, L̄8) of occupied
little group representations cannot be subduced by an integer
sum or difference of elementary band representations; we thus
conclude that this phase of our model is a symmetry-indicated,
stable topological crystalline insulator. Going further, we can
attempt to express the irrep multiplicities in this model as
a rational sum of those in elementary band representations
(EBRs). Reading off the denominator of the rational coef-
ficients, we find that symmetry-indicated TCIs in this space
group are classified by an index ν ∈ Z8. The index ν can be
expressed as [17,20,21]

ν = κ1 − 2κ4 mod 8, (11)

where 4κ1 is the sum of occupied band inversion eigenvalues,
and 2

√
2κ4 is the sum of occupied band IC4z eigenvalues. Note

that both κ1 and κ4 are integers [20]. For our model, we have
ν = 4 in the topological phase, and ν = 0 in the trivial phase.
As shown in Refs. [20,21], a minimal model for a TCI with
ν = 4 arises through a “stacking” (in Hilbert space) of four
Z2 topological insulators. We thus expect to find protected
gapless states on symmetric surfaces of this model, as we will
discuss further below.

Furthermore, note that while the original FDB model is not
C4z symmetric, it is inversion symmetric. Thus, the sum of
occupied band inversion eigenvalues κFDB

1 can be computed

for that model, and is given by

κFDB
1 =

{
0, m > 0
4, m < 0.

(12)

Next, note that IC4z is not in the little group of any of the L
points. Therefore, in any symmetric completion of the FDB
model the occupied band IC4z eigenvalues do not change as a
function of m, and so neither does κ4. Thus, in any symmetric
completion of the FDB model, the index ν must change by
4 as the sign of m changes. Assuming additionally that the
m > 0 phase is connected to the (unobstructed [19]) atomic
limit, we deduce that the band inversion in the FDB model
becomes, when cubic symmetry is enforced, the transition
between phases with ν = 0 and ν = 4.

As discussed in detail in Refs. [20,21], the value of ν does
not uniquely determine the topological phase of a system
in space group Fm3̄m1′. In particular, with ν = 4, there
are two possible types of topological phase: the first has a
mirror Chern number νmz = 4 mod 8 associated with the mz

mirror symmetry, while the second has both a mirror Chern
number νm11̄0

= 2 mod 8 associated with the diagonal x̂ − ŷ
mirror symmetry, as well as a nonvanishing higher-order
topological index. It is this latter phase which describes our
current model.

We can make these statements more precise by examining
the low-energy k · p theory for the topological transition in
both HFDB and HiFDB. Starting with the original FDB model,
we find by expanding Eq. (2) that

HFDB(L + k) ≈ mτz +
∑

μ=x,y,z

t

2
τyσμkμ. (13)

On the other hand, performing the same expansion of HiFDB,
setting δ2 = t , and defining the rotated coordinates (ka, kb, kc)
and spin matrices (sa, sb, sc) [41] yields to quadratic order

HiFDB(L + k) ≈ [
m + 2δ1

(
k2

a + k2
b + k2

z

)]
τz +

√
3δ2kcτx

+ 2T
√

3(kaτysa + kbτysb). (14)

Up to a choice of basis for the Dirac matrices, this is the
Bernevig-Hughes-Zhang model Hamiltonian for a topological
insulator [4,42];- note that because of our choice of boundary
conditions and our expansion about the L point, inversion
symmetry is represented by �L(I ) = τz in the k · p expansion.
Equation (14) is also equivalent to Eq. (13) if we take δ2 =
2T = t/2. Since there are four L points, we see that this is
a TCI rather than a TI transition. Furthermore, note that the
plane kx = ky corresponds to the plane kb = 0, and is invariant
under m11̄0; this symmetry is represented at the L point by
the matrix �L(m11̄0) = exp[iπ/(2

√
2)(sa)]. Restricting HiFDB

to the mirror plane, we find that the Hamiltonian is block
diagonal in the basis of m11̄0 eigenstates, and describes a
Chern insulator transition in each mirror subspace. Since
there are two L points in this mirror plane, we thus deduce,
following Ref. [9], that this model corresponds to a mirror
Chern insulator with νm11̄0

= 2. To verify this, we extract the
mirror Chern number from the flow of hybrid Wannier charge
centers [43,44], i.e., from the Wilson loop [45,46]. We show
in Fig. 1(c) the k2 directed Wilson loop for the occupied
bands as a function of k3. We see that in the k1 = 0 plane the
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Wilson loop phases exhibit a nontrivial winding with winding
number 2; since in the fcc Brillouin zone this is the only mirror
invariant plane [9], this signifies the mirror Chern number
νm11̄0

= 2 [47].
As pointed out in Refs. [16,20,21], models in space group

Fm3̄m1′ with ν = 4 and νm11̄0
= 2 also have a nontrivial

higher-order index δS4 = 1 protected by fourfold rotoinversion
symmetry. This phase has four Dirac cones on a ẑ-normal
surface, thus explaining the four Dirac fermions on an an-
tiphase boundary found in Refs. [22–24]: At the level of the
tight-binding model, an antiphase domain wall is simply a
boundary between the trivial (m > 0) and topological (m < 0)
phase of the model. These domain-wall fermions are indeed
of topological origin, and are symmetry protected in any sym-
metric extension of the FDB model. We show the spectrum
of the topological phase of Eq. (10) on a ẑ-normal slab in
Fig. 1(d).

Finally, note that the original low-energy FDB Hamiltonian
Eq. (13) at linear order has an accidental mirror symme-
try �̃L(m11̄0) = τz exp[iπ/(2

√
2)(sx − sy)], which leaves the

plane kx = ky invariant. While this symmetry is inconsistent
with the inversion symmetry of the full model (and so will be
broken by crystal-symmetry preserving perturbations, includ-
ing higher-order terms in the k · p expansion), it explains why
the authors of Refs. [22–24] were able to find domain-wall
fermions in their model.

Ab initio results. In the previous sections, we have seen
how symmetrized completions of the FDB model of PbTe
yield higher-order topological and mirror Chern insulators.
Under certain conditions, the band structure for realistic PbTe
as computed with ab initio methods realizes this same ν = 4
symmetry-indicated phase. This can be seen by analyzing the
material catalogs of Refs. [30,31], which both report the value
of ν = 4 for PbTe. For confirmation, we have recomputed
the ab initio band structure of PbTe using density functional
theory (DFT) [49,50] as implemented in the Vienna Ab initio
Simulation Package (VASP) [51,52]. We use the structural
parameters as reported in Ref. [48]. The interaction between
ion cores and valence electrons was treated by the projec-
tor augmented-wave method [53], the generalized gradient
approximation (GGA) for the exchange-correlation potential
with the Perdew-Burke-Ernkzerhof for solids parametrization
[54], and spin-orbit coupling was taken into account by the
second variation method [55]. A Monkhorst-Pack centered at
	k-point grid of (11 × 11 × 11) for reciprocal space integra-
tion and 500 eV energy cutoff of the plane-wave expansion
have been used. We show the band structure in Fig. 2, with
an inset highlighting the rather small gap at L. Employing
the VASPtoTrace tool [30,56], we compute the little group
irreps of the occupied bands at the high-symmetry points,
shown in Table II; we give the irreps of SnTe as well for
comparison. By using Eq. (11), we see that ν = 4 for both
SnTe and PbTe. Note, in fact, that the irrep labels for SnTe and
PbTe differ only in a shift of the origin of the system by ( 1

2
1
2

1
2 )

Furthermore, the topological transition to ν = 4 in the realistic
material is driven by a band inversion of the irreps at L relative
to W , just as in the FDB model. To fully determine the topo-
logical phase, we evaluate the mirror Chern number of the oc-
cupied bands using Z2PACK [44]. We find a mirror Chern num-
ber νm110 = νm11̄0

= 2, just as in the iFDB model [57] (Fig. 3).

FIG. 2. Bulk band structure of PbTe, calculated using the struc-
ture reported in Ref. [48]. The inset shows the small gap and band
inversion at the L point.

However, it is well accepted that the mirror Chern number
νm11̄0

in PbTe is zero under ambient experimental conditions,
while it is 2 for SnTe [9]. To reconcile this with the non-
trivial ν = 4 topological index, we note that in addition to
the structure used for the ab initio calculations here and in
Refs. [30,31], PbTe has 41 other entries in the ICSD [58]
in the space group Fm3̄m1′ [30]. A DFT analysis of other
structures (for instance, the structure reported in Ref. [59])
yields a trivial index ν = 0 due to a band deinversion at L, in
agreement with the experimental findings. This highlights the
fact that for small band-gap insulators, one must be cautious
in extracting the band topology from ab initio calculations; for
PbTe in particular, the failure of semilocal DFT to correctly
produce the (correct sign of the) experimental band gap in
certain cases has been noted previously [60].

To investigate this systematically, we have computed the
band structures and topological index ν for all 42 entries
of PbTe in the ICSD, using the Perdew-Burke-Ernzerhof
(PBE) functional. The input parameters for these compounds
differ only in the reported lattice constant a0, which range
between 6.157 and 6.543 Å. For the six reported structures
with a0 � 6.44 Å, PBE predicts ν = 4; for the remaining with
larger lattice constants we find ν = 0. In the Supplemental
Material we give a table summarizing our DFT calculations
[61]. Taken optimistically, this shows that PbTe is very close
to a topological phase transition, which may be tunable as a
function of external parameters such as hydrostatic pressure.

TABLE II. Occupied band irreps for SnTe and PbTe at the high-
symmetry points. Irreps are listed in order of increasing energy, i.e.,
those states closest to the Fermi level appear at the end of the list.
Note that the irreps at 	 and X are identical for the two materials.

k SnTe PbTe

	 	̄6, 	̄6, 	̄8, 	̄11 	̄6, 	̄6, 	̄8, 	̄11

X X̄6, X̄6, X̄8, X̄8, X̄9 X̄6, X̄6, X̄8, X̄8, X̄9

L L̄9, L̄8, L̄8, L̄4L̄5, L̄9 L̄8, L̄9, L̄9, L̄6L̄7, L̄8

W W̄6,W̄7,W̄7,W̄6,W̄7 W̄7,W̄6,W̄7,W̄6,W̄6
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FIG. 3. Hybrid Wannier charge centers for the +i mirror sub-
space of the occupied bands of PbTe in the m110-invariant plane. The
left shows the raw Wannier centers (Wilson loop eigenvalues), while
the right shows their sum. Since the sum “winds” twice across the
unit cell, we deduce that the mirror Chern number νm11̄0

= 2.

Conclusion. We have revisited the effective model of
PbTe as presented in Refs. [22–24]. We have shown that

the domain-wall fermions in the FDB model, long derided
as nontopological, are signatures of the topological surface
states present in any symmetric completion of the model,
protected by mirror and fourfold rotoinversion symmetries.
Furthermore, we show that ab initio calculations reveal that
some of the reported structures of realistic PbTe are in this
same symmetry-indicated class of materials, at least within
the GGA. This shows that PbTe is an ideal platform for
exploring structurally tunable topological behavior. Finally,
while within the context of our effective model there is no
difference between an antiphase domain wall and a domain
wall with the vacuum, this is not necessarily true in a more
realistic system. Given the recent focus on defect response
of higher-order topological insulators [62–65], it would be
interesting to examine this more carefully for both SnTe and
PbTe structural variations in future work [66,67].
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