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Doping in garnet-type electrolytes: Kinetic and thermodynamic effects
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To shed light on the impact of doping on the conductivity of garnet-type electrolytes, we use molecular
dynamics with an ab initio designed force-field to investigate the complex interplay between the carrier
concentration and the kinetic and thermodynamic changes induced by the addition of hypervalent dopants. We
focus in particular on the effect of the distribution of the doping agents, and we find that there is a need to perform
a proper average over the frozen disorder introduced by the doping in order to achieved converged properties. We
observe the competing effects induced by the decrease in concentration of the conducting ions (Li+) and by the
perturbation of the energy landscape resulting from the insertion of hypervalent dopants. These two phenomena
give rise to an intricate balance between thermodynamic and kinetic properties, which make the interpretation
of the experiments very challenging. In particular, while the increase in the dopant concentration stabilizes the
conductive cubic phase of these garnet-type materials, the kinetic effects have two distinct components, one
promoting and one hindering diffusion.
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I. INTRODUCTION

The next generations of lithium batteries still face many
challenges in terms of safety and stability. The key to solving
many of these issues might lie in the selection of more
efficient electrolytes. Until now, liquid electrolytes based on
organic solvents such as ethylene carbonate or propylene car-
bonate have been commonly used. The general flammability
of organic solvents, the risk of environmental contamination
upon improper disposal of liquids [1], and the difficulties
of using a liquid phase in production are among the main
issues hampering the use of these electrolytes and limiting
the development of future battery technologies such as Li/O2

and Li/S. The lack of electrochemical stability of organic
electrolytes in Li/O2 batteries has been shown both experi-
mentally [2–5] and theoretically [6,7] to result in a loss of
efficiency. Similarly, the solubility of some LiSn compounds
in the organic solvents used leads to a similar loss of efficiency
over time in Li/S batteries [8]. All these issues have stimu-
lated research efforts to find suitable electrolyte replacements.
Early research advances in the field of solid-state electrolytes
(SSEs) [9,10] have boosted the interest in these compounds.
However, although many candidates have been found that
combine thermodynamical, chemical, and electrochemical
stability with reasonably high Li-ion conductivity in several
chemical families, the optimal solid-state electrolyte is yet to
be discovered.

Several inorganic compounds have been investigated as
potential solid-state electrolytes [9,11–13]. Candidates range
from oxides to nonoxides, and crystalline to amorphous. In
2003, Thangadurai et al. [14] identified a new class of Li-ion
conductors, the garnet-like lithium oxides. Although the first
of those identified structures had relatively low conductivity
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(≈10−6 S cm−1), the high versatility of the structure allowed
great improvement through composition change and doping.
Among the most promising candidates, lanthanum and zir-
conium containing lithium oxides (LLZO) have proven to
be the most promising ones, with conductivity going up to
10−3 S cm−1 [15–17].

LLZO can be found in two structural phases: a tetragonal,
low-conducting one, and a cubic, highly conductive one. The
difference of conductivity between the two phases reaches
up to three orders of magnitude and is mostly due to the
difference in the Li networks of each phases. The tetragonal
structure is composed of a saturated network of 56 Li sites
(8 tetrahedral, 8a, and 48 distorted octahedral, 16 f and 32g).
This arrangement forces the diffusion process to follow
an energetically improbable, concerted mechanism. On the
other hand, in the cubic phase, the distorted octahedral
sites split into two energy equivalent sites (96h), leaving
space for a hopping-type mechanism. Though the tetragonal
structure is more stable at room temperature, the cubic, better
conducting, phase can easily be stabilized using doping.
The understanding of the mechanism of phase stabilization
as a function of the conditions (doping concentration and
temperature) is therefore central to guide the design of better
performing solid-state electrolytes.

Computational investigations targeted at solid-state elec-
trolytes aim at creating a deeper understanding of the various
phenomena that control and influence the conductivity of a
given ionic species. Although this type of investigation is of-
ten presented as the promise of the identification of better ma-
terials, most new electrolytes are still discovered by intuition
or serendipity. This is because, presently, the theoretical meth-
ods available for the accurate characterization of the medium-
to-long timescale needed to describe the transport process are
not suited to use on large datasets. However, molecular dy-
namics simulations can still offer very valuable information.
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FIG. 1. Left: Structure of the cubic phase of the lithium con-
taining garnet (LLZO). The Zr and La polyhedra are represented
in green and blue, respectively. Right: Ring structure formed by the
tetrahedral 24d and the two octahedral 96h Li-sites in the crystal.

In particular, it can help compare the physical and chemical
properties of systems differing by a set of well-controlled
parameters, ranging from the atomic composition to the ther-
modynamic properties like temperature and pressure.

In this work, we focus on a comparative study of the
conductivity of doped garnets of the LLZO family (see Fig. 1).
Several studies, both experimental and theoretical, have al-
ready investigated some of the effects of doping on LLZO.
Three types of doping can be identified: (i) the substitution of
Li ions by hypervalent cations such as Al [18,19] or Ga [20];
(ii) the substitution of the metal centers by cations such as Ce
[21], Ta [22,23], W [24,25], and Nb [15]; and (iii) a codoping
by more than one of the two first options [26–29].

Adams et al. [30] and Jalem et al. [20] first introduced the
use of force-fields for the modeling of, respectively, Ga and
Ta or Nb doped garnets. Although these force-fields could
predict a cubic phase for the low-temperature structure of the
doped systems, neither force-field could successfully describe
the cubic to tetragonal transition of the undoped structure.
Klenk et al. [31] later showed that the stability of the undoped
garnet system can be accurately described using a polarizable
force-field, based on an ad hoc determination of the polariz-
able force-field parameters. Despite the interesting results, the
authors did not address the effects of doping on the structure
of LLZO or its conductivity. More recently, Chen et al. [23],
using a nonpolarizable force-fields, successfully described the
phase transition of the undoped structure and the stabilization
of the cubic phase via Ta doping. Their work focused on the
understanding of the phase stabilization through changes in
the occupancy of the lithium sites. However, their study did
not extend to the investigation of the lithium ions dynamics.

The motivations for this work are twofold. Our long-term
goal is to provide a general framework for the unsupervised
parametrization of core-shell models to be used for the sim-
ulation and screening of solid-state electrolytes properties.
With this work, we aim to understand the issues related to
the use of this type of modeling in the description of the
LLZO systems, and in particular of doped ones. We inves-
tigate in detail the physics of W-doped systems, with for-
mula Li7−2xLa3Zr2−xWxO12, from both a kinetic (barriers and
conductivity) and thermodynamic (phase stability) standpoint.

Our system choice was motivated by the experimental results
provided by Li et al. [25], where several dopant concentrations
and temperatures were explored using a consistent synthetic
approach. Our work mainly differs from previous analysis by
its focus. Our target is to resolve the effects on the dynamics
resulting from the change in charge carrier concentration and
from the introduction of the doping agents. To this end, we
compare two doping models: (i) an implicit model using a
uniform background charge, and (ii) an explicit model using
substitution of hypervalent ions. In the second model, we
introduced an additional average over the positions of the W
ions to account for the frozen noise of the dopant distribution
and analyze the results within the framework of spin glass
theory. We show that while doping can affect the conductivity
both through a depletion of the charge carriers and a potential
increase of the hopping barriers by the hypervalent dopants, it
also influences the thermodynamic stability of the conductive
cubic phase. The delicate interplay between these two effects
is what makes the physics of doped SSE very challenging for
both experimental and theoretical studies.

II. COMPUTATIONAL METHODS

In this section, we report a short description of the force-
field used in this work for the characterization of the structural
stability and for the analysis of the transport properties of
undoped and W-doped LLZO derivatives. Classical molecular
dynamics was performed using long-range Coulomb interac-
tions, short-range Buckingham potentials of the form

U (Ri j ) = Ae− Ri j
ρ − C

R6
i j

(1)

for all oxygen- and metal-oxygen pairs (i, j) within a cut-
off distance Ri j = 10 Å, and a Dick-Overhauser core-shell
model [32] to describe the polarization of the O atoms, as
implemented in the LAMMPS [33] code for molecular dynam-
ics simulations. The parameters for the polarization of the
oxygen, i.e., the core-shell charge splitting, Y , and spring
constant, k, are fitted to the atomic polarization computed
in the crystal environment using density functional theory
(DFT). The Buckingham parameters for the metal-oxygen
pairs, Li-O, La-O, and Zr-O, refined from the one used by
Klenk et al. [31], and the value of the unit charge q were
optimized using a fitting procedure based on first-principles
data evaluated using DFT. All DFT calculations were carried
out using the plane wave CPMD software package [34,35].
The PBE functional and norm-conserving Goedecker pseu-
dopotentials [36] were used in conjunction with a cutoff of
150 Ry. Only the repulsive part of the metal-oxygen pairs is
considered with all other C parameters in Eq. (1) being set to
0. The optimization was carried by minimizing the sum of the
mean-square errors on the forces and total energy, as well as
the sum of the angular deviation of the forces, by means of the
cost function

C({bLiO}, {bLaO}, {bZrO})

= 1

Ns

∑
s

(
αs

(
EDFT(s) − EpFF(s)

)2
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+βs

∑
i

∣∣�FDFT(s, i) − �FpFF(s, i)
∣∣2

+ γs

∑
i

�FDFT(s, i) · �FpFF(s, i)∣∣�FDFT(s, i)
∣∣ · ∣∣�FDFT(s, i)

∣∣
)

, (2)

where {bXO} = {AXO, ρXO} is the parameter set that de-
fines the Buckingham potential of the pair X -O with X =
{Li, La, Zr}, s runs over the used structures, and i over the
atoms of the structure s. α, β, and γ are weights used to
balance the fitting procedure. The parameters for the W -O pair
were obtained using the same methodology. The parameters
used for this work are listed in Table I.

All MD simulations were carried out in the isothermal-
isobaric (NPT ) and canonical (NV T ) ensembles, with an
integration time-step of 0.25 fs, using a 2 × 2 × 2 supercell.

A colored noise or generalized Langevin equation (GLE)
thermostat for core-shell models [37,38] was used to control
the temperature of the system. The choice of the thermostat
was motivated by non-negligible drifts observed in the energy
when using the Nosé-Hoover thermostat with hypervalent
ions present in the structure. The colored noise thermostat
maximizes the adiabatic separation of the dynamics of the
lightweight shells from the one of the ions while minimizing
the impact on the shell dynamics. To account for a small
energy transfer to the shells and maintain a stable dynamics
over long simulation times, a zero-temperature memoryless
friction thermostat is coupled to the shells [37]. In Appendix B
we show that the use of the colored-noise thermostat has a
minimal impact on the dynamical quantities of interest. In the
case of the NPT simulations, a Berendsen barostat was used
for the pressure control with a damping parameter of 25 ps.
The phase diagrams (Fig. 4) were computed using temperature
increments of 120 K from 200 to 1400 K, in both directions.
In the temperature range where a phase transition took place,
a finer sampling was performed using temperature increments
of 25 K. At each temperature step, the system was equilibrated
for 250 ps and statistics were collected over the subsequent
750 ps of dynamics. For the computation of the conductivity,
the temperature was increased to the target temperature over
250 ps. After 250 more ps of equilibration, the positions were
recorded every 0.1 ps for a duration of 4 ns. Block-averaging
analysis was used to estimate the error for all the quantities
computed along the trajectories. This technique relies on the
division of the trajectory into long enough blocks. Each block
provides an independent estimate of the quantity of interest
(e.g., lattice parameter, diffusion coefficient), and the final
error is derived from the standard error of the mean, reflecting

TABLE I. Force-field parameters used in this work.

Pair A (eV) ρ (Å) C (eV Å
6
) Charge and shell

Li − O 461.30 0.3074 q(e) = 0.962
La − O 4420.23 0.2980
Zr − O 1269.33 0.3499
W − O 1397.76 0.3549 Y (e) = −2.75

O − O 22764.30 0.1490 27.63 k (eV Å
−2

) = 30.2

the spread of the quantity measured through the different
blocks [39].

Doping is used to vary the concentration of charge carri-
ers in the structure. Each substitution introduces extra elec-
trons/holes whose charges have been compensated by the
addition/removal of the corresponding number of Li-ions.
Here we investigate the substitution of Zr4+ ions by W6+
ones. To shed light on the origin of the observed changes in
material properties and identify if they are triggered by the
presence of hypervalent cations or by the change in carrier
concentration, we compare two models: an implicit and an
explicit doping protocol. In the implicit model, the concen-
tration of the charge carrier is changed without substituting
hypervalent cations. The extra charge is compensated by a
positive background charge which does not influence the
forces during the dynamics. The explicit model incorporates
the substitutions explicitly. Note that only the latter model
is able to capture, in an approximate way, the local changes
of the electronic structure due to the presence of the dopant.
Comparison between the results of the two models can shed
light on the different static and dynamical aspects at play in
the doping of the garnet electrolytes.

The addition of a small fraction of dopants raises the
issue of their distribution in the unit cell considered. This
is particularly important since the position of the dopants
remains frozen over the time of our simulations. This situation
is reminiscent of the fixed disorder distribution in spin-glasses
[40]. To account for the disorder of the dopant distribution,
we introduce, in addition to the time average, an additional
average of all measured properties over a set of structures
with different dopant distributions. The expectation value of
an observable J therefore becomes

[〈J〉]av =
∑
�D

(∑
R

e−βE�D (R)

Z�D

J�D (R)

)
· P�D , (3)

where R is the collective array of the nuclear coordinates,
and Z�D is the partition function for a given realization of
the disorder �D, distributed with the probability P�D . In the
ergodic limit and using the fact that the �D degrees of freedom
are frozen,

[〈J〉]av =
∑
�D

(
lim

t→∞
1

t

∫ t

0
J�D (R(t ′))dt ′

)
· P�D . (4)

The Boltzmann probability P�D is evaluated using a Monte
Carlo simulation in the ionic space composition [41], accord-
ing to which Zr and W atoms are swapped at an effective
temperature of 1200 K to mimic the dopant distribution at
the usual sintering temperatures. Figure 2 shows the W-W
radial distributions obtained for the Boltzmann-distributed
ionic configuration evaluated at two different doping concen-
trations, x = 0.15 and 0.25. It is important to note that the
W-W pair distribution obtained from a random replacement of
the Zr ions with the W atoms would overlap with the original
Zr-Zr undoped pair distribution. However, one can observe
a depletion of the shortest distance pairs as a result of the
increased Coulomb repulsion between the hypervalent W6+
ions. When considering explicit doping, all reported calcula-
tions are obtained averaging over an ensemble of Boltzmann-
weighted structures unless otherwise stated.
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FIG. 2. Radial distributions of the Zr-Zr (red) and W-W (blue)
pairs, respectively, in the undoped and Boltzmann-distributed doped
structures with doping fraction x = 0.15 (top) and 0.25 (bottom).
The shortest distance pairs are absent at low doping concentration
structure due to the increased Coulomb repulsion between the hyper-
valent cations. Increasing the concentration saturates the structure
enough that the shortest distances are forced to be occupied but
longer distances remain favored compared to the original bcc Zr
structure. The green curve represents the integral of the W-W radial
distribution function.

III. RESULTS

A. Structure analysis

To assess the quality of our polarizable force-field Hamil-
tonian and the effects introduced by the use of the GLE ther-
mostat, we first compare our results to experimental measure-
ments, namely x-ray diffraction (XRD) and lattice parameter
measurements. In Fig. 3, we present the XRD pattern com-
puted for doped structures (x = 0.15) from NV T trajectories
and we compared it to the corresponding experimental values
reported by Li et al. [25]. We observe that the position and
intensity of the peaks are well reproduced, even though a
systematic shift is present. This is likely due to differences
in the lattice parameters and effective charges on the atoms.
Despite these discrepancies, these first results confirm the
quality of our model and ensure a good level of trust in the
interpretation of the following simulations.

Figure 4 shows the lattice parameters obtained from our
NPT simulations. In the case of the undoped system, we
present two different curves, the first obtained from a heating
process from 200 K upwards and the second from a cooling
one from 1400 K downward. The transition from the cubic
to the tetragonal phase can clearly be observed between 800
and 900 K and is characterized by a small hysteresis. The dif-
ference between the two transition temperatures is, however,
smaller than the temperature step used. Most importantly,
in the case of the doped structures, both our implicit and
explicit doping models at x = 0.15 are able to describe the
stabilization of the cubic structure at low temperature. This

FIG. 3. XRD pattern of the Li6.7La3Zr1.85W0.15O12 computed
from the 300 K trajectories averaged over the dopant distribution.
The pattern replicates the use of Cu Kα radiation with 2θ in the range
of 10◦−80◦. For comparison, we display the position and intensity of
the peaks reported by Li et al. [25] for the same structure.

suggests that the stabilization of the cubic phase induced by
doping is a result of the change in the lithium concentration
rather than of electrostatic effects induced by the presence of
the dopant itself. This is in agreement with previous studies
on the subject [23]. Our model predicts quantitatively the
experimental split between the lattice parameters despite a

FIG. 4. Lattice parameters as a function of the temperature for
an undoped structure (green and purple) and doped (blue implicit
and red explicit) with a doping fraction x = 0.15. The brown circles
represent experimental values reported by Larraz et al. [42]. The
brown squares represent the same experimental values shifted so as
to align the cubic lattice parameters. The phase transition can be
observed between 800 and 900 K for the undoped structure with a
small hysteresis. Both doped models successfully stabilize the cubic
structure at low temperature.
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FIG. 5. (a) Radial distribution function of the Li-M pairs, M =
W (solid) and Zr (dotted), for x = 0.150 at temperatures between
300 and 500 K. The vertical lines indicate the distances to the neigh-
boring octahedral, 96h (dash-dotted), and tetrahedral, 24d (solid),
crystallographic sites. (b) Integral of the radial distribution functions
presented in (a).

systematic shift toward smaller values. The discrepancy be-
tween our simulation and experimental measurement (as well
as previously reported simulations [31,43]) may be associated
with the different force-field parametrization and with the use
of the colored noise thermostat in our simulations. The differ-
ence in the equation of state of the cubic phase presented in
Appendix A can in particular help explain the underestimation
of the lattice parameter by our simulations.

Figure 5 shows the radial distribution functions for the
Zr-Li and W-Li pairs at various temperatures and their inte-
grals for a doping of x = 0.15. The first coordination shell
is well defined and located at the distance corresponding to
the nearest two octahedral sites: 2.94 and 3.13 Å, respectively.
Around the Zr centers, no further coordination shell is well
resolved indicating a liquidlike behavior or the ions. On the
contrary, in the neighborhood of the W centers, the lithium
density located beyond the first shell is pushed back by the
higher Coulombic repulsion and forms a second shell near the
next-nearest octahedral sites at a distance of 4.7 Å. Figure 6
shows the lithium ion distribution around a Zr and W center
sampled during 8 ns of simulation. The changes described in
Fig. 5 are reflected here in the depletion of the lithium density
at the tetrahedral sites, cutting the lithium density into six
blobs centered around the octahedral sites.

B. Dynamics and diffusion analysis

Dynamical properties can be directly assessed by means
of molecular dynamics simulations. Velocity autocorrelation
functions are valuable sources of insight for the characteri-
zation of the dynamics of a system. We consider the single-
particle velocity autocorrelation of the lithium ions, defined

FIG. 6. Representation of the lithium distribution sampled dur-
ing 8 ns of simulations around a central Zr (left) and W (right) ion.
The lithiums are displayed in red when within a 3.75 Å distance from
the central atom, and blue otherwise. The sites of the crystallographic
structures are overlaid in orange. The figure illustrates the depletion
of the lithium density around the tetrahedral sites in agreement with
what is observed in Fig. 5 (r = 3.6 Å).

as CLi
v (t ) = [〈vvvi(t0 + t )vvvi(t0)〉i,t0 ]av, where vvvi(t ) is the velocity

of a tagged lithium ion i at time t . Brackets 〈·〉X are used
to represent the averaging over the variable X . Note that by
ergodicity, the average over the initial time, t0, is equivalent
to an ensemble average over initial configurations. Although
the autocorrelation function displays a very fast decay, on the
order of a few picoseconds, typical of liquid systems [44]
and other fast ionic conductors [45], the diffusive process is
reflected in the long-time tails (see Appendix C). We find that
the velocity autocorrelation functions in the garnet material
follow a power-law decay of the form τ−a. For our simula-
tions, we obtain a value of a = 2 in the case of the undoped
cubic structure and explicitly doped material, and a = 3 for
the implicitly doped structure. This difference in the kinetics
between the explicit and implicit model can be explained by
the introduction of the hypervalent W6+ cations in the explicit
models. These acts obstacles, hampering the motion of the
charge carriers. Note that the decrease of the carrier concentra-
tion is identical for the two models. These observations are in
line with the effect of the W centers on the lithium distribution
in Figs. 5 and 6. The Fourier transform of CLi

v (t ), i.e., the
Li power spectrum, CLi(ω), shows two very broad peaks at
frequencies of 130 and 270 cm−1 for the explicitly doped
system. The peaks can be connected to the presence of the
two nonequivalent lithium sites in the structure (see Fig. 1).

Central to the analysis of the dynamical effects of doping
is the calculation and comparison of the diffusion coefficients.
To this end, we compare the behaviors of the charge, Dσ ,
and tracer, DTr, diffusion coefficients. Both quantities can
be estimated by the derivative of the long-time limit of the
mean-squared displacements of, respectively, the center of
mass of the particles and the particles,

Dσ =
[

lim
t→∞

NLi

6

∂

∂t
〈|〈xi(t0 + t )〉i − 〈xi(t0)〉i|2〉t0

]
av

, (5)

DTr =
[

lim
t→∞

1

6

∂

∂t
〈|xi(t0 + t ) − xi(t0)|2〉i,t0

]
av

(6)

with NLi the number of Li ions in the simulation cell and
xi(t ) the position of the Li ion i at time t . In particular,
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FIG. 7. Relative error of Dσ,n, the estimator of the charge
diffusion coefficient using a subset of n structures of formula
Li6.5La3Zr1.75W0.25O12, with respect to Dσ,50, used as an estimate of
Dσ,∞ at 300, 400, and 500 K.

Dσ is directly proportional to the ionic conductivity [45].
The polynomial decay of the velocity autocorrelation function
leads to a slow-down of the convergence of both the charge
and particle mean-square displacements used in the evaluation
of the transport coefficients. The derivative of the mean-square
displacement can successfully be fitted to a D∞ + ct−(a−1)

function that we use to evaluate the asymptotic values of the
diffusion coefficients (see details in Appendix C).

When performing explicit doping, we observe large varia-
tions of the measured diffusion coefficients as a function of
the dopant distribution. This effect is particularly strong at
low temperatures. The convergence of the diffusion coefficient
as a function of the dopant distribution is evaluated in the
following way. Starting from an ensemble of 50 Boltzmann-
distributed dopant configurations, we computed 50 indepen-
dent trajectories and corresponding charge diffusion coeffi-
cients, Dσ,i, with i = 1, 50 [using Eq. (5)]. The average over
these values is taken as the reference diffusion coefficient
Dσ,∞ = 〈Dσ,i〉i. To estimate the convergence as a function of
the number of dopant configurations k, we computed averages
of the diffusion coefficients within Nk subsets of trajectories:
D(2)

σ,I to D(49)
σ,I , where D(k)

σ,I (with I = 1, Nk) is an average
diffusion coefficient computed using k trajectories sampled
from the initial pool of 50 trajectories. Since the number of
possible combinations grows as (50

k ) = 50!
k!(50−k)! , we apply a

cutoff to Nk (Nk � 10 000). The relative error for the estimated
diffusion coefficients (as compared to Dσ,∞) is then defined as
Z (k)

I = |D(k)
σ,I − Dσ,∞|/Dσ,∞. The corresponding mean values,

Z (k) = 〈Z (k)
I 〉I , and standard deviations of Z (k)

I as a function
of k are reported in Fig. 7. An analysis of the dependence
on the total simulation time is given in Appendix D. These
results clearly show that, from a computational perspective,
the average over different dopant configurations is indeed
required in order to obtain fully converged results [see Eq. (4)]
that can be compared with experiments. In fact, experiments

FIG. 8. Tracer (solid) and charge (dashed) diffusion coefficients
for doping concentrations x = 0.15 (left) and x = 0.25 (right). Sim-
ulations considering explicit and implicit doping are reported and
compared with the ones obtained for a cubic undoped structure.
Activation energies are reported in the text.

deal with measurements over a large distribution of possible
dopant arrangements, while simulations are limited to a single
periodically replicated distribution at a time and must there-
fore be averaged over all relevant (Boltzmann-distributed)
dopant distributions.

C. Diffusion coefficients

The diffusion coefficients obtained after averaging over the
dopant distributions at 300, 350, 400, 450, and 500 K are
summarized in Fig. 8. At all temperatures, our results are
compatible with a linear Arrhenius behavior. For comparison,
we also show the values obtained for the undoped material
constrained in the cubic geometry (green lines). We first
focus on the tracer diffusion coefficients, DTr (solid lines in
Fig. 8), for which we extracted an activation energy of about
0.16 eV. However, since this structure is unstable at room
temperature, we can only compare our numerical results with
values extrapolated from higher temperature (900–1400 K)
measurements. Our simulations are in good agreement with
the corresponding experimental activation energy estimated
to be about 0.18 eV [46]. In the implicit scheme, the values
of the activation energies decrease compared to the undoped
case to 0.13 (x = 0.15) and 0.08 eV (x = 0.25). The decrease
in the number of charge carriers also correlates to an increase
in the overall conductivity. This is most likely due to the
increased number of empty sites allowing greater mobility of
the ions. When considering the explicit model, the activation
energies increase to 0.20 and 0.25 eV, respectively, with an
overall decrease in conductivity. This is coherent with the
picture emerging from Figs. 5 and 6 where the hypervalent
W ions displace some of the Li density around them creating
obstacles to the diffusion. Compared to the experimental
values of 0.44 and 0.42 eV reported by Li et al. [25], the
model correctly yields a qualitative increase in the activation
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energy to values similar to those expected for Ta doping [47]
(although we underestimate the activation energies). Similar
observations can be made for the charge diffusion coefficients
(dashed line in Fig. 8).

The ratio between the tracer and charge diffusion coef-
ficients is called the Haven ratio and provides information
about the motion of carriers in the system [45,48–50]. A
Haven ratio, H , of 1 corresponds to uncorrelated Brownian
motion, whereas lower values are an indication of coherent
collective movements. Furthermore, a constant temperature
Haven ratio implies an equality between the activation en-
ergies related to tracer diffusion and ionic conductivity. In
LLZWO, we observe a similar behavior to that of the thio-
lisicon electrolyte Li10GeP2S12 [45], displaying comparable
activation energies. In the case of undoped systems, we obtain
H ∼ 0.3, a value compatible with other recent simulation
results [43,50]. The same value is obtained for the Haven ratio
of the implicitly and explicitly doped system. As discussed
in Ref. [50] using nudged elastic band (NEB) calculations,
there is an understanding that diffusion events involving the
simultaneous movement of different particles are much more
favorable than single ion jumps. A similar conclusion can be
reached considering the low value of the Haven ratio, which
proves that the most probable, and therefore energetically
favored, diffusion events involve a coherent particle motion.
Our result suggests that the same mechanism applies in the
case of doped systems and therefore we can conclude that the
local defects introduced by the dopant are not strong enough
to decorrelate particle motion.

Only in the unphysical case of the implicit doping model
can we find a slight decrease of H and a small temperature
dependence of the Haven ratio, which do not change the
overall interpretative picture.

D. Site occupancy autocorrelation function

Finally, in order to shed further light on the mechanism
and dynamics of the Li diffusion in doped and undoped LLZO
structures, we also investigate the correlation of the occupancy
of the Li sites described in Fig. 1. To this end, we map the
set of binary variables σI (τ ) associated with the occupation
of a given site I at time τ (−1 when unoccupied and 1
when occupied) to the spin variables of an Ising model (down
and up). The autocorrelation function is then averaged over
the different realizations of the dopant distribution, as done
in spin glass theory. For a single realization, we define the
autocorrelation function as

Cσ (t ) = 〈〈σI (t0)σI (t0 + t )〉t0 − 〈σI (t0)〉2
t0

〉
I , (7)

where σI (τ ) is, as previously defined, the instantaneous oc-
cupancy of the site I with value in {−1, 1}, and 〈σI (t0)〉t0
corresponds to the time-averaged occupancy of the site I and
defines the initial departure from 1 at t = 0.

The calculation of the site occupancies is done using the
following algorithm. We first define the tetrahedral sites as
the center of mass of the four oxygen atoms coordinating
the sites. Each Li-ion is then assigned to either a single or
a pair of tetrahedral sites using a distance cutoff of 3.1 Å. The
ions assigned to pairs correspond to the ones occupying an

FIG. 9. Global and site-type resolved autocorrelation functions
of the site occupancy σi at 300, 400, and 500 K for the undoped
(blue), x = 0.15 (orange), and x = 0.25 (green) explicit doping, and
x = 0.15 (red) implicit doping.

octahedral site located between the two considered tetrahedral
sites [51].

At t = 0, the autocorrelation function is equal to

Cσ (0) = 〈
1 − 〈σI (t0)〉2

t0

〉
I . (8)

It is to be noted that this site occupancy does not correspond
to the one reported in crystallographic measurements since (i)
the occupancy of an empty site is set to −1 rather than to 0 and
(ii) the number of crystallographic sites does not match the
one resulting from our assignment methods where octahedral
sites are degenerate. In Fig. 9 we report the disorder-averaged
autocorrelation curves [Cσ (t )]av computed for the undoped
model, the implicit doping model with x = 0.15, and the
explicit doping model with different doping fractions (x =
0.15 and 0.25) at three temperatures: 300, 400, and 500 K.
The curves are presented averaged over all sites (global) and
resolved into partial-averages over tetrahedral and octahedral
sites.

The autocorrelation functions show two distinct decay
processes. The first one is extremely fast with a characteristic
time of a few picoseconds and can be successfully fitted with
a power-law decay that takes the autocorrelation function to
a plateau c(t ) = qd . The second process is much slower and
fixes the time scale of the long-time decay. This process shows
a stronger temperature dependence and is best fitted with an
exponential decay, typical of an ergodic diffusive behavior
[52]. The two regimes can be summarized as follows:

c(t ) ≈ qd + ca t−a for c(t ) > qd ,

c(t ) ≈ cβ e−βt for c(t ) < qd . (9)
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TABLE II. Fitting of the autocorrelation function of the site
occupancies (Fig. 9) according to the model in Eq. (9). The first three
lines report results for the explicit doping scheme, while the last one
refers to the implicit doping model.

a β / ps−1

Doping fraction 300 K 400 K 500 K 300 K 400 K 500 K

x = 0 1.015 0.673 0.514 0.011 0.058 0.139
x = 0.15 1.403 1.139 0.960 0.006 0.031 0.102
x = 0.25 1.882 1.469 1.157 0.002 0.004 0.017

x = 0.15 0.861 0.744 0.647 0.020 0.047 0.116

The parameters of the fits for the first and second decays, a
and β, respectively, are given in Table II and show interesting
trends as a function of the dopant concentration.

The decay associated with the first process occurs on too
fast a time-scale for it to be associated with the diffusive
motion of the Li ions. We rather interpret it as the result of
a fast nondiffusive scattering of the lithium ions around the
different sites. In the explicit doping model, the increment
of the dopant concentration correlates with an increase of
the decay rate of the first process. This accelerated decay
of the site occupancy correlation is consistent with increased
scattering of the trapped lithium ions around the octahedral
sites described in Figs. 5 and 6. This interpretation is further
supported by the fact that the change in carrier concentra-
tion alone cannot account for the increased decay rate as
the implicit model displays an opposite trend. The second,
exponential decay of the autocorrelation function is instead
related to the long scale diffusive process. Its dependence on
doping concentration and doping scheme is coherent with the
behavior observed for the diffusion coefficient and ionic con-
ductivity as presented in Fig. 8. The implicit doping facilitates
the long-time diffusion by decreasing the cluttering through
lowering of the concentration of charge carriers, leading to
the faster decay of the autocorrelation function. Similarly to
the first process, the trend is reversed in the explicit model
where the correlation time is increased by the presence of the
dopant hindering the diffusive process. These observations are
coherent with the change similarly observed in the velocity
autocorrelation function.

IV. CONCLUSION

In this work, we investigated the thermodynamic and
kinetic properties of doped LLZO by means of molecular
dynamics simulations based on an ab initio parametrized
polarizable force-field.

Our results show that the overall quality of the force-field
description is particularly good at describing both the thermo-
dynamic and kinetic aspects of the diffusion process in LLZO.
We achieve this despite some discrepancies observed during
the direct comparison of the activation energies of the doped
systems with experimental data [24,25]. While experiments
point toward values around 0.45 eV, close to the activation
energy of the undoped tetragonal phase, we observe values
between 0.20 and 0.25 eV, closer to the high temperature

experimental activation energy of the cubic phase. However,
a word of caution is always needed when directly comparing
simulations to experiments. In fact, while real materials are
composed by nanostructures arranged in a disordered array,
the simulations deal with perfectly periodic systems with
no grain boundaries. In addition, the extraction of activation
energies from experimental data also requires the use of
models and therefore it cannot be unequivocally compared to
the outcome of our simulations. What we aim at with this
study is a qualitative understanding of the different trends
associated with the increase of the dopants concentration, W
ions, isolating the different contributions by means of specific
analysis tools and theoretical experiments, e.g., the use of
explicit versus implicit doping models. Despite the above-
mentioned discrepancies, the overall experimental trends are
confirmed by our simulations.

We first observed that the distribution of the W dopant
atoms affects the efficiency of the charge transport process.
For this reason, in addition to the canonical ensemble average,
we consider critical the use of an average over different real-
izations of the dopants distribution using an approach derived
from spin glass theory. Overall, our results lead to the iden-
tification of two main effects induced by the introduction of
the dopant, significantly affecting the conductivity of LLZO.
The first is of a thermodynamic nature and relates to the stabi-
lization of the conducting cubic phase at lower temperatures,
which can clearly be identified as an effect of the lowering of
the concentration of the charge carriers exclusively. The sec-
ond is a change in the diffusion kinetics induced by both the
change in the concentration of the carrier and the local mod-
ification of the potential energy landscape felt by the Li ions.
The first contribution is isolated through the use of the implicit
model, smearing the additional positive charge of the dopant
uniformly over the entire simulation box. The analysis of the
conductivity reveals a substantial decrease of the activation
energy compared to the reference one, namely the undoped
structure. This shows that the decrease of the Li concentration
induced by doping results in the decongestion of the network
of channels allowing a higher mobility of the Li ions. In ad-
dition, when considering the nature of the defects induced by
the hypervalent dopants (W centers in the explicit model), the
additional Coulombic repulsion promotes further scattering of
the Li ions, causing an overall decrease of the conductivity
and an increase of the activation energy, similar to the proton
trapping effect in hydrogen conductors [53,54]. This is also
evident from the analysis of the Li ions distribution around the
dopants, which shows a depletion after the first coordination
shell associated with the breaking of the Li “wire” (Figs. 5
and 6). Interestingly, the analysis of the autocorrelation func-
tions of the site occupancies (Fig. 9) confirms that the long
term diffusive process slows down considerably as a result of
the scattering W centers, whereas the short-time oscillation
between neighboring sites is in general accelerated by the
presence of the dopants.

In conclusion, our atomistic simulations reveal a very com-
plex behavior of the LLZO conductivity as a function of the
dopant concentration. While a quantitative description of the
diffusion process is probably still beyond the capabilities of
our simulations, our approach is able to capture the different
trends due to both temperature and dopant concentration. This
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offers valuable insights into the interplay between thermody-
namic phase stabilization and kinetic slow down mechanisms
happening in the doped systems.
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APPENDIX A: FORCE-FITTING

The fitting of the force-field was achieved using forces
and energies calculated at DFT level using the plane-wave
CPMD software package [34,35]. The PBE functional and
norm-conserving Goedecker pseudopotentials [36] were used
in conjunction with a cutoff of 150 Ry. Figures 10 and 11
show comparison between the reference DFT equation of
states and forces and the ones of the force-field, respectively.

APPENDIX B: GLE VERSUS NV E SIMULATIONS

NV E simulations have been a preferred method for the
determination of the ionic conductivity in previous works
[20,31]. Although this method may be optimal for classical
force-fields, the use of a core-shell model changes the situ-
ation. The temperature of the shells should be kept as low
as possible to keep a shell distribution as sharp as possible
around their equilibrium positions. The control of the temper-
ature of the shell is therefore an important aspect of simula-
tions implementing a core-shell model. Despite the possibility
to apply thermostats to the center of mass of the core-shell
pairs during the equilibration process, yielding lower shell
temperatures, they usually remain comparable to the ionic
one. Furthermore, bleeding of energy can be observed from
the cores to the shells as illustrated in Fig. 12. Although

FIG. 10. Reference DFT and force-field energies as a function of
applied strain.

FIG. 11. DFT and force-field forces on Li, La, Zr, and O eval-
uated for the initial training used for the parametrization of the
force-field.

the constant use of a thermostat can have an impact on the
dynamic and the correlation times in the system, Fig. 13 shows
that it has little impact on the activation energy of the system
with variation in the activation energy inferior to 10%.

FIG. 12. Plot of the system (top) and shell (bottom) temperatures
during NV E and NV T simulations at target temperatures 300, 400,
and 500 K. Energy bleeding from the cores to the shells can be
observed in the case of the NV E simulations.
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FIG. 13. Left: Comparison between the NV E and NV T conver-
gence of the charge and tracer diffusion coefficient of the Li ion with
the time lag [see Eq. (C9)] for the x = 0.15 doped system. Right: The
Arrhenius plots correspond to the t−1 fit of the diffusion coefficient.

APPENDIX C: DIFFUSION COEFFICIENTS
AND LONG TAILS

In this Appendix, we summarize the formal identities
needed to link the long-time decay of the derivative of the
mean squared displacement and the velocity autocorrelation
function. The tracer and charge diffusion coefficients [55–57]
can be written in terms of the respective autocorrelation
functions:

DTr = 1

3

∫ +∞

0
Cv (t ′)dt ′, (C1)

Dσ = NLi

3

∫ +∞

0
CV (t ′)dt ′, (C2)

where

Cv (t ) = 〈vvvi(t0 + t )vvvi(t0)〉i,t0 , (C3)

CV (t ) = 〈〈vvvi(t0 + t )〉i〈vvvi(t0)〉i〉t0 . (C4)

vvvi(t ) is the velocity of lithium i at time (t), NLi is the number of
lithium atoms, Cv (t ) is the single-particle velocity autocorre-
lation, and CV (t ) is the velocity autocorrelation function of the
lithium center of mass. As explained in Ref. [45], all quantities
must be computed in the frame of reference of the rigid matrix
in order to correct for nonphysical drifts.

We focus on tracer diffusion, even if all arguments apply to
charge diffusion as well. Equation (C1) is called the Einstein
identity and derived as the long-time limit of the following
relation between the mean squared displacement and the
velocity autocorrelation function [56]:

〈|xi(t0 + t ) − xi(t0)|2〉i,t0 = 2t
∫ t

0
Cv (t ′)

(
1 − t ′

t

)
dt ′. (C5)

FIG. 14. Log-log plot of the tail of the single-particle velocity
autocorrelation function for the explicitly doped system at 300 K,
after filtering with a window of 2.4 ps in order to remove high-
frequency noise.

Instead of directly performing the infinite limit, one can
differentiate twice this identity with respect to t :

∂〈|xi(t0 + t ) − xi(t0)|2〉i,t0

∂t
= 2

∫ t

0
Cv (t ′)dt ′, (C6)

∂2〈|xi(t0 + t ) − xi(t0)|2〉i,t0

∂t2
= 2Cv (t ). (C7)

Note that these identities are valid for any t . Equations (C6)
and (C2) provide a formal proof of the intuitive relation:

DTr = lim
t→∞ DTr(t ), (C8)

DTr(t ) = 1

6

∂〈|xi(t0 + t ) − xi(t0)|2〉i,t0

∂t
, (C9)

also exploited in this work in Eq. (6), where a time-dependent
diffusion coefficient DTr(t ) has been defined as the derivative
of mean squared displacement at a time lag t . Equation (C7)
instead shows that the second-order derivative of the mean
squared displacement is exactly equal to the velocity auto-
correlation function. We therefore deduce that the polynomial
decay of the velocity autocorrelation measured in our simu-
lations of garnet materials as Cv (t ) ∼ A2t−a, a > 1, leads to
a slow convergence to the transport coefficient in Eq. (C9),
since it forces the long time dependence ∂〈|xi (t0+t )−xi (t0 )|2〉

∂t ∼
DTr + A1t−(a−1). This last relation has therefore been used for
long-time extrapolations.

Finally, in Fig. 14, as an example, we report a log-log
plot of the tail of the single-particle velocity autocorrelation
function, in an explicitly doped system and at a temperature
of 300 K, showing the t−2 asymptotic behavior cited in the
text. An alternative confirmation of this result follows by
plotting the functions Cv (t )t k and checking for which values
of k a convergence to a finite limit, different from zero, is
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FIG. 15. Alternative check of the t−2 decay of the velocity au-
tocorrelation function for the explicitly doped system. In this case
Cv (t )t k tends to zero for k = 0, 1, to a finite limit for k = 2, and
diverges linearly for k = 3. The same filtering was applied as in
Fig. 14.

observed before the signal-to-noise ratio becomes too large.
This approach is exemplified in Fig. 15.

APPENDIX D: SAMPLING UNCERTAINTY VERSUS
CONFIGURATIONAL NOISE

When considering explicitly doped systems, two kinds
of uncertainty affect the estimation of D(tlag), defined in
Appendix C, Eq. (C9), as the derivative of the mean squared
displacement at time lag tlag. The first contribution arises from
the dependence of the diffusion coefficient from the dopant
configuration and can be denoted as configurational noise.
This contribution goes to zero in the limit of infinitely large
simulation cells. The second contribution originates from the
finite simulation time length T at a fixed dopant configuration,
and we call it sampling noise. In the following, we derive
metrics to evaluate the two types of noise in the simulation
of doped materials at a fixed simulation cell size.

First we discuss sampling noise, and we denote the stan-
dard deviation due to the finite sampling as σ SAMP

tlag,�D
(T ), depen-

dent both on the explicit dopant configuration �D and on the
finite simulation time T . From now on in the expressions for
the standard deviations, we insert tlag as a suffix and consider it
as a parameter. Sampling noise can be numerically estimated
for a fixed configuration via block-analysis techniques, i.e., by
dividing the trajectory into blocks and calculating the standard
error of the mean [39]. This error is expected to decay as

1√
T

, where T is the simulation time. In particular, it tends
to zero for large T , when the simulation is long enough to
determine exactly the value of the diffusion coefficient at
a fixed configuration �D. Sampling noise is the only one
that must be considered in simulations of undoped materials

[39,58,59], or in an implicit doping setting. In the case of an
explicitly doped material under analysis, an additional mean
over configurations, as explained in the main text, can be
performed:

σ SAMP
tlag

(T ) ≡ [
σ SAMP

tlag,�D
(T )

]
av. (D1)

This function can then be plotted as a function of T for a
fixed time lag tlag. σ SAMP

tlag
(T ) quantifies the mean effect of

sampling noise alone. It does not reflect configurational noise
since each term σ SAMP

tlag,�D
(T ) considers only fluctuations over the

configuration dependent equilibrium value.
We now move to configurational noise and indicate explic-

itly with D�D (tlag) the exact value of the diffusion coefficient
at a fixed dopant configuration. Looking at the spread among
configurations, we define

σ DOP
tlag

≡ [(
D�D (tlag) − [

D�D (tlag)
]

av

)2]1/2
av . (D2)

Of course one does not know the exact value of D�D (tlag), but
by replacing D�D (tlag) with its standard estimator at a simu-
lation time T we get a stochastic variable σ̂ DOP

tlag
(T ) → σ DOP

tlag

for T → ∞, which can be used as an estimator for long times
T (we use here the standard notation of indicating stochastic
variables with a hat [60]). Practically, when plotting σ̂ DOP

tlag
(T )

as a function of T , a plateau has to be reached. This plateau,
σ DOP

tlag
, is dependent on configurational noise alone and can

be considered as a measure of the configurational degrees of
freedom due to the finite volume of the simulation cells used.

FIG. 16. We show, as a function of simulation time T , the
log-log plot of σ SAMP

tlag
(T ) and the estimator σ̂ DOP

tlag
(T ) → σ DOP

tlag
for

tlag = 22.5 ps and the charge diffusion coefficient. Four initial lithium
distributions for every dopant configuration are considered in order
to increase the length of the trajectory. We see a linear decay of
the sampling noise, compatible with the T −1/2 behavior expected
theoretically, whereas the estimator of configurational noise remains
stable to a much higher value, showing that simulation time T is large
enough so that the limit σ SAMP

tlag
(T ) � σ DOP

tlag
is satisfied.
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One can get a feeling of the magnitude of the two con-
tributions comparing on the same plot, as done in Fig. 16
for the tungsten-doped LLZO, σ̂ DOP

tlag
(T ) and σ SAMP

tlag
(T ) as

a function of T . We stress nevertheless again that only the
asymptotic value for large T of σ̂ DOP

tlag
(T ) has a well-defined

deterministic meaning, whereas σ SAMP
tlag

(T ), the variance at
a finite time T , is a well-defined deterministic quantity for
every T . To estimate means over dopant configurations, as in
Fig. 7 of the main text, technically the diffusion coefficients

are needed to be known with infinite precision for every
dopant distribution. Nevertheless, the previous analysis and
Fig. 16 show that the simulation time T reaches the regime
where σ SAMP

tlag
(T ) � σ DOP

tlag
. Under this condition, one is able

to estimate configurational spreads and clearly distinguish be-
tween configurational and sampling noise, making it possible
to characterize separately the contribution of configurational
noise, as in Fig. 7 of the main text.
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