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A density-functional theory investigation of the (100) and (110) surfaces of the body-centered cubic (bcc)
Fe1−xb Crxb binary alloys, xb � 15 at.%, is reported. The energies and segregation energies of these surfaces were
calculated for chemically homogeneous concentration profiles and for Cr surface contents deviating from the
nominal one of the bulk. The implications of these results for the surface alloy phase diagram are discussed. The
surface chemistry of Fe-Cr(100) is characterized by a transition from Cr depletion to Cr enrichment in a critical
bulk Cr composition window of 6 < xb < 9 at.%. In contrast, such threshold behavior of the surface Cr content
is absent for Fe-Cr(110) and a nearly homogeneous Cr concentration profile is energetically favorable. The
strongly suppressed surface-layer relaxation at both surfaces is shown to be of magnetic origin. The compressive,
magnetic contribution to the surface relaxation stress is found to correlate well with the surface magnetic moment
squared at both surface terminations. The stability of the Cr surface magnetic moments against bulk Cr content
is clarified based on the surface electronic structure.
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I. INTRODUCTION

The bcc Fe-Cr binary system is the base of various fer-
ritic stainless steels with numerous, technologically appealing
properties, but also fundamentally interesting for its com-
position and structure dependent magnetic properties and
observed spin-glass behavior [1]. Fe-Cr possesses spinodal
decomposition in an asymmetric miscibility gap, which is
skewed towards Fe-rich alloys allowing a finite Cr solubility
even at low temperature. Chromium alloying imparts cor-
rosion resistance in bcc Fe at ambient conditions through
formation of a Cr-oxide surface film effectively blocking
further corrosion into the bulk [2–4]. It has long been known
that the corrosion rate of ferritic steel drastically reduces when
the bulk Cr content exceeds ≈9–12 at.% level [5]. Under-
standing the necessary Cr segregation towards the surface
and the formation of the protective Cr oxide scale is thus of
fundamental scientific interest as well as indispensable for
designing next-generation multifunctional steels, for instance,
for reactor purposes [6].

The problem considered here addresses the question
whether the stainlessness effect in Fe-Cr (Cr segregation) is
universal in the sense that Cr would segregate to all free
surfaces at above the critical composition, as opposed to
a surface-facet specific segregation behavior (with possibly
specific critical compositions). This issue arises from limited,
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partially conflicting theoretical and experimental data and has
obviously important consequences for the understanding of
oxidation resistance of ferritic materials. Most experimental
and theoretical scientific attention on the surface-facet specific
segregation of Cr and oxidation behavior in Fe-rich Fe-Cr was
directed to the open (100) surface [2,7–16], arguably due to
the belief that it is the most important cleavage plane in bcc Fe
[17]. The surface composition of Fe0.84Cr0.16 observed with
Auger electron spectroscopy (AES) [2,7] indicated Cr enrich-
ment for the (100) surface when subjected to different anneal-
ing procedures with and without oxygen atmosphere. On the
other hand, a scanning tunneling microscopy study [10] for
layer-by-layer growth of Cr on Fe(100) determined that out of
one Cr monolayer or less deposited at 300 ◦C only 10%–25%
remained on the surface. A similar tendency for Cr migration
into the subsurface layers was found for submonolayer Cr
films grown on the (100) face of Fe whiskers [11], where
approximately half of the Cr deposited at 296 ◦C was detected
below the surface. Previous first-principles density-functional
theory (DFT) calculations on single atom Cr segregation
on Fe(100) using large simulation cells (low effective Cr
concentration) essentially confirmed the picture that Cr does
not energetically or entropically surface segregate in pure Fe
[12–16]. Nevertheless, the surface position was energetically
favorable in simulations with high effective Cr concentration
[14,15].

These apparently conflicting results on the Cr migration
at Fe(100) and Fe-rich, Fe-Cr(100) surfaces are resolved
in a compositional threshold scenario [18–21]. Accordingly,
the surface chemistry of Fe-Cr significantly changes in a
narrow bulk Cr composition window below (above) which
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Cr-depleted (Cr-enriched) Fe-Cr(100) surfaces are energet-
ically favorable. Recent DFT calculations for concentrated
solid solutions using the coherent-potential approximation
(CPA) determined this critical composition range to ≈8–
11 at.% bulk Cr (at 0 K). It is believed that this behavior
is primarily due to magnetic effects [20–22] and originates
from frustration of Cr spins on the bcc lattice, which can
not simultaneously be aligned antiparallel to the Fe spins
and themselves. Ackland [20] showed that a lattice-based
ferromagnetic-antiferromagnetic Ising model qualitatively de-
scribes the phase diagram of the Fe-Cr system, wherein the
Cr bulk solubility is limited by Cr-Cr spin frustration. The
onset of the preferential Cr surface precipitation on (100)
oriented surfaces then coincides with the bulk solubility limit
and Cr would surface segregate due to its lower cohesive
energy [21]. However, this Monte Carlo study did not con-
sider any surface physics besides the coordination number
(i.e., surface-facet dependent and depth-sensitive interaction
parameters) and thus can only give a limited answer on
the crystal-face specificity in Cr surface segregation and the
nature of the Fe-Cr surface alloy. On the other hand, it is
unclear whether the DFT results and mechanisms proposed
in Refs. [18,19] are transferable to other surface facets. The
main point is that differences in surface electronic structure
and surface magnetism may be expected to lead to different
Cr solution energies and solubility, and, hence, segregation
behavior.

In fact, there are few, although partially conflicting indica-
tions that the preferential segregation of Cr does not occur on
other surface facets. The AES studies of Leygraf et al. [2,7]
for Fe0.84Cr0.16 indicated Cr enrichment for the (110) surface
after various annealing procedures, similar to their findings for
the (100) face. Subsequent investigations [8,9] with different
surface sensitive techniques for Fe0.72Cr0.28(110) confirmed a
similar Cr enrichment effect after annealing. Using the CPA
and a Green’s-function technique for semi-infinite surfaces
implemented in the tight-binding linear-muffin-tin orbitals
method, Ruban et al. [13] determined a large positive (0.1 eV)
surface segregation energy for Cr in bcc Fe(110), meaning
that Cr would strongly favor desegregation from the surface,
similarly to the behavior at the (100) surface. Nevertheless,
Kiejna and Wachowicz [15] recently obtained a quite different
result using a plane-wave basis approach: a single Cr impurity
in a (110) oriented Fe slab was found to possess a negative,
nearly vanishing segregation energy.

Here, we focus on the two energetically most stable sur-
face facets of bcc Fe, (110) and (100), and investigate the
compositional effect of Cr on the surface energy and surface
segregation energy of Fe-rich Fe-Cr alloy with nominal bulk
concentration up to 15 at.%. We provide evidence that the
compositional threshold behavior of Cr does not occur at the
(110) surface. Thus Cr segregation in Fe-Cr is a surface-
facet specific property. We lend insight into the mechanism
underlying the starkly suppressed surface layer relaxation de-
termined for both these surfaces. The remainder of the paper is
organized as follows. We briefly describe the theoretical back-
ground as well as methodological and computational details
in Sec. II. In Sec. III, we present and discuss our main re-
sults on the surface energies and surface segregation energies
of chemically homogeneous and chemically inhomogeneous

Fe-Cr alloys, as well as the implication of these findings for
the surface alloy phase diagram. We clarify the stability of
the Cr surface magnetic moments against bulk Cr content
on the basis of the surface electronic structure. Section IV
concludes.

II. METHODOLOGY AND COMPUTATIONAL METHOD

A. Theoretical background

The surface energy γ (xb) for chemically homogeneous
Fe1−xb Crxb alloys, defined as the energy cost of creating new
surface area [23], may be extracted from slab calculations, viz.

γ = Eslab − nmEb

2A
. (1)

Here, Eslab(xb) is the total energy of a slab composed of nm

atomic layers, Eb(xb) is the bulk energy per layer, and A(xb)
denotes the surface area for one of the two (identical) surfaces
of the slab. Slabs of different thicknesses were employed in
order to determine the bulk reference energy [24], i.e., the
slope of a linear function fitted to Eslab versus nm equals Eb

(the correlation is linear for decoupled surfaces corresponding
to sufficiently large nm).

In the present application, the chemical composition of
the surface is variable and may differ from the nominal bulk
composition. The determination of surface segregation ener-
gies and surface energies of such chemically inhomogeneous
systems requires knowledge of bulk and surface effective
chemical potentials (ECPs). Similar to earlier work [18,25],
the bulk is assumed to provide an infinite particle reservoir,
and the ECP of the host is defined as the energy change per
atom, when a Cr atom is exchanged with an Fe atom, viz.

�μ = μFe − μCr. (2)

The ECP of random alloys may be obtained by means of its
intensive definition [13], which for the bulk equals

�μb(xb) = −
(

dEb

dxb

)
a

. (3)

During this exchange the lattice parameter a remains constant.
Similarly, we define the surface ECP �μs(xs; xb) of a slab,
when this atomic exchange takes place within the surface
layers,

�μs(xs; xb) = −1

2

(
dEslab(xs; xb)

dxs

)
a,di j

. (4)

Here, xs denotes the concentration of the surface alloy
Fe1−xs Crxs in both surface layers, the concentrations of all the
other layers in the slab equal the nominal bulk concentration
xb (the factor 1/2 associates μs with one surface layer). The
interlayer distances di j are functions of xs but are kept constant
when determining the derivative (in addition to a). It should be
noted that our notation simplifies to Eslab(xb) ≡ Eslab(xb; xb),
and a similar convention is used for the surface energies,
ECPs, and segregation energies.

The surface segregation energy Esegr(xs; xb) equals the en-
ergy change due to atomic exchange between the bulk and the
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surface [13,16],

Esegr = 1

2

(
dEslab(xs; xb)

dxs

)
a,di j

−
(

dEb(xb)

dxb

)
a

(5a)

= −[�μs(xs; xb) − �μb(xb)]. (5b)

In the present convention, moving a Cr atom from the bulk
to the surface and simultaneously moving an Fe atom from the
surface to the bulk is exothermic for negative Esegr.

The surface energy of chemically inhomogeneous Fe-Cr
alloys, assuming the surface alloy Fe1−xs Crxs at the two slab
surfaces and Fe1−xb Crxb in the interior, may then be obtained
from [13,26,27]

γ (xs; xb) = Eslab(xs; xb) − nmEb(xb)

2A
+ �μb(xb)(xs − xb)

A
.

(6)

By comparing the derivative of Eq. (6) with respect to xs and
Eqs. (5), it is readily seen that

A
dγ (xs; xb)

dxs
� Esegr, (7)

if the relaxed interlayer distances do not strongly depend
on xs.

We use the symbol � to represent the surface energy per
atom in units of energy [i.e., not dividing by area in Eq. (1)
or (6), or letting � = γ A], employed for convenience in the
discussion part.

B. Methodological details

For both the chemically homogeneous and chemically
inhomogeneous surface reference systems, slabs with 7, 9,
and 11 atomic layers decoupled by vacuum corresponding to
seven bulk inter-planar distances (nv = 7) were determined
sufficient to yield converged bulk and surface energies for the
(110) surface. For the open (100) surface, the corresponding
numbers are 11, 13, and 15 atomic layers, and nv = 7. The
relaxation of the interlayer spacing between the surface layer
and the subsurface layer d12 into mechanical equilibrium
[28] was considered (relaxation simultaneously performed
at both slab surfaces) and determined from the slabs with
nm = 11 and nm = 13 for the (110) surface and the (100)
surface, respectively. The effect of relaxation was evaluated by
comparison with perfectly truncated bulk slabs with the same
thickness. It should be noted that surface reconstruction in Fe
was not experimentally observed for either of these surface
facets in the temperature range 300−500 K [29].

In order to allow for a possible antiferromagnetic align-
ment of Cr spins with respect to each other in the ferromag-
netic Fe matrix, which is motivated by the fact that the incom-
mensurate magnetic ground state of bcc Cr is closely approx-
imated by a Néel state [30], we examined the spin-alignment
of the Cr spins for laterally extended 2 × 2 super cell in terms
of the (110) oriented surface slabs for Fe0.91Cr0.09. Within the
present random solid solution description of the alloy, all Cr
magnetic moments were, however, found to align parallel with
respect to each other and antiparallel to the Fe spins.

The surface ECPs were also determined from the 11 layers
[(110) facet] and 13 layers [(100) facet] slabs. The bulk

ECPs were determined from super cells in order to facilitate
numerical error cancellation (numerical errors may arise due
to, e.g., different Brillouin zone samplings). In practice, the
nv layers vacuum of the slabs were replaced by material
resulting in a total thickness of 18 layers for the (110)-
type bulk reference system and of 20 layers for the (100)-
type bulk reference system, respectively. The concentration
derivatives were obtained from a linear fit to seven total
energies computed for the finite concentration changes �xb =
0, ±0.001, ±0.002, and ± 0.003, and similar for xs.

C. Computational method

The spin DFT calculations were performed with the all-
electron exact muffin-tin orbitals (EMTO) method [31–33].
The self-consistent calculations were carried out with the
local-density approximation by Perdew and Wang [34] and the
total energies were calculated with the generalized-gradient
approximation by Perdew, Burke, and Ernzerhof [35] via the
full charge density technique [36,37]. The chemical disorder
was treated by means of the CPA [38,39]. Since the CPA
solves a single-site impurity problem, it can not directly
describe local concentration fluctuations and local lattice
relaxation, implying that the present results are valid for
random solid solution alloys on a rigid underlying crystal
lattice. Although neutron-diffusive scattering and Mössbauer
spectroscopy experiments [40,41] reported atomic short-range
order (ASRO) for the nearest-neighbor coordination shell in
bulk Fe1−xb Crxb , xb � 15 at.%, the treatment of ASRO is
beyond the scope of the present work. Since the surface energy
is a surface excess, bulk contributions are expected to cancel
to a large extent. To our best knowledge, ASRO near surfaces
has not been investigated for Fe-rich Fe-Cr alloy hitherto.

The Brillouin zones for the (110) and the (100) surface
subsystems were sampled by a 13 × 33 × 1 and 13 × 25 × 1
k-point meshes, respectively. For the determination of the bulk
ECPs by supercells, the number of k points along the third
direction was set to two. All spin-polarized calculations were
carried out for collinear magnetic configurations describing
the energetics of the alloy well [20–22].

The precision of the EMTO method was demonstrated
for mechanical properties, electronic structure, and the sur-
face energy of alloys [42–44], including the Fe-Cr binary
[18,19,27,45]. The theoretical equilibrium lattice parameters
of bcc Fe and Fe-Cr alloys (0–15 at.% Cr) determined by
EMTO were already reported previously [46] and our re-
sults reproduce these data well. Thus we refer the reader to
Ref. [46] for further details.

III. RESULTS AND DISCUSSION

A. Surface energies and surface relaxation of chemically
homogeneous Fe-Cr alloys

We first present the main findings on the relaxed surface
energies of the Fe-Cr alloys and then briefly turn to the surface
relaxation. The former are subject to further discussion in
Sec. III D and the latter in Sec. III E.

The calculated surface energies γ(100) and γ(110) of chem-
ically homogeneous Fe1−xb Crxb alloys, 0 � xb � 15 at.%,
are shown in Fig. 1. Focusing on the spin-polarized results
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FIG. 1. The relaxed surface energies for the (100) and (110)
surfaces of chemically homogeneous Fe-rich Fe1−xb Crxb alloy as a
function of bulk concentration xb. Results of spin-polarized calcula-
tions (main figure) and non-spin-polarized calculations with identical
geometry (inset) are shown. Lines are a guide for the eye.

first, γ(100) increases monotonically with the addition of Cr
by 0.11 J/m2 for �xb = 15 at.% Cr, which is consistent with
the previous theoretical results from Ref. [27]. In contrast,
γ(110) is convex in xb and has a local minimum at xb ≈ 4–
5 at.% Cr. γ(110) is lower than γ(100) in the entire considered
concentration range meaning that the (110) surface is more
stable.

The present surface energies of ferromagnetic Fe are 2.53
and 2.44 J/m2 for the (100) and the (110) surfaces, respec-
tively. These values are consistent with literature data, i.e.,
Punkkinen et al. [47] recently computed 2.50 and 2.45 J/m2,
respectively, and Błoński and Kiejna [48] earlier reported
2.47 and 2.37 J/m2, respectively. Our results agree well with
the semi-empirical, low-temperature estimates of the surface
energy for an average surface facet, which were derived from
the experimentally determined surface tension, 2.41 J/m2

(Ref. [49]) and 2.48 J/m2 (Ref. [50]). Furthermore, we note
that the anisotropy ratio γ(100)/γ(110) = 1.04 for Fe coincides
with the experimental value 1.02 ± 0.06 derived from the
high-temperature equilibrium shape of α-Fe crystallites [51].
Although these values were determined at different tempera-
tures, recent theoretical work for Fe showed that γ(100)/γ(110)

is only weakly temperature dependent [52].
It is instructive to compare these results to those obtained

without spin-polarization invoked in the calculations in order
to highlight the effect of magnetism. The resulting data are
shown in Fig. 1 (inset) and were obtained by keeping the
interatomic distances fixed. Disabling spin polarization has
two main effects: on the one hand, the surface energies of
Fe1−xb Crxb generally increase. As this effect is more pro-
nounced for the (100) surface, the anisotropy γ(100)/γ(110)

increases. For instance, γ(100) and γ(110) of nonmagnetic
Fe amount to 2.84 J/m2 (corresponding to a change of
+0.31 J/m2 relative to the spin-polarized results) and 2.51
J/m2 (+0.07 J/m2), respectively, and γ(100)/γ(110) = 1.13
(+0.09). On the other hand, the local minimum observed

for the spin-polarized curve of γ(110) is removed and γ(110)

becomes a monotonically increasing function of xb. Thus
magnetism plays an obviously important role in the formation
of the local minimum of γ(110).

Turning briefly to surface relaxations, the spacings be-
tween the surface layer and the subsurface layer d12 of fer-
romagnetic bcc Fe were found to decrease by 1.33% for the
(110) surface and 2.31% for the (100) surface. The available
experimental data do not allow an unambiguous conclusion:
0.5%, 1.4 ± 3%, or 5 ± 2% for Fe(100), and 0% or 0.5 ±
2% for Fe(110) [29,53]. These findings confirm previous
DFT investigations for pure Fe [47,48,54] reporting similar
decreases of the surface energy, albeit relaxation of several
layers were performed. Using the mean-field approximation
(relaxing Fe and Cr on the same site simultaneously), we
determined similarly small values and a weak dependence on
composition in the case of the Fe-Cr alloys: d12 relaxes inward
by 1.40%–1.46% and by 2.55%–2.78% for the (110) surface
and the (100) surface, respectively. The decrease of the surface
energy accompanying relaxation of d12 amounts to ≈1.3% for
the (110) surface of Fe and ≈1.0% for the (100) surface of Fe.
For the Fe-Cr alloys, the decrement of γ(110) lies in the interval
of 1.3%–1.5% and that of γ(100) in the range of 1.2%–1.4%.

The amount of surface relaxation determined for Fe and
Fe-Cr is in stark contrast to theoretical predictions for the
nonmagnetic bcc transition metals (V, Nb, Mo, Ta, W) [55]
and available experimental findings [29]. For these five el-
ements, typically computed changes of spacing are �d12 ≈
−(12–13)% for the (100) facet and �d12 ≈ −(4–5)% for
the (110) surface, reflecting a clear correlation with the surface
roughness. The suppression of large relaxation effects in Fe
and the ferrous alloys is attributed to the effect of surface
magnetism and investigated in more detail in Sec. III E.

B. Surface segregation energies of chemically
homogeneous Fe-Cr alloys

In order to give insight into the thermodynamic driving
force of Cr segregation at the (100) and (110) surfaces, we
consider the surface segregation energies for the chemically
homogeneous alloys. The bulk and surface ECPs along with
the surface segregation energies of pure Fe and three selected
Fe-Cr binaries, Fe0.97Cr0.03, Fe0.94Cr0.06, and Fe0.91Cr0.09, are
compared in Table I. (The ECPs of pure Fe are to be under-
stood as removing a Cr impurity atom from the Fe matrix.) As
is evident, the bulk ECP �μb decreases with the addition of
Cr, exhibiting a deviation from the linear rule of mixture. This
behavior is closely related to the anomalous (i.e., negative
and convex) bulk formation energy in Fe-rich Fe-Cr alloys
[19,22], viz.

d2�Eb (xb)

dx2
b

≈ −d�μb

dxb
. (8)

The bulk formation energy �Eb (xb) is defined in Eq. (A1)
(with x0 = 1) in the Appendix and a plot of E (xb) can be found
in Refs. [19,22]. According to Eq. (8), the convexity of Eb (xb)
in the low-Cr regime follows the decreasing bulk ECP with
increasing Cr content.

The key differences between the surface ECPs for the two
considered surface facets are: the trend of �μs(110) closely
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TABLE I. Bulk ECP (�μb ), surface ECPs (�μs), and surface segregation energies (Esegr) of Fe and chemically homogeneous Fe0.97Cr0.03,
Fe0.94Cr0.06, and Fe0.91Cr0.09 alloys. E0 = −443.8 Ry. All tabulated energies are in units of mRy.

�μb − E0 �μs(110) − E0 Esegr(110) �μs(100) − E0 Esegr(100)

pure Fe − 12.4 − 11.8 − 0.7 − 29.7 17.2
7.3 (Ref. [13]) 11.8 (Ref. [13])

− 0.07 (Ref. [15]) 5.6 (Ref. [15])
9.6a, 6.8b (Ref. [14])

16.9 (Ref. [19])
5.7 (Ref. [16])

15.9c (Ref. [56])
Fe0.97Cr0.03 − 19.8 − 21.8 1.9 − 34.0 14.2
Fe0.94Cr0.06 − 33.5 − 35.2 1.7 − 38.2 4.7
Fe0.91Cr0.09 − 47.2 − 48.3 1.1 − 42.2 − 5.0

aEMTO value taken (theoretical lattice parameter, local-density approximation).
bProjector-augmented wave value for lowest effective Cr concentration taken (theoretical lattice parameter, generalized-gradient approxima-
tion, no relaxation).
cValue for 12 atomic layers taken.

resembles that of �μb , resulting in a small segregation energy
Esegr(110) not exceeding 2 mRy. This comparatively small
energy indicates a tendency to Cr depletion from the surface
for the case xs = xb, i.e., a weak driving force for deseg-
regation, except for the pure Fe host. �μs(100) exhibits a
stronger concentration dependence involving a change of sign
of Esegr(100) between 6 and 9 at.% bulk Cr content. That is,
for the chemically homogeneous (100) surface slabs, we find
both a tendency to Cr segregation to the bulk below a certain
bulk threshold concentration (in between 6 and 9 at.% Cr)
and Cr segregation to the surface above this threshold. Ropo
et al. [18] narrowed down the critical bulk Cr concentration at
which the transition occurs to ≈9 at.%.

The available literature data of Cr segregation energies in
pure Fe listed in Table I allow comparison with the present
values. They were obtained from either single-atom segrega-
tion studies [14–16] or by means of the CPA [13,14,19,56].
It should be noted that the tabulated literature values are
those derived for the lowest effective Cr concentration (cor-
responding to the largest employed super cells) if multiple
values were reported. For the Fe(110) surface, all segregation
energies are consistent in sign, indicating Cr depletion from
the surface, but vary considerably in absolute value. The CPA
values except that from Ref. [14] are approximately a factor
of 2–3 times larger than the segregation energies from the
single-atom segregation studies. These differences are likely
due to methodology, e.g., finite-size effects in the single-atom
segregation studies, the fact that the ordered lattice of effective
potentials contains Cr on each site in the CPA treatment, as
well as local lattice relaxation effects. The slightly negative
Esegr(110) determined here qualitatively supports the finding
from Kiejna and Wachowicz [15].

C. Surface energies of chemically inhomogeneous Fe-Cr alloys

The main results of this section are the surface energies
γ (xs; xb) of chemically inhomogeneous Fe-Cr alloys and im-
plications for the surface alloy phase diagram. These results
were obtained without taking the relaxation of d12 into ac-
count, which is justified first.

Figure 2 compares the surface energies of the (110) and
(100) surfaces for the nominally 9 at.% bulk Cr containing
Fe-Cr binary with and without top layer relaxation. The
Cr concentration at the surface was varied within 0 � xs �
15 at.% in these and the following calculations. As can
be seen, the effect of relaxation on γ(110) is a decrease of
approximately 0.036 J/m2 (or ≈1.5%) nearly independent
on xs. A similar, but slightly more strongly concentration-
dependent decrement was determined for γ(100): the decrease
lies between 0.032 J/m2 (≈1.2%) and 0.040 J/m2 (≈1.5%).
That is, both curves are essentially shifted upon relaxation
by a nearly constant amount leaving the shape of curve
invariant (this also implies that the surface ECPs �μs(xs; xb)
are nearly invariant). The relaxation of d12 can thus justifiably
be neglected as the primary interest is in the trend of γ (xs; xb)
as a function of xs. The following results were obtained with
this approximation.

Figure 3 shows the relationships between the unrelaxed
surface energies of the (100) and (110) surfaces versus xs

for the nominal bulk compositions Fe0.97Cr0.03, Fe0.94Cr0.06,

FIG. 2. Surface energies for the (100) and (110) surfaces with
and without considering relaxation of d12 as a function of surface Cr
concentration xs for the nominal bulk composition Fe0.91Cr0.09. Lines
are a guide for the eye.
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FIG. 3. Unrelaxed surface energies for the (100) and (110) sur-
faces as a function of surface Cr concentration xs for the Fe-Cr
binaries with nominal bulk Cr concentration xb of 3, 6, or 9 at.%. The
open symbols highlight chemically homogeneous alloys (xs = xb).
Lines are a guide for the eye.

and Fe0.91Cr0.09 (data for Fe0.91Cr0.09 are the same as the
unrelaxed values from Fig. 2). We highlight several trends in
γ (xs; xb): γ(100) of bulk Fe0.97Cr0.03 and Fe0.94Cr0.06 increase
with Cr surface concentration, whereas that of Fe0.91Cr0.09

reduces and all three curves are slightly convex. The γ(110)

curves are convex functions in xs for all three considered bulk
compositions. The common shape of the curves signals that
the lowest (110) surface energy on each curve lies within
±1 at.% Cr vicinity of the homogeneous concentration profile.
Strictly speaking, since Esegr(110) � 0 (Sec. III B), the mini-
mizing xs is smaller than xb. We note in passing that Ref. [27]
focused on γ(100)(xs; xb) for two intermediate bulk composi-
tions, Fe0.95Cr0.05 and Fe0.90Cr0.10, and their computed trends
are consistent with the present findings. It should also be noted
that the curves in Fig. 3 appear to be similar in shape but
shifted to lower xs for higher xb. This point is further analysed
in Sec. III D.

The shape of the curves γ (xs; xb) allows some insight
into the surface equilibrium at low temperature by consid-
ering purely energetic contributions [57]. It should be noted
that the surface equilibrium state may not be established
instantly due to kinetic reasons as bulk diffusion at room
temperature and below is usually very slow, which may lead
to a quasiequilibrium surface state. On the one hand, by
comparing γ (xs; xb) with the rule of mixing for an ideal
solid solution one can draw conclusions about the formation
energy of the surface alloy. The surface formation energy is
defined in the Appendix, Eq. (A5). We chose as reference

points (standard states) a purely Fe terminated surface and
the surface alloy with 15 at.% Cr, since the available data
is limited to xs � 15 at.%, that is, x0 = 0.15 in Eq. (A5).
On the other hand, the minimum of γ (xs; xb) (over all xs)
provides information about the surface alloy composition in
equilibrium when surface segregation is taken into account.
It should be noted that the minimizing surface energy does
not need to coincide with dγ (xs; xb)/dxs = 0. This is the
case for the (100) terminated slab and two bulk compositions
shown in Fig. 3 as dγ (xs; xb)/dxs is finite when xs approaches
zero. In contrast, the minimum of γ (xs; xb) coincides with
its vanishing first derivative with respect to xs for the (110)
surface.

With respect to these two reference concentrations, the
convexity of all surface energy curves γ (xs; xb) shown in
Fig. 3 indicates that the formation of a surface solid solution
is energetically favorable over phase separation into islands.
For the (100) surface, Esegr(xs; xb) is positive when xb equals
3 or 6 at.% and a purely Fe terminated surface layer possesses
the lowest surface energy. Thus, all Cr would segregate from
the surface to the bulk and dissolve. In contrast, a Cr enriched
surface (xs > 15 at.%) has the lowest surface energy for xb =
9 at.% indicating Cr segregation to the surface (Ropo et al.
determined that Esegr = 0 for xs ≈ 24 at.% [18], i.e., above the
presently considered upper limit on xs). For the (110) surface,
the minimum of the surface energy close to a homogeneous
concentration profile indicates that practically any surface
excess of Cr or Fe would segregate to the bulk in order to
reach the lowest energy state at xs � xb. In other words, Cr
does not have a favorable site among the two considered sub-
systems. For both facets, configurational entropy is expected
to homogenize the concentration profiles at finite T .

D. Formation energies

The surface energies of the chemically homogeneous and
inhomogeneous Fe-Cr alloys shown in Figs. 1 and 3 exhibit
different alloying trends. For instance, γ(100) of the homo-
geneous system increases with increasing Cr concentration
similar to the variation of the inhomogeneous systems for
the nominal bulk compositions Fe0.97Cr0.03 and Fe0.94Cr0.06.
On the other hand, γ(100) decreases with xs for Fe0.91Cr0.09.
Previous works focused on explaining the anomalous bulk for-
mation energy of the Fe-Cr binary using electronic structure
arguments [19,22]. Here, we make an attempt to understand
the trends in the computed surface energies and thus the
surface alloy phase diagram of the inhomogeneous alloys
starting from the results obtained for the homogeneous surface
slabs and the bulk alloys. To this end, we introduce a simple
model that represents the total energy of the slab as a sum
of a surface layer contribution denoted by Ē (xs) and a bulk
contribution. In the case of homogeneous slabs, the definition
of Ē (xs) is given in Eq. (A6). Assuming a similar surface
layer contribution for the inhomogeneous surface, the total
energy of the inhomogeneous slab contains an “interfacial”
contribution σ (xs; xb) in addition. This excess energy accounts
for the interaction between the surface layer with composition
xs and the subsurface layers with composition xb, as well as
the small volume effect originating from the concentration
dependence of the equilibrium volume. The definition of

034401-6



FIRST-PRINCIPLES STUDY OF CRYSTAL-FACE … PHYSICAL REVIEW MATERIALS 3, 034401 (2019)

σ (xs; xb) is given in Eq. (A7). In the following, we assume that
the interfacial term is small and discuss the formation energies
and surface energies of the two types of slabs.

First, we compare the formation energies of homogeneous
and inhomogeneous slabs for identical surface composition
xs but different nominal bulk Cr concentration (i.e., the slab
interior). Not considering the interfacial term in Eq. (A8) leads
to the following approximation for the difference between the
formation energies of the homogeneous and inhomogeneous
slabs,

�Eslab(xs) − �Eslab(xs; xb) ≈ (nm − 2)�Eb(xs). (9)

This formula expresses the fact that the formation energy of
the inhomogeneous slab �Es(xs; xb) is defined for the surface
layers only, i.e., there is no contribution coming from the
(nm − 2) internal layers. On account of the considered Cr
concentration interval, we chose as reference states pure Fe
and Fe0.85Cr0.15 to derive the formation energies. We selected
xb = 0.06 in order to compute �Es(xs; xb) (the results for
other xb values are similar) and computed the left- and right-
hand sides of Eq. (9) as a function of xs. Slabs with nm equal
to 11 atomic layers and 13 atomic layers for the (110) surface
and the (100) surface, respectively, were chosen.

The three formation energy terms appearing in Eq. (9)
are shown in Fig. 4 along with the difference between the
two slab formation energies [left-hand side of Eq. (9)].
This differences agrees reasonably well with the right-hand
side of Eq. (9) establishing the accuracy of the approxi-
mation; the deviations are due to the neglected interfacial
term. An explicit evaluation of σ and �σ using Eqs. (A7)
and (A9) resulted in σ (0; 0.06) = 0.71 meV, σ (0.06; 0.06) =
0.0 meV, and σ (0.15; 0.06) = −16.48 meV for the (110) sur-
face, and σ (0; 0.06) = 27.11 meV, σ (0.06; 0.06) = 0.0 meV,
and σ (0.15; 0.06) = −34.20 meV for the (100) surface.
Further evaluation gave 2�σ(110)(0.06; 0.06) = 14.04 meV
and 2�σ(100)(0.06; 0.06) = −5.17 meV. These values for
�σ (xs; xb) are identical to the differences between the left-
and right-hand sides of Eq. (9) as plotted in Fig. 4. This in-
termediate result shows that the formation energies of the two
slabs basically differ by the bulk formation energy weighted
with the number of subsurface layers. In the following, we
turn to the surface energies assuming again that the sigma term
is small.

In order to understand the different surface alloying effects
on the surface energies of the chemically inhomogeneous Fe-
Cr system with fixed bulk concentration and the chemically
homogeneous Fe-Cr alloy, we rewrite Eq. (A7) using the
surface energies in units of energy (�), viz.

�(xs; xb) − �(xs) = Eb(xs) − Eb(xb) + �μb(xb)(xs − xb)

+�σ (xs; xb). (10)

We then take the derivative of this expression with respect to
the surface concentration xs dropping the �σ term,

d�(xs; xb)

dxs
− d�(xs)

dxs
≈ dEb(xs)

dxs
+ �μb(xb). (11)

This relationship expresses the fact that the slopes of the two
surface energies versus surface concentration differ from each
other by a term that depends merely on bulk quantities. We

(a)

(b)

FIG. 4. The relationship between the bulk formation energy, the
formation energies of chemically homogeneous slabs and inhomo-
geneous slabs (with xb = 0.06 in the interior) and their difference
according to Eq. (9) as a function of surface or bulk Cr concentration.

can easily verify Eq. (11) by taking the slopes in the limit of
low xs and considering a low xb of 0.03. The right-hand side of
Eq. (11) nearly vanishes in this case (apart from the volume
effect) and thus the two surface energy terms should exhibit
similar derivatives against xs. Indeed, Figs. 1 and 3 show a
qualitative agreement between the compositional effect of Cr
on the surface energy of the chemically inhomogeneous slabs
for low-xs and chemically homogeneous slabs for low xb.

Equation (11) also suggests that the difference in the slopes
of the surface energy depends on the bulk concentration
mainly through a bulk contribution. Taking the derivative of
Eq. (11) with respect to xb gives

d2�(xs; xb)

dxbdxs
≈ �μb(xb)

dxb
. (12)

That is, the bulk concentration effect on the slope of the sur-
face energy of the inhomogeneous alloy equals approximately
the second-order derivative of the bulk energy (with negative
sign). Since the second-order derivative of the bulk energy
at constant volume is relatively close to the second-order
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FIG. 5. The first-order derivative of �(xs; xb) with respect to
xs plotted as a function of surface Cr concentration for the (110)
and (100) surface terminations of chemically inhomogeneous Fe-Cr
alloys and varying bulk Cr content as indicated in the legend.

derivative of the formation energy, which in the case of Fe-
rich Fe-Cr alloys has a positive curvature (cf. discussion in
Sec. III B), we expect that −d2Eb (xb)/dx2

b should be negative
for xb � 0.15. Increasing xb should thus decrease the slopes
of the surface energies and the decrease should be of similar
magnitude for both surfaces. To verify this, we computed the
derivatives of the surface energies from Fig. 3, represented in
units of energy, with respect to xs after fitting to second-order
polynomials. From the results shown in Fig. 5, we find that
the derivatives are indeed shifted to smaller values, by an
amount that weakly depends on xs, as xb increases. For in-
stance, the differences between the curves for Fe0.97Cr0.03 and
Fe0.94Cr0.06 amount to ≈0.3 and ≈0.5 meV/at.% for the (110)
surface and the (100) surface, respectively. These values are
consistent with the variation of the bulk ECP as a function of
xb [right-hand side of Eq. (12)] evaluated using the data from
Table I. The similarity is due to the identical bulk and thus the
change in the slope as a function of xb does not depend on the
surface termination. Figure 5 confirms our initial assumption
that the change in the slope of the surface energies for the
inhomogeneous surfaces against bulk concentration has a bulk
origin [Eq. (12)]. We conclude that the complex behavior of
the surface energies of the inhomogeneous slabs shown in
Fig. 3 is primarily due to the underlying bulk effect rather than
an influence of the surface.

E. The role of magnetism in the suppressed layer relaxation of
chemically homogeneous Fe-Cr alloys

The purpose of this section is to explain the suppressed
surface layer relaxation in Fe-Cr alloys using the resolved
magnetic moments in the bulk and near the surface.

The employed mean-field alloy theory yields Cr spin mag-
netic moments aligned anti-parallel to the Fe moments of the
host (assigned positive signs). The bulk magnetic moments
mb of Fe are stable against Cr concentration, whereas the
Cr magnetic moments gradually increase, i.e., from −1.63 to

−0.89 μb when xb increases from 0 to 15 at.%, see Fig. 6 (all
Cr impurity level calculations done with x = 0.05 at.%).

We also present the species resolved magnetic moments in
the surface layer ms (for which the deviations from the bulk
values are the largest) for chemically homogeneous Fe-Cr
alloys in Fig. 6. For both the Fe and Cr species, the abso-
lute surface magnetic moments are enhanced and this effect
is obviously more pronounced for the open (100) surface.
At the impurity level, the Cr magnetic moments amount to
−3.06 μb and −2.54 μb for the (100) and the (110) surfaces,
respectively. The Fe surface magnetic moments exhibit a
weak concentration dependence similarly to the bulk. The Cr
surface magnetic moments at both surface facets are, however,
significantly more stable than their bulk counterparts. We
draw upon the surface electronic structure of the Fe-Cr alloy
in Sec. III F to explain the enhancement and stability of the Cr
surface moments. We note in passing that the experimental
magnetic moment of a complete Cr monolayer grown on
Fe(100) was found to be of the same magnitude, i.e., ≈3 μb

per site (no information on possible surface alloying was
provided) [58].

As pointed out in Sec. III A, the top-layer relaxations for
the (110) and (100) surfaces of Fe and Fe-Cr are significantly
smaller than the values typically predicted for the nonmag-
netic bcc transition metals. We show in the following that
this is due to the magnetic contribution to the total stress
responsible for the surface layer relaxation into mechanical
equilibrium. This magnetic surface layer relaxation stress
is closely related to the concept of bulk magnetic pressure
[59,60] and magnetic surface stress [54] of the in-plane com-
ponents of the surface stress tensor.

Let the cleaved surface be located in the plane defined by
z = const. We define the surface layer relaxation stress normal
to the surface and corresponding strain as

τzz = 1

A

∂E

∂εzz
and εzz = d12 − d0

12

d0
12

, (13)

respectively, where d0
12 is the relevant bulk interlayer distance

in equilibrium. τzz has the units J/m2 similar to the interfacial
excess stress [23]. Let τ 0

zz ≡ τzz(εzz = 0) be the value for the
perfectly truncated bulk.

In order to understand the role of surface magnetism in the
observed surface relaxation behavior we performed additional
fixed spin-moment calculations of the surface-layer relaxation
for pure Fe and Fe0.91Cr0.09. In Fig. 6(b), we plot the strain
εzz corresponding to mechanical equilibrium as a function of
the stress τ 0

zz for a series of surface magnetic moments ms

kept fixed during relaxation. Several interesting conclusions
may be drawn. Firstly, Fig. 6(b) makes evident that the top
layer relaxation and τzz are to a good approximation linearly
related for both considered surfaces of bcc Fe and Fe0.91Cr0.09.
The slopes determined for Fe by linear interpolation of the
data are −0.86 and −0.30 (J/m2)−1 for the (100) and the
(110) surfaces, respectively. The corresponding slopes for
Fe0.91Cr0.09 are similar. The linearity follows from the some-
what surprising fact that the stiffness of the layer relaxation
∝∂2E/∂ε2

zz only weakly depends on the parameter ms (higher-
order terms in the strain turned out to be negligible). Reducing
the magnitude of the surface magnetic moments leads to a
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(a)

(b)

(c)

FIG. 6. (a) The total and species resolved magnetic moments for
chemically homogeneous Fe1−xb Crxb alloys in the bulk and at the
(100) and (110) surface facets (impurity level calculations carried out
for 0.05 at.%; lines are a guide for the eye). For Fe and Fe0.91Cr0.09,
(b) the correlation between the surface layer relaxation strain εzz and
the surface layer relaxation stress τ 0

zz, wherein the surface magnetic
moments ms denoted in the figure refer to Fe; (c) the correlation
between τ 0

zz and m2
s , wherein the magnetic contribution τ 0,mag

zz is
indicated for Fe. The solid lines in (b) and (c) interpolate the
data.

larger inward relaxation of d12. Since this effect is more
pronounced for the open (100) surface facet, the relaxations
of d12 for the smallest considered ms exhibit a correlation with
the surface roughness that is reminiscent of the nonmagnetic
bcc transition metals as mentioned above. Nevertheless, the
absolute values of d12 (for the smallest ms) are somewhat
smaller than those of the nonmagnetic bcc metals, which is
likely due to electronic structure differences as well as the
influence of the spin-polarized subsurface layers in the present
calculations.

Secondly, the relationship between τ 0
zz and ms is nonlinear;

see Fig. 6(b). Let the total stress τ 0
zz be a sum of a regular

contribution and a magnetic contribution, i.e., τ 0
zz = τ

0,reg
zz +

τ
0,mag
zz , where the regular contribution is the one of a non-

spin-polarized surface layer [τ 0
zz(ms = 0)] and the magnetic

contribution is defined as the difference in stress between
the spin-polarized calculations with ms and the non-spin-
polarized calculations. Then, we find that a close approx-
imation of τ

0,mag
zz is provided by a quadratic dependence

on ms, viz.

τ 0,mag
zz ∝ κ(hkl )m

2
s , (14)

as shown in Fig. 6(c). κ(hkl ) is a surface facet specific slope.
By data interpolation [solid lines in Fig. 6(c)], κ(100) and κ(110)

were determined to −0.28 and −0.33 J m−2 μ−2
b

, respectively,
in the case of Fe. By means of extrapolating these lines to
ms = 0, τ

0,reg
zz amounts to ≈7 and ≈5 J/m2 for the (110)

and the (100) surfaces, respectively. The corresponding data
for Fe0.91Cr0.09 are relatively similar. Obviously, the mag-
netic stress component is compressive and favors outward
relaxation.1

A square dependence of the magnetic stress on the surface
moment similar to Eq. (14) was previously reported for the in-
plane components of the surface excess stress [52,54]. In con-
trast to the normal component considered here, the in-plane
components cause practically no strain in the material except
in nanocrystals [61]. The origin of the square dependence
of the magnetic pressure was explained within the canonical
theory of d bands and in the Stoner model for magnetism
[59,60].

The above discussion considered the effect of spin-
polarization on the layer relaxation; it included the sponta-
neously spin-polarized long-range-ordered magnetic state and
the non-spin-polarized (nonmagnetic) state as special cases.
A simple and direct means of assessing whether the elec-
tronic spin polarization of the electronic structure is important
and/or the presence of long-range magnetic order is achieved
if a paramagnetic state is considered. To this end, we drew
upon the alloy analogy of the disordered local moment model
for the paramagnetic state [62,63], which yields similar mag-
nitudes of the local magnetic moment for the ferromagnetic
and paramagnetic states of bcc Fe (≈2.1–2.2 μb ). The effect
of long-range magnetic order versus random directional dis-
order can thus be directly assessed by way of comparing the
layer relaxation. For both paramagnetic Fe and Fe0.91Cr0.09 at

1Convention: for positive or tensile (negative or compressive)
stress, the bulk or surface would like to contract (expand).
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their theoretical equilibrium volumes, we obtained an inward
relaxation of 1.6% and 2.5% for the (110) facet and the
(100) facet, respectively. These figures are very similar to
those computed for magnetically ordered Fe and Fe0.91Cr0.09

(Sec. III A), indicating that the local electronic spin polariza-
tion of the electronic structure plays a more important role
in the top-layer relaxation of Fe and the Fe-rich Fe-Cr binary
than magnetic long-range order. This result is consistent with
a previous investigation of the surface stress at the (110) and
(100) facets of bcc Fe in ferromagnetic and paramagnetic
states [52].

F. Electronic structure

In order to understand the electronic origin of the enhanced
surface magnetic moments and the stability of the Cr surface
magnetic moments against composition, we analyze the den-
sities of states (DOSs) at the two surface facets in comparison
to the bulk DOS for Fe and chemically homogeneous Fe-Cr
alloys with xb = 0.03, 0.09, and 0.15.

The bulk DOS of bcc Fe shown in Fig. 7(a) exhibits
the characteristic three-peak structure formed by the T2g and
Eg scalar d orbitals in both spin channels. The Fermi level
resides near the bottom of the pseudogap in the minority
spin channel, roughly separating bonding from antibonding
states, and at the T2g shoulder of the majority band. Bulk Cr
is also exchange split with similar d band width to Fe, but
favors antiferromagnetic order (for a plot of the bulk and
surface DOSs of Cr, we refer to Refs. [30,64]). The band
center of the Fe minority spin states and the band center of
the Cr majority spin states are close in energy relative to their
common d band width and align in the Fe-rich alloy to form a
“common-band”-like minority spin band [65].

Due to the different exchange splittings of Fe and Cr, the
majority spin electron DOS of the alloy shows pronounced
split-band behavior; see Fig. 7(a). This is evident from the an-
tibonding, Lorentzian-type virtual bound state (VBS) formed
by the d states of Cr above the majority d states of Fe, and
arises from hybridization effects [66]. Consequently, the Cr
and Fe moments are aligned in opposite directions. Alloying
with Cr generally smears out features of the DOS, the T2g

shoulder of Fe is pushed to below the Fermi level [67], and
the Cr VBS broadens and becomes gradually occupied. This
effect mainly causes the magnetic moment of Cr to decrease
in magnitude with increasing its concentration; cf. Fig. 6(a).
In contrast, the minority spin electron alloy DOS is virtually
pinned at the Fermi energy (some spectral weight is shifted to
above the Fermi energy in order to maintain the occupation
number).

The surface atoms possess reduced coordination numbers
and lower site symmetries narrowing the valence band width
and partially or totally removing the typical three-peak struc-
ture in the surface DOS; see Figs. 7(b) and 7(c). Overall
speaking, the total DOS at the close-packed (110) surface re-
sembles the bulk one more closely, which is plausible from the
fewer number of broken bonds. That is, in terms of a simple
bond cutting model, two nearest neighbor (NN) bonds and
two next-nearest neighbor (NNN) bonds are cut for a (110)
surface atom, whereas four NN bonds and two NNN bonds
are cut for a (100) surface atom. Moreover, the T2g and Eg

(a)

(b)

(c)

FIG. 7. DOS per atom for pure Fe and chemically homogeneous
Fe1−xb Crxb random alloys (xb = 0.03, 0.09, 0.15) for (a) the bulk,
(b) at the (110) surface facet, and (c) at the (100) surface facet. The
total DOS and the Cr resolved DOSs normalized to 100 at.% are
shown (the Fe resolved DOSs are not shown as they approximate the
total DOSs). The legend applies to all panels. The eigenenergies are
plotted relative to the Fermi energy.

representations are lifted to five one-dimensional representa-
tions at the (110) surface, and one two-dimensional and three
one-dimensional representations at the (100) surface. For both
alloy surfaces, the Cr VBS is shifted to higher energies and
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becomes narrower, indicating that the majority spin electron
DOSs exhibit stronger split-band behavior than the bulk.
The split-band behavior in the minority spin electron DOSs
increases as well, which arises from the less well aligned
surface minority spin states of Fe and the surface majority
spin states of Cr in comparison to the bulk (recall, that Cr
has a significantly enhanced surface magnetic moment). The
significantly increased Cr surface magnetic moment in the
Fe-rich alloys relative to its bulk value (Fig. 6) originates
from this enhanced split-band behavior. The stability of the
Cr surface magnetic moments at both surfaces against bulk
composition follows from the fact that the VBS is pushed
to higher energies, and only the lower-energy tails become
occupied as the Cr concentration increases.

IV. CONCLUSIONS

We examined the compositional dependence of the surface
energies and surface segregation energies of Fe-rich Fe-Cr
alloy for the (100) terminated and (110) terminated surfaces
through DFT simulations. We found that a threshold behavior
of the surface Cr composition does not occur at the (110) sur-
face. Instead, a surface alloy with Cr amount nearly equal to
that of the bulk is energetically favorable for all nominal bulk
Cr concentrations �15 at.%. In contrast, the surface chemistry
of Fe-Cr(100) is characterized by Cr depletion (enrichment)
at below (above) the critical bulk Cr composition window of
6–9 at.%. Thus the energetics of the Cr surface segregation
in the Fe-Cr binary is surface-facet specific, which may lead
to differences in the precipitation of Cr and ultimately the Cr
oxide formation at these free surfaces.

We showed that the strongly suppressed surface-layer re-
laxation at both surfaces of the Fe-Cr alloys is of magnetic
origin. Our results indicate that the local electronic spin
polarization of the electronic structure is mainly responsible
for this effect rather than the presence of long-range magnetic
order. In particular, we provided evidence that the magnetic
contribution (favoring outward relaxation) to the surface layer
relaxation stress follows a dependence on the surface mag-
netic moment squared. This relationship should be verified for
other surface facets and magnetic materials. The electronic
origin for the higher stability of the Cr surface magnetic
moments against bulk Cr content in comparison to the bulk
case was clarified.
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APPENDIX: FORMATION ENERGY FORMULAS

Choosing as standard states bcc Fe and bcc Fe1−x0 Crx0 , the
bulk formation energy of the alloy Fe1−xb Crxb , 0 � xb � x0,
may be derived from

�Eb(xb) = Eb(xb) − x0 − xb

x0
Eb(0) − xb

x0
Eb(x0). (A1)

Similarly, the formation energy of a chemically homogeneous
slab may be expressed by

�Eslab(xb) = Eslab(xb) − x0 − xb

x0
Eslab(0) − xb

x0
Eslab(x0).

(A2)

Subtracting the previous two equations for the same number
of layers (nm) yields the surface excess,

�Eslab(xb) − nm�Eb(xb) = 2�(xb) − x0 − xb

x0
2�(0)

− xb

x0
2�(x0). (A3)

Similar to Eq. (A2), we may express the formation energy
for the surface alloy with concentration xs, 0 � xs � x0, and
nominal bulk Cr concentration xb through the energies of
chemically inhomogeneous slabs, viz.

�Eslab(xs; xb) = Eslab(xs; xb) − x0 − xs

x0
Eslab(0; xb)

− xs

x0
Eslab(x0; xb). (A4)

This is readily shown to be equal to

�Eslab(xs; xb) = 2�(xs; xb) − x0 − xs

x0
2�(0; xb)

− xs

x0
2�(x0; xb). (A5)

It should be noted that no bulk term appears on the left-hand
side in contrast to Eq. (A3) corresponding to homogeneous
alloys.

Finally, we compare the formation energies of homoge-
neous and inhomogeneous slabs for the case when their
surface concentrations are identical (on both surfaces of the
slab), but concentration differences may occur in the interior.
Differences arise primarily due to interfacial effects at the
interface formed between the surface alloy and the bulk
subsystem. First we introduce the energy per surface layer
defined as [cf. Eq. (1)]

Ē (xs) ≡ 1
2 (Eslab(xs) − (nm − 2)Eb(xs)) = Eb(xs) + �(xs),

(A6)

and rewrite the slab energies,

Eslab(xs; xb) = 2Ē (xs) + (nm − 2)Eb(xb) + 2σ (xs; xb). (A7)

σ (xs; xb) is referred to as an interfacial energy and defined by
the previous equation. For equal indices, σ (x; x) = 0. The for-
mation energies difference between homogeneous [Eq. (A2)]
and inhomogeneous slabs [Eq. (A4)] using Eq. (A7) may then
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be written as

�Eslab(xs) − �Eslab(xs; xb) = (nm − 2)�Eb(xs) − 2�σ (xs; xb)

(A8)

with

�σ (xs; xb) = σ (xs; xb) − x0 − xs

x0
σ (0; xs) − xs

x0
σ (x0; xs ).

(A9)
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[62] J. Staunton, B. L. Győrffy, A. J. Pindor, G. M. Stocks, and
H. Winter, The “disordered local moment” picture of itinerant
magnetism at finite temperatures, J. Magn. Magn. Mater. 45, 15
(1984).
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