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Efficient construction method for phase diagrams using uncertainty sampling
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We develop a method to efficiently construct phase diagrams using machine learning. Uncertainty sampling
(US) in active learning is utilized to intensively sample around phase boundaries. Here, we demonstrate
constructions of three known experimental phase diagrams by the US approach. Compared with random
sampling, the US approach decreases the number of sampling points to about 20%. In particular, the reduction
rate is pronounced in more complicated phase diagrams. Furthermore, we show that using the US approach,
undetected new phases can be rapidly found, and smaller numbers of initial sampling points are sufficient. Thus,
we conclude that the US approach is useful to construct complicated phase diagrams from scratch and will be an

essential tool in materials science.
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I. INTRODUCTION

Phase diagrams are crucial in materials development be-
cause they contain extremely useful information. However,
numerous syntheses and measurements are necessary to com-
plete a phase diagram. Thus, this indispensable task occupies
a large percentage of materials discovery.

In combinatorial materials science, machine learning tech-
niques have been applied to construct phase diagrams [1-6].
In this field, a large amount of materials in the phase dia-
gram can be obtained simultaneously by synthesis of high-
throughput materials. Then, from measurement results such
as x-ray diffraction patterns, categories of many synthesized
materials should be rapidly determined to complete phase
diagrams. To realize categorization automatically, clustering
and matrix factorization are utilized.

On the other hand, recent materials informatics studies
aim to develop novel materials with the smallest number of
syntheses or first-principles calculations as possible with the
aid of machine learning. Many successful examples have been
reported using both experiments and simulations [7-17]. In
these investigations, machine learning efficiently recommends
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a candidate material possessing the desired properties even if
limited materials data exists. In accordance with this idea, we
aim to propose some materials which should be synthesized
to complete phase diagrams by machine learning. If an ap-
propriate proposal is realized, a reliable phase diagram can be
obtained, even if the number of synthesized materials is small.
This problem setting resembles that in active learning.

Active learning is a learning framework that sequentially
selects an informative sample to classify and checks its label
in order to maximize the classification accuracy with fewer
labeled data. Thus, we speculate that active learning is an
essential tool to efficiently construct a phase diagram. A
previous study employed an active learning method that uses a
Gaussian process to sample the phase diagram [18]. Although
this method dramatically reduces the number of sampling
points, the demonstration was only performed using a phase
diagram with only two kinds of phases. Furthermore, this
method would be difficult to apply in cases where multiple
phases exist. To improve practicability, herein we propose a
different active learning method that uses US [19] to effi-
ciently construct a phase diagram.

US is a methodology that selects a sampling point with
the most uncertainty as calculated by a machine learning-
based classification model as an informative sample. The
most uncertain data are typically located near classification
boundaries (phase boundaries). This US approach can be
applied to any number of parameters (dimensions in a phase
diagram) and categories (kinds of phases).

In this paper, the US approach is used to construct phase
diagrams. This study reveals the following.
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FIG. 1. Overview of efficient phase diagram construction based on the uncertainty sampling approach.

(1) Phase boundaries can be efficiently obtained and an
accurate phase diagram can be drawn even if the number of
sampling points is small.

(i) Because undetected new phases in a phase diagram
can be rapidly found, this approach is more useful to construct
complicated phase diagrams.

(iii)) Fewer initial sampling points are sufficient, making
the US approach well suited to construct phase diagrams from
scratch.

These facts strongly suggest that the US approach will
be a powerful tool to construct phase diagrams in materials
science. Our implementation is available on GitHub at https://
github.com/tsudalab/PDC/.

The rest of the paper is organized as follows. Section II
introduces details of our method based on US to efficiently
construct phase diagrams. To estimate the probability of
phases at each point from already checked points, the label
propagation and label spreading methods are adopted. Fur-
thermore, the evaluation methods of uncertainty, that is, the
least confident method, margin sampling, and the entropy-
based approach, are explained. In Sec. III, the US approach
is used to construct three known phase diagrams: H,O under
lower and higher pressures, and a ternary phase diagram of
glass-ceramic glazes. The US approach can efficiently sample
to complete a complicated phase diagram from scratch. Sec-
tion IV addresses the case with experimental constraints. The
results with and without imposed constraints are comparable.
Section V is the discussion and summary.

II. METHOD BASED ON UNCERTAINTY SAMPLING

This section presents the framework for phase diagram
construction using US. Figure 1 overviews our procedure.
First, several points are selected, and their phases are deter-
mined by experiments or simulations (step 1: initialization).

Next, the probability distributions of the phases are calculated
for all the points in the parameter space using a machine learn-
ing technique (step 2: phase estimation). From the probability
distributions, the uncertainty scores are calculated for the all
unchecked points in the parameter space (step 3: uncertainty
score). Afterwards, an experiment or a simulation of the
point with the highest uncertainty score is performed (step 4:
experiment). Steps 2—4 are repeated to construct an accurate
phase diagram with a smaller number of sampling points.
Each step is described in detail below.

A. Initialization

The regions of parameter space and the parameter candi-
dates are prepared in advance. Parameter space can have two
or more dimensions. As the initialization step, several points
are selected, and their phases are determined by experiments
or simulations. The points can be selected randomly or manu-
ally. This paper adopts random selection.

B. Phase estimation

The probabilities of the observed phases are estimated for
all unchecked points. This probability distribution is written
as P(p|x), where x is the position vector of each unchecked
point and p is the label of phases, which are already observed.
From this distribution, an estimated phase diagram is drawn
by choosing the phase with the highest probability, e.g.,
argmax , P(p|x). Herein we adopt two representative estima-
tion methods of probabilities: label propagation (LP) [20] and
label spreading (LS) [21]. These are kinds of semisupervised
learning, which make use of not only labeled but also unla-
beled data for learning. In these methods, the probability of
each point is calculated by propagating the label information
to nearby points. The probability of a phase p at x calculated
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by LP equals to one to reach the phase p first by random walk
from x. In LP, the labels of the checked points are fixed. On
the other hand, in LS, the labels of checked points can be
changed depending on the surrounding circumstances. Thus,
LS is effective when the label noise is large.

C. Uncertainty score

The uncertainty score defined as u(x) is calculated to
determine the next candidate in a phase diagram from the
estimation result of the probability distributions P(p|x). In
this paper, we adopt three representative methods of the
US strategy: the least confident (LC) method [22], margin
sampling (MS) [23], and the entropy-based approach (EA)
[24]. For each point x, the LC ujc(x), MS ups(x), and EA
uga (X) scores are calculated as follows:

e (x) = 1 = max P(plx), (1)

ups(x) = 1 —[P(p1|x) — P(p2|x)], (2

uga(X) = — Y _ P(plx)log P(p|x), 3)
p

where P(p;|x) and P(p;|x) in ups(x) mean the highest and
second-highest probabilities at x. From the definitions, the
uncertainty scores become higher when the probabilities of
each phase are all the same. The LC score is only influenced
by the highest probability at each point, while the MS score is
affected by the first- and second-highest probabilities. For the
EA score, the whole distribution is taken into account.

The next candidate is determined from the unchecked
points with the highest uncertainty score, e.g., arg max, u(x).
Then an experiment or a simulation is performed for this
point. If an undetected phase is obtained, the next step per-
forms a phase estimation that includes the new phase. To
handle the data uniformly, the parameters are normalized
using the min-max normalization [25] for a phase estimation
and an evaluation of the uncertainty score.

III. PHASE DIAGRAM CONSTRUCTION BY
UNCERTAINTY SAMPLING

We report the performances of the proposed strategies
based on US compared to random sampling (RS) for three
known phase diagrams: H,O under lower pressure (H,O-L),
H,O under higher pressure (H,O-H) [26-28], and the ternary
phase diagram of glass-ceramic glazes of SiO,, Al,O3, and
MgO (Si0;-Al,03-MgO) [29]. Figures 2(a)-2(c) show these
experimental phase diagrams. Here, the next point in RS is
randomly selected from the unchecked points and the phase
diagram is estimated using the phase estimation methods
described above. However, the information of the estimated
phase diagram is not used to select the next point in RS.

A. Sampling results

Figures 2(d)-2(f) show examples of the sampled points
by the US approach. In these demonstrations, LP is uti-
lized as the phase estimation method and LC (LP + LC) is
used to evaluate the uncertainty score. For each case, nine
points are randomly selected as the initialization. In total, the

sampled points are 80, 110, and 180 for H,O-L, H,O-H, and
Si0,-Al,03-MgO, respectively. Triangles denote the initial
points and circles are the sampled points by the US approach.
The sampled points are distributed around the phase bound-
aries. On the other hand, Figs. 2(g)-2(i) show the sampling re-
sults by RS. The nine triangles denote the initial points, which
are located at the same positions as the US approach. Since
RS selects a number of points in regions away from the phase
boundaries, efficient sampling is not realized. In addition,
relatively small areas such as ice III in HyO-H and tridymite
and sapphirine in SiO,-Al,03-MgO are difficult to find by RS.
However, these phases can be detected by the US approach, as
shown in Figs. 2(e) and 2(f). These results suggest that the US
approach can efficiently sample near the phase boundaries,
allowing smaller phases to be rapidly detected. As Supple-
mental Material [30], movies of sampling behaviors for each
case by the LP + LC approach compared with LP + RS are
prepared (see Supplemental Material, Movie 1).

B. Quantitative comparison between uncertainty
and random samplings

We quantitatively compare the US approach with the RS
approach. To evaluate the quantitative accuracy of the esti-
mated phase diagram by the LP or LS method, we adopted the
macro average score based on the F1 score (Macro-F1), which
is commonly used as an evaluation metric for classification
problems in the machine learning community. This value
denotes the difference between the experimentally obtained
phase diagram and the estimated phase diagram. The F1 score
for a phase indexed by p is the harmonic mean of precision
P(p) and recall R(p), which is given as

2P(p)R(p)
P(p) +R(p)’

where precision P(p) is the number of points correctly esti-
mated as p (true positives) divided by the total number of
points estimated as p. On the other hand, recall that R(p) is the
number of true positives divided by the total number of true p
points. A phase that has yet to be detected has an F1 score of 0.
We calculated the Macro-F1 score by averaging the F1 scores
of all the true phases. Thus, when the value of the Macro-F1
score is a small value («1), the difference between the true
and the estimated phase diagrams is very large. A Macro-F1
score of 1 indicates that the estimated phase diagram exactly
reproduces the true one.

The top row in Fig. 3 shows the results of the Macro-F1
scores as functions of the number of sampling points for
H,O-L, H,O-H, and Si0O,-Al,03-MgO. Here, the initial sam-
pling number is fixed to 9. Since these results depend on the
selection of initial points, we repeated the trials 200 times us-
ing different initial points and averaged the results. The black
lines (solid and dashed) depict the results of RS, and the other
lines show the results by the US approach. The label of A + B
means the combination of A as the phase estimation method
(i.e., LP or LS) and B as the sampling method (i.e., LC, MS,
EA, or RS). The combinations of LP + LC and LP + MS
show relatively good performances compared with the other
methods for the three phase diagrams. Compared with RS, any
US approach can provide better Macro-F1 scores even if the

Fi(p) = “
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FIG. 2. Phase diagrams of H,O-L (a), HO-H (b), and SiO,-Al,03;-MgO (c) and examples of samplings by using the US and RS
approaches. Panels (a), (b), and (c) have 3, 6, and 10 phases, respectively. Panels (d), (e), and (f) show nine initial points randomly selected
(triangles) and sampled points (circles) by the LP 4+ LC method. Numbers of sampling points are 80, 110, and 180. Panels (g), (h), and (i) show
sampling points by the RS method. Numbers of sampling points in panels (g), (h), and (i) are the same as in panels (d), (e), and (f). Relatively
small phases such as ice III in panel (h) and tridymite and sapphirine in panel (i) are not found by the RS method.

number of sampling points is small. Table I summarizes the
numbers of sampling points necessary to reach a Macro-F1
score of 0.95. From the viewpoint of the average from three
phase diagrams, the number of sampling points could be
reduced by 0.36, 0.20, and 0.20 for the three phase diagrams
using the LP + LC method instead of the LP 4+ RS method.
This result implies that for a complicated phase diagram, the
US approach is more useful to produce it quickly.

For these phase diagrams, the Macro-F1 results indicate
that the LP method is better suited than the LS method. This
demonstration employs cases where the phase boundaries are
properly determined and the outliers do not appear. Since it
is not necessary to consider the noise for the labels, LS does
not work effectively. Furthermore, we found that the EA is not
useful. If the number of phases is small, MS is better suited,
whereas LC is powerful when many phases exist in a phase
diagram. Thus, an efficient selection can be realized using LC
to construct complicated phase diagrams.

03

C. Capability of new phase detection

In Sec. IIT A, we showed that small phases are detected
more quickly by using the US approaches than by using RS.
In this subsection, we demonstrate how many sampling points
are needed to detect all the phases in each phase diagram of
H,0-L, H,O-H, and SiO;-Al,03-MgO. The middle row in
Fig. 3 shows the sampling number dependence of the numbers
of detected phases which are averaged over 200 independent
runs. Since HyO-L has three large phases, the detection per-
formances of the US approaches and RS are almost the same.
In the case of H,O-H, which has one small phase (ice III), all
the phases are detected by LP 4 LC using 30 sampling points
at most, whereas RS requires more than 200 sampling points.
For Si0,-Al,03-MgO, over 600 sampling points are needed
to find all the phases using RS because there are multiple small
phases such as sapphirine, tridymite, and enstatite. These
results indicate that a small phase connected to boundaries
of other large phases can be found relatively early using
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FIG. 3. Performances of phase diagram construction using the US approach. The top row shows the accuracies (Macro-F1) of phase
diagram construction as functions of the number of sampling points for H,O-L (a), H,O-H (b), and SiO,-Al,03-MgO (c). Colored lines are
the results from the US approach. Black solid and dashed lines are from RS. The middle row shows the performances of phase detection.
Panels (d), (e), and (f) show the number of sampling points necessary to detect all phases in the phase diagrams of H,O-L (three phases),
H,0-H (six phases), and SiO,-Al,03-MgO (ten phases). The bottom row shows the effects of the initial sampling points. Panels (g), (h), and
(i) show the numbers of sampling points to reach a Macro-F1 score of 0.95 by using LP + LC as functions of initial sampling points (1, 4, 9,
and 16).

the US approach due to preferential investigation of areas D. Effect of initial sampling

near boundaries. Thus, we conclude tha}t our US' approach is We discuss the dependency of the initial sampling. The
a.powerful tool to detect new phases in complicated phase bottom row in Fig. 3 shows the average number of sam-
diagrams. pling points to reach a Macro-F1 score of 0.95 using the

TABLE I. Number of sampling points to reach an accuracy (Macro-F1) of 0.95 using the US approach and the RS approach. Parentheses
denote the reduction rates of the US approach compared with the RS approach. For the LP-based US approach, the numbers of sampling points
of LP + LC, LP + MS, and LP + EA are divided by those of LP + RS, while LS-based US approaches (LS + LC, LS + MS, and LS + EA)
are divided by LS + RS. Bolded values indicate the highest accuracy.

System LP+LC LP 4+ MS LP + EA LS+ LC LS +MS LS + EA LP 4+ RS LS +RS
H,O0-L 40 (0.36) 34 (0.31) 49 (0.45) 54 (0.38) 52 (0.37) 65 (0.46) 110 142
H,0-H 62 (0.20) 69 (0.22) 77 (0.25) 81 (0.25) 86 (0.26) 102 (0.31) 307 325
Si0,-Al,03-MgO 124 (0.20) 151 (0.24) 171 (0.27) 151 (0.23) 161 (0.24) 224 (0.33) 625 657
Average 75.3 (0.25) 84.6 (0.26) 99.0 (0.32) 95.3(0.29) 98.7 (0.29) 129 (0.37) 347 375
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FIG. 4. Performances of the USPC approach for H,O-L (a), H,O-H (b), and SiO,-Al,03-MgO (c). Colored lines are the results from the

USPC approach. Black solid and dashed lines are from RSPC.

LP + LC approach as a function of the number of randomly
sampled initial points. To evaluate the average, 200 indepen-
dent demonstrations are performed for different initial points.
If the number of initial sampling points is increased, the
performance becomes worse. In addition, in these cases, the
optimum value of the initial sampling points is 1 or 4, and
then at initial sampling, some phases are not detected. This
finding indicates that to realize high performance, it is enough
to prepare a small number of initial points which are randomly
sampled. Consequently, the US approach is particularly useful
when constructing new phase diagrams from scratch.

IV. SAMPLING WITH PARAMETER CONSTRAINT

In the US approach described above, there are no restric-
tions on the change in parameters to select the next point.
However, there is often a huge cost to change all parameters
in an experiment. To address this problem, we construct a
sampling method called uncertainty sampling with parameter
constraint (USPC). USPC constrains the changes in param-
eters. To select the next point, candidate points are chosen
under the condition where only one parameter is changed
from the previous point. That is, for example, in H,O phase
diagrams, candidate points are prepared along parallel or
vertical directions from the previous point. Then the one with
the highest uncertainty score among the candidates is selected.
The other steps are the same as those of the US approach.
Note that if there are no candidates satisfying the condition,
the next point is selected after removing the constraint. Thus,
USPC can reduce the cost associated with a parameter change
in the experiment.

Figures 4(a)—4(c) show the results of the Macro-F1 scores
as functions of the numbers of sampling points for H,O-L,
H,0-H, and Si0,-Al,03-MgO by using the USPC approach,
respectively. Additionally, the results obtained by RS with
parameter constraint (RSPC) are plotted where the next point
is randomly selected by imposing the same constraint as
USPC. USPC-based methods such as LP + LC and LP + MS
show higher performances compared with RSPC, although the
performances are somewhat lower than the results without the
constraint [see Figs. 3(a)-3(c)]. Furthermore, the numbers of
sampling points to reach Macro-F1 of 0.95 are also success-
fully reduced to 0.37, 0.22, and 0.20 compared to RSPC (see
Supplemental Material, Table S1 [30]). The USPC approach
shows similar tendencies for new phase detection and the

effects on the initial sampling (see Supplemental Material,
Fig. S1 [30]). These results show that phase diagrams can
be efficiently constructed even under the constraint suited
for an experiment. As Supplemental Material, movies of the
sampling behaviors for each case using the LP + LC approach
with parameter constraint compared with LP + RS have been
prepared (see Supplemental Material, Movie 2 [30]).

V. DISCUSSION AND SUMMARY

We proposed an efficient method to construct phase dia-
grams using uncertainty sampling (US). This method employs
the next point with the most uncertainty in a phase diagram
assisted by machine learning. In general, the next point se-
lected by this approach is located near phase boundaries,
allowing the true phase boundary to be rapidly drawn. In our
method, the uncertainty is evaluated using the probabilities of
the observed phases at each point, which are obtained by the
label propagation (LP) or label spreading (LS) methods.

By comparing the US approach with the random sampling,
we confirmed that our approach can decrease the number
of sampling points to 20% and still construct an accurate
phase diagram. Furthermore, the US approach can find an
undetected new phase rapidly and a smaller number of initial
sampling points are sufficient to obtain an accurate phase
diagram. These advantages indicate that our method can make
significant contributions, especially when deriving new com-
plicated phase diagrams from scratch.

We also considered the case where only one parameter is
changed from the previous point when selecting the next can-
didate point, which is fitted to the conventional experimental
setting. Even if such a constraint is imposed, this approach
can realize efficient sampling to complete a phase diagram.
To strengthen the usability of our method, we should construct
new experimental phase diagrams using the US approach. In
this case, an unambiguous phase or a mixing phase might be
detected depending on the accuracy of the experiments. For
the cases, two possible procedures can be considered without
changing the algorithm. In the first one, experimenters chose
a label from possible phases randomly. For this strategy, LS
might be more useful than LP for phase estimation due to the
existence of noise, and the performance would be maintained
if the given label is not correct. The second procedure is that
an unambiguous phase or a mixing phase is regarded as a
new phase, and a new label is given. Then, a phase diagram
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including unambiguous or mixing phases is drawn by our
algorithm.

From a different perspective, the US approach provides
useful information about the reliability of the experiments
when the phase at each point is determined. For all points in a
phase diagram, the probabilities of each phase are evaluated in
our approach. Thus, if the probability of the detected phase by
experiments is extremely small, it may be an indicator that the
experiment is wrong. This would be important information to
construct valid phase diagrams.

Calculation time of the phase estimation and uncertainty
score in the US approach can become a computational bottle-
neck when the number of candidate points in the parameter
space is large. In the Supplemental Material, Table S2 [30],
we summarize computational time to select a next candi-
date point based on the US approach for H,O-L, H,O-H,
and Si0;-Al,03-MgO, and for finer mesh H,O-L systems
which have 1040, 2080, 4160, 8320, and 16640 candi-
date points. The results show that the computational time
of demonstrated cases in this paper (i.e., H,O-L, H,O-H
and Si0;,-Al,03-MgO) is very short. Furthermore, even if
the number of candidate points is more than 16000, the
computational time to select a next candidate is within 1 min.
We believe that these computational costs are acceptable for
practical use. On the other hand, because more scalable graph-
based semisupervised learning approaches [31,32] based on
several approximation methods have been proposed, we will

implement such approaches to reduce computational time in
future work.

The US approach can realize efficient sampling for phase
diagrams. Therefore, we believe that the US approach will
accelerate the speed to discover new materials. Hence, we
believe this method will become an essential tool in materials
science.
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