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Anharmonicity in elastic constants and extended x-ray-absorption fine structure cumulants
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We have investigated temperature dependence of the elastic constants and higher-order EXAFS (extended
x-ray-absorption fine structure) cumulant moments, both of which originate from vibrational anharmonicity.
We focus our attention on how the third- or fourth-order anharmonicity contributes to these physical quantities.
Although it may be believed that the fourth-order anharmonicity should dominantly contribute to the fourth-order
EXAFS cumulant through the first-order quantum statistical perturbation theory, it is consequently found that the
experimental fourth-order EXAFS cumulant observed in fcc Ni, Cu, and stainless steel 316 are described mainly
by the third-order anharmonicity through the second-order perturbation. In case of the elastic constants, such a
situation is more prominent, and the contribution of the fourth-order anharmonicity is negligibly small for the
estimation of temperature dependence of the elastic constants. We have also observed significant lattice strains
on Cr and Mo in stainless steel 316 through the Fe, Ni, Cr, and Mo K-edge EXAFS measurements: a compressive
lattice strain on Cr associated with larger thermal fluctuations and a more significant compressive lattice strain on
Mo without enhanced thermal fluctuation. Such a characteristic dissimilarity may be caused by the differences
in the atomic weights and the cohesive energies between Cr and Mo. Moreover, we have performed path-integral
effective classical potential and classical Monte-Carlo simulations to describe the bulk moduli of the Invar
and Elinvar alloys that show noticeable anomalies due to the so-called Invar effect. Appropriate temperature
dependence of the bulk moduli is successfully obtained for the Invar, Elinvar, and stainless steel 304 and 316
alloys as well as elemental fcc Cu and Ni metals.
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I. INTRODUCTION

It is well known that thermal expansion of matters origi-
nates from vibrational anharmonicity of the system and that
when the interatomic potential is Taylor expanded around
the equilibrium distance, the third-order anharmonicity domi-
nantly contributes to thermal expansion. Since the interatomic
potential is usually steeper at a shorter distance side than at a
longer distance side, the third-order expansion coefficient of
the interatomic potential is negative. This leads to elongation
of the interatomic distance with a temperature rise, which is
regarded as thermal expansion. The remark that the origin
of thermal expansion is ascribed to the third-order anhar-
monicity is quite natural, and many investigations have so
far been performed in detail using macroscopic dilatometry,
x-ray diffraction, and extended x-ray-absorption fine structure
(EXAFS) spectroscopy. EXAFS can determine the cumulant
moments of the radial distribution function around x-ray
absorbing atoms with high accuracy and allows one to discuss
local thermal expansion in detail, which may often differ from
lattice (macroscopic) thermal expansion.

On the other hand, temperature variation of elastic con-
stants such as bulk moduli and Young moduli is also caused by
vibrational anharmonicity. The elastic constant corresponds
to the second-order differential coefficient of the interatomic
potential around the equilibrium distance, and within the
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harmonic approximation it should be constant upon temper-
ature variation, as in the case of the interatomic distance.
It is however well known even in our daily lives that most
materials become softer with a temperature rise, implying a
decrease in the elastic constant with temperature. Although
it is in general supposed that temperature dependence of the
elastic constant can be ascribed to both the odd- and even-
order anharmonic contributions [1–6], only very few investi-
gations concerning temperature dependent elastic constants of
real materials have been conducted based on experimental or
computational methods. In terms of EXAFS, the third-order
cumulant moment C3 is given as C3 = 〈(r − R)3〉, where 〈 〉
denotes the thermal average, r is the instantaneous interatomic
distance between the x-ray absorbing and photoelectron scat-
tering neighboring atoms, and R is the thermally averaged
distance R = 〈r〉. The EXAFS third-order cumulant C3, which
is sometimes called the mean cubic relative displacement,
describes asymmetry of the radial distribution function around
the x-ray absorbing atom and has been extensively investi-
gated [7–28]. The relation between the third-order force con-
stant and thermal expansion is well understood both theoreti-
cally and experimentally. In contrast, the relationship between
the fourth-order cumulant and the fourth-order force constant
has poorly been investigated especially for experiments of
real material systems, and to the best of our knowledge there
has been no direct report concerning temperature dependent
elastic constants by EXAFS.

In the present work, we have investigated temperature de-
pendence of the force constants, in which the odd (third) and
even (fourth) order constants are distinguished by the EXAFS
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analysis and are comparatively discussed about their contribu-
tions. Here, we have obtained the average interatomic distance
R, the second-order cumulant C2 = 〈(r − R)2〉 (mean square
relative displacement), the third-order cumulant C3, and the
fourth-order cumulant C4 = 〈(r − R)4〉 − 3C2

2 , and have an-
alyzed the contributions of the anharmonic force constants
to the cumulants. Especially, the relation between the fourth-
order cumulant and the fourth-order force constant has been
analyzed in detail. As sample specimens, we employed well
known materials as elemental fcc Cu and Ni metals, and also
SUS316L (AISI316L stainless steel, Fe67Cr18Ni12Mo2Mn1)
with various metal atoms that can be studied by Fe, Ni, Cr,
and Mo K-edge EXAFS. Element specific effective local force
constants are characteristic in EXAFS and we can recog-
nize some differences in the force constants as well as the
interatomic distances among the elements studied, although
the SUS316 forms a simple fcc lattice in average. Rather
surprisingly, it is found that the third-order anharmonicity
dominates the fourth-order EXAFS cumulant and tempera-
ture dependence of the effective force constant, while the
fourth-order force constant is of no importance to describe
especially temperature dependence of the elastic constants. In
the SUS316 alloy, the effective potential around Cr is found
to be softer (the effective force constant is smaller) than those
around other metal elements.

Moreover, in the present investigation, we have also
examined possible lattice strains in the SUS316 alloy. In
our previous EXAFS study [29] on the Elinvar (Ni Span
C, Fe49.66Ni42.38Cr5.49Ti2.47) and SUS304 (AISI304 stainless
steel, Fe71.98Ni9.07Cr18.09Mn0.86) alloys, it was found that the
lattice strains are concentrated around Cr. Here, we have
examined a possible lattice strain on Mo. In case of SUS304,
the local structure around Cr is slightly compressed, and it will
be interesting to identify whether the local structure around
Mo, which is the 4d transition metal element with a much
larger atomic radius, is compressed or expanded. As a result
of SUS316, it is elucidated that the lattice strains around both
Cr and Mo are observed, while almost no strains are detected
around Ni. The compression around Cr is similar to that in
SUS304, and the one around Mo is more prominent and the
metallic radius of Mo in SUS316 is even smaller than a usual
metallic radius of bcc Mo, although the absolute value of the
interatomic distance around 4d metal Mo is naturally larger
than the other 3d transition metal atoms.

Finally, we have performed computational simulations
concerning the bulk moduli of the Invar (Fe64Ni36), Elin-
var, SUS304, SUS316 alloys, together with fcc Ni and Cu,
by means of the path-integral effective classical potential
(PIECP) [20–23,30–36] and classical Monte-Carlo (MC)
methods. The Invar alloy is a well known alloy that shows
almost negligible thermal expansion over a wide temperature
range and an anomaly of increase in the elastic constant with
a temperature rise [30–32,37–40]. See Figs. S1 and S2 in the
Supplemental Material [41] for temperature dependence, re-
spectively, of the interatomic distances and the Young moduli
of the Invar, Elinvar, and SUS304 alloys. The Invar alloy has
technologically been applied to many industrial materials such
as precision equipments and recently has been employed as a
core of electric power lines. The Elinvar alloy exhibits almost
no temperature dependence of the elastic constants around

room temperature with a smaller thermal expansion than
normal metals. Temperature dependence of the bulk moduli is
found to be semiquantitatively in good agreement with the ex-
perimental observations. There have been presented only very
few works concerning the quantum mechanical simulations of
temperature dependent elastic constants [42,43], although the
general fundamental quantum mechanical theories have been
well established [1–6]. We have also successfully discussed
the vibrational quantum effect (zero-point vibrational fluctua-
tion) concerning these alloys as well as fcc Ni and Cu.

The present paper is organized as follows. In Sec. II,
experimental and theoretical methods are described in detail.
Section III deals with the results and discussion, in which
the relationship between the higher-order force constants and
cumulant moments will at first be discussed, followed by
discussion about the lattice strains on Cr and Mo atoms in
SUS316, and eventually providing the simulated results on
the bulk moduli of the alloy materials. In Sec. IV, concluding
remarks of the present investigation are summarized.

II. EXPERIMENT AND THEORY

A. EXAFS

The Cr, Fe, Ni, and Mo K-edge EXAFS spectra of com-
mercially available SUS316L alloy foils (Nilaco Corp., Japan)
with thicknesses of 10 μm for Cr, Fe, and Ni K edge and
200 μm for Mo K edge were recorded at Beamlines 9C [44]
and 12C [45] of Photon Factory (the electron storage ring
energy of 2.5 GeV and the ring current of 450–300 mA) in
High Energy Accelerator Research Organization (KEK-PF)
with the transmission mode using a Si(111) double crystal
monochromator. The concentrations of the metals contained
were verified semiquantitatively in advance using x-ray flu-
orescence spectrometer in Instrument Center of Institute for
Molecular Science. For the Cr and Fe K-edge EXAFS mea-
surements, the monochromator crystals were detuned by 30%
to eliminate the third-order harmonics, while for the Ni and
Mo K-edge measurements the detuning process was not con-
ducted. In Cr, Fe, and Ni K-edge EXAFS, ionization chambers
filled with 30% N2 in He (17 cm in length) and 100% N2

(31 cm) were used to measure the incident and transmitted
x-ray intensities, respectively, while in Mo K-edge EXAFS,
those filled with 50% Ar and 50% N2 (17 cm) and 100% Ar
(31 cm × 2) were employed for the incident and transmitted x
rays, respectively. The samples were cooled down using a He
gas-circulating refrigerator and the measurement temperature
range was 20–300 K. The Cr and Ni K-edge EXAFS measure-
ments were terminated, respectively, at the Mn and Cu K edge
because of the presence of small amounts of Mn and Cu in
the SUS316 alloy, while the Fe and Mo K-edge EXAFS were
successfully recorded over sufficiently wide energy ranges.

The EXAFS oscillation functions k3χ (k) (k the photo-
electron wave number) were obtained based on the standard
procedures as the pre-edge baseline and the post-edge back-
ground subtractions and the subsequent normalization with
atomic absorption coefficients. The k3χ (k) functions were
subsequently Fourier transformed, Fourier filtered for the
peaks of interest, and were finally curve fitted in k space. In the
present study, the first- and third-nearest neighbor (NN) shells
were quantitatively analyzed. The Fe, Ni, Cr, and Mo K-edge
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EXAFS k3χ (k) functions and their Fourier transforms are
depicted in Figs. S3–S6, respectively, and the k and R spaces
employed are summarized in Table S1 in the Supplemental
Material [41].

The single-shell EXAFS formula employed is given as

χ (k) = S2
0NF (k)

kR2
exp

[
−2C2k2 + 2

3
C4k4

]

× sin

[
2kR + φ(k) − 4

3
C3k3

]
, (1)

where N is the coordination number, S2
0 the intrinsic reduction

factor due to the many-electron effect, F (k) the backscattering
amplitude including the inelastic scattering loss factor, and
φ(k) the total phase shift between the x-ray absorbing and
photoelectron scattering atoms.

For the curve-fitting analysis to obtain the structural pa-
rameters, theoretical standards were at first calculated using
FEFF8.4 [46]. Here, we assumed randomly distributed clus-
ters with the perfect fcc lattice constant of 3.57129 Å (the
number of the fcc unit lattices of 43 and the total number
of atoms of 4 × 43 = 256), where the composition ratio of
the SUS316 alloy was assumed to be Fe68Ni12Cr18Mo2 (Mn
neglected). Ten random alloy clusters were evaluated and the
average EXAFS spectra were obtained as consequent theoret-
ical standards. Although static lattice strains are actually ex-
pected in these alloys, the FEFF simulations were conducted
with the assumption that all the atoms are distributed at ideal
lattice positions. Note here that the neighboring atoms around
the x-ray absorbing atom are assumed not to be distinguished
because of only small differences of the backscattering am-
plitudes among Fe, Ni, and Cr and of only a small amount
of Mo in SUS316, and therefore the resultant values obtained
experimentally are regarded as the average one for each x-ray
absorbing atom.

The curve-fitting analysis of the experimental EXAFS
spectra at the lowest temperature was subsequently performed
using the FEFF standards obtained above. Here, the parame-
ters fitted were S2

0 , R, �E0 (edge energy shift), and C2 (fixed
at N = 12 for the first-NN shells and N = 24 for the third-NN
shells, C3 = 0 and C4 = 0). The fitting results are summarized
in Table S2 in the Supplemental Material [41]. Finally, the
curve-fitting analysis of all the EXAFS spectra were carried
out using the lowest temperature data as empirical standards,
with the assumption that S2

0 , N , and �E0 are identical to
the ones at the lowest temperature, while R, C2, C3, and C4

are fitting variables for the first-NN shells, and R and C2

are fitting variables for the third-NN shells. Note here that
higher-order cumulants in the third-NN shells are known to
be neglected with high accuracy because of the absence of
the chemical bonds that induces anharmonicity [20], as in
the central limit theorem that random distribution without
correlation approaches Gaussian distribution.

B. PIECP MC simulations

In order to investigate temperature dependence of bulk
moduli of Invar, Elinvar, SUS304, and SUS316 alloys, we
have performed PIECP MC simulations [33–36] under a
constant number of particles, pressure, and temperature
(NPT ) condition. The interatomic potentials of Fe, Ni, Cr,

and Mo are based on the empirical embedded-atom method
(EAM) [47–49]. The numerical parameters of nonmagnetic
(NM, or antiferromagnetic or low spin) Fe, Ni, Cr, and Mo
employed were the modified EAM potentials [49]. In Fe, the
energy difference between the ferromagnetic (FM, or high
spin) and NM states were employed as in the previous works
[29–31]. For comparison, the MC simulations based on the
classical thermodynamics were also carried out.

The compositions of the alloys in the simulations were
assumed to be Fe64Ni36 for Invar, Fe52.2Ni42.4Cr5.4 for Elin-
var (Ti neglected), Fe72Ni9Cr19 for SUS304 (Mn neglected),
and Fe68Ni12Cr18Mo2 for SUS316 (Mn neglected). The total
number of atoms was 500 (53 fcc cubic unit cells), and the
distributions of Fe, Ni, Cr, and Mo were chosen randomly. In
a similar manner to the FEFF evaluations, ten types of the
superlattices were simulated and the results were averaged
to provide consequent physical quantities. The MC simula-
tions were performed based on the conventional Metropolis
method, where 100 000 MC steps were calculated with 500
times trials of the atom movement and one trial of the lattice
constant variation in each MC step. In the calculations of ther-
modynamical quantities, the results before the system reaches
sufficient equilibrium (∼20 000 MC steps) were excluded.
The temperatures considered in the present simulations were
in the range of 10–400 K.

Although the quantum effect in the elastic constant has
been long known, computational simulations based on the
quantum mechanical method as the path integral theory have
seldom been performed [42,43], and to the best of our knowl-
edge no investigations using the PIECP theory have been
conducted. Moreover, only very limited works using the EAM
potentials were carried out even within the classical dynamics
simulation; an example is found for fcc Ni [50]. In order to
verify the reliability of the present computational simulations,
we have also conducted the PIECP and classical MC simula-
tions for elemental fcc Ni and Cu metals. In the calculations
of bulk moduli, five pressures were chosen as P = 0, ±2,
and ±4 (GPa) and the bulk moduli were estimated from the
variation of the equilibrium lattice constants.

One additional hypothesis in the present PIECP simula-
tions should be noted here. The PIECP theory is based on the
periodic lattice dynamics to correct the vibrational quantum
fluctuations and to estimate effective classical potentials and
is strictly not applicable to the present random alloy systems
as Invar, Elinvar, SUS304, or SUS316. These alloys however
exhibit clear fcc structure and the lattice periodicity can
approximately be assumed. We have estimated the variance
of the interatomic potential around all the atoms employed.
The standard deviations estimated in SUS304 are 1.1% in the
equilibrium distance, 2.8% in the potential depth, and 18%
in the second derivative of the potential at the equilibrium
distance. The phonon dispersion curves may exhibit some
fluctuations based on these deviations concerning the inter-
atomic potentials. In the present simulations, however, the
magnitude of the quantum corrections is found to be quite
small concerning the bulk modulus in SUS304, which is only
0.4% at 10 K and 0.2% at 300 K. The consequent deviations
due to inaccurate periodicity of random alloys should thus
be less than 0.1% even at 10 K, which is negligibly small to
discuss temperature dependence of the bulk moduli.
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III. RESULTS AND DISCUSSION

A. Relationship between higher-order EXAFS cumulants
and anharmonic interatomic potential

Let us first recall the relationship between higher-order
EXAFS cumulants and a simple two-body anharmonic inter-
atomic potential by referring to the previous works [13,14,23].
The two-body anharmonic interatomic potential V (r) (r is the
interatomic distance) is given in a Taylor expanded form as

V (r) = 1
2κ0(r − R0)2 − κ3(r − R0)3 + κ4(r − R0)4, (2)

where the first term is the harmonic term with harmonic force
constant κ0, and the second and third terms can be regarded as
the perturbed third- and fourth-order anharmonic terms with
anharmonic force constants κ3 and κ4, respectively. R0 is the
distance at the potential minimum. These constants as κ0, κ3,
κ4, and R0 are assumed to be temperature independent.

Using the quantum statistical second-order perturbation
theory, the thermally averaged physical quantities as R, C2, C3,
and C4 are evaluated, which can be obtained experimentally
by the EXAFS measurements. The interatomic distance R and
the third-order cumulant C3 are given within the first-order
perturbation theory as

R � R0 + 6κ3σ
4
0

h̄ω

1 + z

1 − z
(3)

and

C3 � C(1)
3 = κ3σ

6
0

h̄ω

4(z2 + 10z + 1)

(1 − z)2
, (4)

where z = exp[−h̄ω/kBT ] (kB the Boltzmann constant, T the
temperature, h̄ = h/2π , h the Planck constant, ω = √

κ0/m,
and m the reduced mass of the oscillator) and σ 2

0 = h̄/2mω

(zero-point vibrational amplitude). Note that the thermal ex-
pansion given in the second term in Eq. (3) and the third-
order cumulant are both proportional to the third-order force
constant κ3.

On the other hand, the second-order cumulant C2 and
the fourth-order cumulant C4 are given in the second-order
perturbation as

C2 � C(0)
2 + C(1)

2 + C(2)
2 , (5)

C(0)
2 = σ 2

0
1 + z

1 − z
, (6)

C(1)
2 = −κ4σ

6
0

h̄ω

12(1 + z)2

(1 − z)2
− κ4σ

6
0

kBT

24z(1 + z)

(1 − z)3
, (7)

C(2)
2 = κ2

3 σ 8
0

(h̄ω)2

4(13z2 + 58z + 13)

(1 − z)2
+ κ2

3 σ 8
0

(h̄ω)(kBT )

120z(1 + z)

(1 − z)3

(8)

and

C4 � C(1)
4 + C(2)

4 , (9)

C(1)
4 = −κ4σ

8
0

h̄ω

12(z3 + 9z2 + 9z + 1)

(1 − z)3
− κ4σ

8
0

kBT

144z2

(1 − z)4
,

(10)

C(2)
4 = κ2

3 σ 10
0

(h̄ω)2

12(5z3 + 109z2 + 109z + 5)

(1 − z)3

+ κ2
3 σ 10

0

(h̄ω)(kBT )

720z2

(1 − z)4
, (11)

where C(0)
2 is the harmonic contribution, C(1)

2 and C(1)
4 are

the first-order perturbation terms that are proportional to the
fourth-order force constant κ4, and C(2)

2 and C(2)
4 are the

second-order perturbation terms proportional to the square
of the third-order force constant κ3. Note here that in C2

and C4, the first- and second-order perturbation terms are
in the same order; although the second-order perturbation
terms apparently exhibit higher order in σ 2

0 , the factor h̄ω is
present in the denominator in the second-order perturbation
terms [Eqs. (8) and (11)] and the two terms are resultantly in
the same order. The first-order terms C(1)

2 and C(1)
4 are both

negative with positive κ4, while the second-order terms C(2)
2

and C(2)
4 are positive. It is also noted that all the anharmonic

terms are finite even at T = 0, this implying for example that
the average interatomic distance R at T = 0 is longer than the
potential minimum R0.

The classical limits (h̄ → 0) of the above formulas can
easily be calculated as

Rcl � R0 + 3κ3

κ2
0

kBT, (12)

C3,cl � 6κ3

κ3
0

(kBT )2, (13)

C2,cl � kBT

κ0
+ 12

(
− κ4

κ3
0

+ 3κ2
3

κ4
0

)
(kBT )2, (14)

and

C4,cl � 12

(
−2κ4

κ4
0

+ 9κ2
3

κ5
0

)
(kBT )3. (15)

These classical expressions clearly show that at high tem-
perature, thermal expansion [the second term in Eq. (12)]
and harmonic term of C2 [the first term in Eq. (14)] are
proportional to temperature T , while the third- and fourth-
order cumulants C3 and C4 are proportional to the squared and
cubed temperature T 2 and T 3, respectively.

Figures 1(a)–1(d) shows the EXAFS cumulants of fcc Cu
fitted with the above anharmonic oscillator models. Since
the absolute values of the experimentally obtained structure
parameters may contain some inaccurate contribution, we will
discuss mainly about temperature dependence that is more
accurate and more important in the present purpose. The
absolute values of the experimental data in Figs. 1(a)–1(d)
were thus shifted to match the calculated ones at the lowest
temperature. The amount of the shift in C2 is −0.0046 ×
10−2 Å, and the origin of the discrepancy is ascribed mainly
to inaccuracy in the backscattering amplitude derived from
the theoretical standard and partly to inaccuracy in the simple
two-body model interatomic potential. The amounts of the
shifts in C3 and C4 are negligibly small but are inherently
expected because the experimental results correspond to the
difference from the lowest-temperature data.

In the second-order cumulants C2 in Fig. 1(a), the quantum
mechanical results agree quite well with the experiments
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FIG. 1. Results of the Cu K-edge EXAFS analysis of fcc Cu. Experimental EXAFS results of (a) C2, (b) C3, (c) C4, and (d) C1 = R − R0

are given as red symbols with error bars. The fitting results using the simple anharmonic oscillator models are depicted as blue solid (quantum
including κ4), purple dotted (quantum neglecting κ4), green dotted (classical including κ4), and light blue solid (classical neglecting κ4) lines
in (a) and (c). (e) Temperature dependence of effective force constants keff using the left axis. The bulk moduli discussed later are also plotted
for comparison as red solid (experimental), black solid (PIECP), and black dotted (classical MC) lines using the right axis. For details, see
the text.

especially for a downwardly convex curvature at low tem-
perature, while the classical results show almost linear de-
pendence with large deviations from the experiment at low
temperature. The calculated results including the fourth-order
force constant κ4 (blue solid line) are slightly smaller than
those neglecting κ4 (purple dotted line), because the first-order
perturbation contribution in Eq. (7) is negative. In the third-
order cumulant C3 in Fig. 1(b), the classical result shows very
slight deviation from the quantum mechanical ones at low
temperature. The fourth-order cumulants C4 give noticeable
difference between the κ4-including and κ4-neglecting results;
the κ4-including one is smaller than the κ4-neglecting one due
to a negative contribution of the first-order perturbation term
in Eq. (10) as in the case of C2 in Fig. 1(a). It is important to
note here that concerning the contribution to the fourth-order
EXAFS cumulant C4, the second-order perturbation of the
third-order anharmonicity is more significant than the first-
order perturbation of the fourth-order anharmonicity. Experi-
mentally obtained C4 is clearly positive and increases with a
temperature rise, which cannot be described by the first-order
perturbation of the fourth-order anharmonicity but should be
attributed to the second-order perturbation of the third-order
anharmonicity.

Figure 1(e) shows temperature dependence of the effective
force constants keff of fcc Cu, which are given as the second
derivatives of the two-body potential function at the thermally
averaged interatomic distance. The classical results exhibit
a nearly linear function down to T = 0, while the quantum
results give an upwardly convex function at low temperature
due to the zero-point vibrational quantum effect. The most
important finding in Fig. 1(e) is that the fourth-order force
constant κ4 exhibits almost no contribution to temperature
dependence of the effective force constant. This is easily

found out when one compares the κ4-including result (blue
solid line) with the κ4-neglecting one (purple dotted line).
As in the above discussion for the fourth-order EXAFS cu-
mulant C4, this consequence again implies that temperature
dependence of the effective force constant is ascribed almost
exclusively to the second-order perturbation of the third-order
anharmonicity, not to the first-order perturbation of the fourth-
order anharmonicity.

In Fig. 1(e), the results of the bulk moduli given by
the following PIECP (black solid line) and classical (black
dotted line) MC simulations are also depicted, which are
basically proportional to the effective force constants keff .
The red solid line corresponds to the experimental data.
Here the vibrational quantum effect is again observed; the
experimental and quantum mechanical PIECP results show
upwardly convex functions, while the classical result exhibits
a linear function. The bulk modulus B and the tempera-
ture coefficient α = (1/B)(dB/dT ) at T = 300 K are esti-
mated to be B = 135 (GPa) and α = −1.43 × 10−4 (1/K)
by the PIECP MC simulations, which yield excellent agree-
ments with the experimental ones of B = 137 (GPa) and α =
−1.58 × 10−4 (1/K) [51]. Similar results concerning fcc Ni
were obtained in this work, and the corresponding plots are
shown in Fig. S7 in the Supplemental Material [41]. The
PIECP simulations of fcc Ni give B = 177 (GPa) and α =
−9.56 × 10−5 (1/K) at T = 300 K, which are similarly in
good agreement with the experimental ones of B = 184 (GPa)
and α = −9.53 × 10−5 (1/K) [52].

Let us subsequently discuss the results of SUS316. Since
it is already found in the above fcc Cu (and Ni) analysis
that contribution of the fourth-order anharmonicity to the bulk
modulus is not significant, the fourth-order force constant κ4

was not considered in the analysis of SUS316. We will here
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FIG. 2. Results of the Fe, Ni, Cr, and Mo K-edge EXAFS analysis of SUS316. Experimental EXAFS results of (a) C2, (b) C3, (c) C4, and

(d) C1 = R − R0 are given as solid lines with error bars (Fe: red; Ni: green; Cr: blue; Mo: purple), while the fitting results using the simple
quantum mechanical anharmonic oscillator models neglecting κ4 are depicted as dashed lines. (e) Temperature dependence of effective force
constants keff using the left axis. The bulk moduli discussed later are also plotted for comparison as black solid (PIECP) and black dotted
(classical MC) lines using the right axis.

mainly consider the differences in the metallic elements in the
SUS316 alloy. Similarly to the case in Fig. 1, the absolute
values of the experimental data in Figs. 2(a)–2(d) were shifted
to match the calculated ones at the lowest temperature. The
amounts of the shifts in C2 are much larger than that in the
fcc Cu case: 0.193 × 10−2 Å for Fe, 0.114 × 10−2 Å for Ni,
0.152 × 10−2 Å for Cr, and 0.083 × 10−2 Å for Mo. The ori-
gin of the shifts is attributed dominantly to the static disorder
in the alloy sample and partly to inaccuracies in the theoretical
FEFF standard and the simple two-body interatomic potential.
Note that the shifts in C3 and C4 are negligibly small, although
the obtained C3 and C4 correspond to thermal ones and do not
include static disorder.

Figure 2 depicts the EXAFS cumulants and the effective
force constants keff of SUS316, and the numerical results are
summarized in Table I, together with the results of fcc Cu and
Ni. In Fig. 2(a), temperature dependence of C2 in Cr (blue)
is clearly larger than the other elements, indicating a smaller
harmonic force constant κ0 in Cr. The EXAFS cumulants

C2, C3, and C4 seem to be slightly smaller in Mo, probably
because of a heavier atomic weight and a larger cohesive
energy than the other elements. Thermal expansion given as
C1 in Fig. 2(d) is found to be consistently estimated from the
third-order cumulants C3 in Fig. 2(b). As a consequence, Cr
is found to be thermally more fluctuated than the other ele-
ments. On the contrary, a heavier atom Mo interestingly shows
smaller thermal fluctuations. The thermal fluctuations will be
discussed in the next subsection that deals with lattice strains.
In Fig. 2(e), the calculated effective force constants keff are
shown, together with the bulk moduli obtained by the PIECP
and classical MC simulations. The effective force constant
keff estimated from the Cr results yields a much smaller value
than the other ones. In the PIECP and classical MC results of
the bulk moduli, although the vibrational quantum effect can
also be seen at low temperature, the classical results exhibit
a slight downwardly convex function (not a linear function),
indicating complexity in the alloy dynamics and a possible
presence of temperature dependent structural disorder.

TABLE I. Harmonic and anharmonic force constants κ0, κ3, and κ4 and the equilibrium distance R0 (potential minimum) determined by
the EXAFS analysis of fcc Cu, Ni, and SUS316. The numbers in parentheses after the last digit implies the fitting errors. The fourth-order
force constant κ4 was neglected in the SUS316 analysis.

central m R0 κ0 κ3 κ4

sample atom [g/mol] [Å] [mdyn/Å] [mdyn/Å
2
] [mdyn/Å

3
]

fcc Ni Ni 58.69 2.486(1) 0.90(1) 0.35(2) 0.10(4)
fcc Cu Cu 63.55 2.542(1) 0.60(1) 0.29(2) 0.15(4)
SUS316 Fe 55.85 2.527(1) 0.95(1) 0.77(3)

Ni 58.69 2.527(2) 0.95(2) 0.90(4)
Cr 52.00 2.497(2) 0.71(2) 0.35(3)
Mo 95.94 2.581(2) 0.90(2) 0.50(3)
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B. Interatomic distances and lattice strains in SUS316

We will next consider the interatomic distances in SUS316
in order to see element dependent lattice strains. Figure 3
shows temperature dependence of the first-NN interatomic
distances around the x-ray absorbing atoms in the Invar
[30,31], Elinvar [29], SUS304 [29], and SUS316. Those of
the third-NN distances are depicted in Fig. S8 in Supple-
mental Material [41]. The Invar alloy exhibits almost no
thermal expansion around Fe and small expansion around Ni
[−0.03 × 10−5 (Å/K) for Fe and 1.02 × 10−5 (Å/K) for Ni]
[30,31]. In the case of the Elinvar alloy, thermal expansion
around Fe is noticeably smaller than those of Ni and Cr
[1.33 × 10−5 (Å/K) for Fe, 2.17 × 10−5 (Å/K) for Ni, and
2.32 × 10−5 (Å/K) for Cr], while in SUS304, all the thermal
expansions around Fe, Ni, and Cr are essentially similar and
quite normal [2.39 × 10−5 (Å/K) for Fe, 2.40 × 10−5 (Å/K)
for Ni, and 2.85 × 10−5 (Å/K) for Cr] [29]. Although the
vertical scale in SUS316 differs from the other ones, local
thermal expansion around Fe, Ni, Cr, and Mo are not extraor-
dinary showing a normal thermal expansion behavior [2.50 ×
10−5 (Å/K) for Fe, 2.32 × 10−5 (Å/K) for Ni, 2.16 × 10−5

(Å/K) for Cr, and 3.19 × 10−5 (Å/K) for Mo].
We will here focus our attention on the absolute value of

the interatomic distance around each x-ray absorbing atom.
Assuming that the alloys show completely random distribu-
tions of metal elements and that the radius of each metal atom
is uniquely given irrespective of the neighboring elements, the
metallic radii of all the elements in the alloys can be estimated
by using the EXAFS results. In SUS304 and SUS316, the Fe
atomic radii is estimated to be 1.264 and 1.266 Å, respectively,
which are slightly larger than that of bcc Fe (1.239 Å) and
are quite reasonable because of larger coordination numbers
in fcc alloys. The Ni atomic radii are given as 1.268 Å for
SUS304 and 1.265 Å for SUS316, again slightly larger than
that of fcc Ni (1.243 Å). It is consequently remarked that Fe

and Ni atoms have essentially the same interatomic distances
for the first-NN shells and form alloy structures with high
commensurability.

In contrast, the environment around Cr significantly differs
from those around Fe and Ni. As shown in Fig. 3, the first-NN
interatomic distances around Cr in SUS304 are shortened by
∼0.015 Å compared with those around Fe and Ni, and in
the present SUS316, this trend is more prominently observed.
The Cr atomic radii are estimated to be 1.251 and 1.235 Å
for SUS304 and SUS316, respectively, which are similar to
that of bcc Cr (1.246 Å) or even shorter. The fact that in the
fcc lattice with larger first-NN coordination numbers yields
similar or shorter interatomic distances around Cr implies the
presence of large compressive lattice strain around Cr. On
the other hand, the Mo atomic radius in SUS316 is given as
1.319 Å, being shorter by as much as 0.04 Å than that of bcc
Mo (1.358 Å), indicating more significant compressive lattice
strain in Mo atoms with inherently larger atomic radii. It is
interesting to note that the thermal fluctuation around Cr is
larger than those on the other metals as mentioned in the pre-
vious subsection, which may reasonably coincide with a large
compressive lattice strain on Cr, while the thermal fluctuation
around Mo is smaller with a more significant compressive
lattice strain, probably due to a heavier atomic weight and a
larger cohesive energy. It can be concluded that although the
Invar, Elinvar, SUS304, and SUS316 alloys are recognized to
form fcc lattices with completely random atomic distributions,
the real interatomic distances are considerably dependent on
the elements.

C. Temperature dependent bulk moduli of the Invar, Elinvar,
SUS304, and SUS316 alloys

At the last of the present investigation, we will discuss
the bulk moduli of the Invar, Elinvar, SUS304, and SUS316
alloys calculated by the PIECP and classical MC methods.
First of all, the Invar effect [37,38] is shortly recalled using
the present potential parameters. Figure 4 and Table II give
average interatomic potentials around Fe in Invar, Elinvar,
and SUS316 at T = 0. The calculations were performed
by varying only the lattice constant keeping a perfect fcc
lattice. In the Invar alloy at T = 0, all the Fe atoms are in
the stable ferromagnetic (FM) high-spin state with a longer
equilibrium distance and a smaller bulk modulus (see Table II
for numerical values), and the unstable nonmagnetic (NM)
low-spin state with a shorter interatomic distance and a larger
bulk modulus locates 0.034 eV above the FM state. With
an increase in temperature, the population of the NM state
gradually increases. The average interatomic distance is thus
shortened, and as a result normal thermal expansion due to
anharmonic vibration is compensated, leading to negligible
overall thermal expansion in the Invar alloy. This is the Invar
effect proposed by Weiss [38] as a simple two-state model.

On the other hand, in the SUS316 alloy, the NM state is
more stable than the FM state, and the energy difference is
as much as 0.124 eV, leading to insignificant anti-Invar effect
even at high temperature. The stability of the NM state in
Fe can be ascribed to the presence of Cr (and Mo). As the
d electron density of the neighboring atoms increases, the
Fe atom is likely to be nonmagnetic. In the present EAM
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simulations, the d electron energy is exactly described as a
function of d electron density. Although the number of d
electrons in Cr is smaller than that of Ni, the Cr 3d orbitals
are much more extended than those of Ni, yielding a larger
d electron density at the neighboring Fe site and resultant
stabilization of the NM Fe state. It can be remarked that
the Fe atoms surrounded by many Ni atoms are likely to be
ferromagnetic, while those surrounded by many Cr atoms to
be nonmagnetic.

In case of the Elinvar alloy, the situation is more compli-
cated. There exist two stable Fe states (FM1 and NM2) at T =
0; the one (Fe1) favors the FM state, while the other (Fe2)
does the NM state, depending on the kinds of neighboring
atoms. With a temperature rise, some Fe1 atoms are thermally
excited from the FM1 to NM1 state (the energy difference of
0.053 eV). Since the NM1 state exhibits a smaller interatomic
distance and a larger bulk modulus, the Elinvar alloy shows
the partial Invar effect associated with a small thermal expan-
sion and a nearly constant bulk modulus. On the other hand,
the NM2 state in Fe2 is hardly thermally excited to the FM2
state because of a larger energy difference of 0.134 eV. This
is the explanation of the Elinvar effect based on the simple
two-state Weiss model [38].

Figure 5 depicts the bulk moduli and the FM ratios of Fe
in the Invar, Elinvar, SUS304, and SUS316 alloys, simulated
by the PIECP and classical MC methods. The calculated bulk
moduli of fcc Ni and Cu are plotted again for comparison.
As mentioned above, the FM ratio of Fe decreases noticeably
with a temperature rise in the Invar alloy, and the Elinvar
alloy exhibit smaller but meaningful reduction of the FM ratio

TABLE II. Equilibrium distance Req, potential depth D, and bulk
modulus B of ferromagnetic high-spin (FM) and nonmagnetic low-
spin (NM) Fe states evaluated from the potential curves in Fig. 4.

alloy state Req [Å] D [eV] B [GPa]

Invar FM 2.553 4.278 147
NM 2.512 4.244 182

SUS316 FM 2.549 4.135 143
NM 2.544 4.230 177

Elinvar FM1 2.559 4.270 143
NM1 2.516 4.233 173
NM2 2.520 4.217 175
FM2 2.533 4.096 131

in a similar manner. On the other hand, the stainless steel
alloys give small increase in the FM Fe population with a
temperature rise, indicating occurrence of thermal excitations
to unstable FM states to some extent. Correspondingly, the
bulk modulus of the Invar alloy is at first reduced at a low
temperature region (0–100 K), where the FM Fe population
does not decrease so much, and is subsequently enhanced at a
high temperature region (200–400 K) due to the Invar effect.
In the Elinvar alloy, a similar explanation can be made, and the
resultant bulk modulus exhibits temperature invariance at the
range of 200–400 K. The present PIECP and classical sim-
ulations have successfully provided reasonable descriptions
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of the Invar and Elinvar effects at least semiquantitatively.
Although the vibrational quantum effect in these alloy systems
is not significant as seen in Fig. 5, the convergence features
toward T → 0 are described well in the PIECP simulations,
which is demonstrated to be useful for the understanding of
low temperature thermodynamical properties of matters.

IV. CONCLUSIONS

The purposes of the present investigation are threefold,
and the most important issue is to understand how the third-
or fourth-order anharmonicity contributes to temperature de-
pendence of the elastic constants as bulk moduli and also
the fourth-order EXAFS cumulant C4. It seems to have been
believed that the fourth-order anharmonicity characterized
by the fourth-order force constant κ4 should dominantly
contribute to the fourth-order EXAFS cumulant C4 through
the first-order quantum statistical perturbation theory with
the harmonic oscillator as a nonperturbed system. Since the
first-order perturbation term originating from the fourth-order
anharmonicity is negative and the second-order perturbation
from the third-order anharmonicity is positive, it is rather eas-
ily distinguishable which term exhibits dominant contribution
by analyzing the EXAFS experimentally. It is found that the
experimental C4 values are positive and increases with a tem-
perature rise in fcc Cu and Ni and the calculated contributions
are significantly larger in the second-order perturbation from
the third-order anharmonicity. Somewhat surprisingly, this
implies that the third-order anharmonicity contributes more
strongly to the fourth-order EXAFS cumulant. In the case of
effective force constants or bulk moduli, such a situation is
more prominent, and the contribution of the third-order anhar-
monicity is dominant, allowing one to neglect the fourth-order
anharmonicity for the estimation of temperature dependence
of the elastic constants.

The second purpose in this work is a possible lattice
strain in SUS316. In the previous work [29], it was found
that the lattice strain in SUS304 is concentrated on Cr. We
have found here that the compressive lattice strain on Cr is
more significant in SUS316, associated with larger thermal
fluctuations on Cr. The compressive lattice strain is observed
more prominently on Mo, where the Mo atomic radius in
fcc SUS316 is even shorter than that in elemental bcc Mo
with a smaller first-NN coordination number. It is interesting
that the thermal fluctuation around Mo is smaller in con-
trast to the Cr case, probably because Mo is much heavier
and has a much larger cohesive energy than the other 3d
metals. The third purpose in the present work is to simulate
the bulk moduli of the Invar and Elinvar alloys that show
anomaly due to the Invar effect. We have carried out the
quantum mechanical PIECP and classical MC simulations for
these alloys, together with the metals with normal behaviors
concerning temperature dependence of the bulk modulus and
thermal expansion. We have successfully obtained appropriate
temperature dependence of the bulk moduli of all the metals
investigated semiquantitatively.
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