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Density functional study of self-diffusion along an isolated screw dislocation in fcc Ni
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Vacancy-mediated diffusion along dislocations, often referred to as pipe diffusion, can contribute to creep
deformation of metals in many engineering applications. This process is studied along an a

2 〈11̄0〉 screw
dislocation in fcc Ni using a density functional theory approach. An accurate geometrical configuration of the
screw dislocation core, dissociated into Shockley partial dislocations and separated by a stacking fault, was
previously derived using a lattice Green’s function technique. Activation energies and jump frequencies are
calculated for atom-vacancy exchanges that contribute to diffusion around and along one of the partial cores.
This analysis reveals the significant role of the sites within the compressive component of the dislocation, the
dominant contribution of the hops around the screw geometry rather than directly along the dislocation line,
and the importance of including the stacking fault sites. Kinetic Monte Carlo simulations use these energies
and frequencies to generate diffusion coefficients that account for correlation effects. Near 80% of the melting
temperature Tm, these pipe diffusivities are an order of magnitude higher than those found in fcc regions, and
they are eight orders higher at room temperature. Calculations are compared to experimental results and the
differences are discussed. While pipe diffusion is unlikely to contribute to isotropic mass flux at low dislocation
densities, it will accelerate dislocation mechanisms controlling creep and climb.
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I. INTRODUCTION

Diffusion along dislocation cores in metals (pipe diffusion)
can occur at significantly higher rates than diffusion in crys-
talline regions. The mechanism can have an outsized effect on
creep at the macroscopic level, whether due to the diffusion
itself or resulting from diffusion-induced grain boundary mi-
gration or slip [1]. Creep is a primary contributor to failures
in traditional technologies like gas turbines [2] and may be
encountered even more frequently in emerging technologies
that are engineered at the nanoscale [3]. Pipe diffusion can
also be manipulated to produce desirable outcomes, such as
in titanium sintering [4].

While pipe diffusion has been discussed in the body
of scientific literature for quite some time, only recently
have direct observations of the effects been possible. This
offers a unique opportunity for advancing our understand-
ing of pipe diffusion by comparing direct simulation with
emerging experimental results. One transmission electron
microscopy (TEM) study observed pipe diffusion increasing
the diffusivity of impurities in aluminum by three orders
of magnitude near 600 K [5]. Another, more recent study,
captured images of the phenomenon in a superlattice with
atomic resolution [6]. Experimental works on nickel have
provided Arrhenius parameters for pipe diffusion along an
edge dislocation using a surface counting technique at low
temperatures [7] and in screw and edge dislocations using
a more precise radiography approach [8]. A study using a
serial sectioning method suggested that dislocations act as
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“isolated high-diffusivity pipes” at low temperatures where
lattice diffusion is effectively frozen out, and that arrays of
dislocations compose regions where diffusion tends to occur
at high temperatures [9]. Diffusion in bulk nickel is well
represented in both experimental studies using a range of
methodologies [10–13] and simulations taking first-principles
approaches [14–18]. Numbers generated by these different
methodologies cannot always be directly compared, but their
findings complement one another in describing how diffusion
mechanisms operate. For instance, in many experimental re-
sults, behavior of diffusion in fcc regions cannot be isolated
from that which takes place along dislocation pipes or in
grain boundaries within experimental samples [11]. This is
not an issue in simulations where defects can be introduced
and modeled independently.

A number of previous studies have simulated pipe diffusion
in different materials using various methods. Embedded-atom
method (EAM) potentials have been applied to self-diffusion
in Al [19] and Mg diffusion in Al-rich Al-Mg [20], and
resonant model pseudopotentials have been used to study self-
diffusion in Cu [21]. Interstitial Si diffusion at dislocations in
Al has been studied using paired quantum and molecular me-
chanics (QM/MM) with orbital-free density functional theory
(DFT) to resolve long-range elastic fields of the dislocations
[22].

Here pipe diffusion is modeled along a partial dislocation
core in fcc Ni using a fully quantum mechanical approach. An
a
2 〈11̄0〉 screw dislocation in fcc Ni, dissociated into Shockley
partial dislocations, was prepared using density functional
theory and a lattice Green’s function embedding method.
This technique is well documented [23], and the specific
calculations for the screw dislocation in fcc Ni are described
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in the literature [24]. Migration energy barriers and attempt
frequencies for many vacancy-atom exchanges that compose
pipe diffusion are then calculated within the equilibrium ge-
ometry of one of these partial cores. This information is the
basis for kinetic Monte Carlo (KMC) simulations of vacancy-
mediated mass transport through a dislocation system while
accounting for correlation effects. This unique combination
of methodologies provides insights into the geometrical and
local strain effects that accelerate diffusion in or near the par-
tial dislocations. Of particular interest are the low migration
energy barriers around the partial screw dislocation core, on
the side of the partial core that contains the compressive side
of the edge component of the screw dislocation, and between
atomic sites that are adjacent to the partial core and those
which lie in the stacking fault.

II. METHODOLOGY

A. Atomic geometry preparation

Calculations were performed using the Vienna ab initio
simulation package (VASP) [25–28] with generalized gradi-
ent approximation projector augmented wave (GGA-PAW)
pseudopotentials [29,30]. All calculations were spin polarized
with a plane wave basis cutoff of 400 eV, a force tolerance of
0.005 eV/Å, and, following convergence testing, Methfessel-
Paxton smearing of 0.25 eV [31]. The spin polarized GGA-
PAW approach predicts lattice and elastic constants (a0 =
3.5219 Å, C11 = 2.70, C12 = 1.56, C44 = 1.29 Mbar) that are
in good agreement with measured values [32].

In previous work an a0
2 〈11̄0〉 screw dislocation was re-

laxed using the two-dimensional (2D) lattice Green’s function
(LGF) method and the VASP package [24]. This approach
produces an isolated dislocation by accounting for the effects
of its long-range strain fields on its local geometry [23,33–36].
This leads to an accurate description of the dissociated core
structure. The LGF cell consisted of a parallelepiped of 620
atoms, with one periodic unit along the dislocation line, and
20 a0

2 〈111〉 by 31
2

a0
2 〈112̄〉 lattice vectors normal to the line

direction. Upon relaxation, the a
2 〈11̄0〉 dislocation dissociates

into a
6 〈12̄1̄〉 and a

6 〈21̄1〉 Shockley partial dislocations, which
are separated by a stacking fault that is approximately 4b
wide where the Burgers vector b is 2.49 Å. This is in good
agreement with the separation width reported by another DFT
study using the Peierls-Nabarro approximation as well as the
analytic value [37] using anisotropic elasticity theory.

Hexagonal sections around the a
6 〈12̄1̄〉 Shockley partial are

extracted from the LGF-generated geometry so that vacancies
can be inserted near the dislocation. A representative example
of one such section is shown in Fig. 1, where sites that are
relaxed following vacancy insertion are shown in white while
in the surrounding, shaded region, the sites are fixed. The
latter region maintains the structure of the partial dislocation
core across relaxations and isolates the core from any effects
of proximity to its neighboring periodic images during anal-
ysis in VASP. The sites labeled A–E, I, and J in the white
region indicate where vacancies could be inserted into the
A-centered hexagon in the figure, while the remaining lettered
sites indicate where vacancies could be inserted into cells with
different centers. Hexagonal cells centered on sites B, C, F, P,

FIG. 1. A cell for modeling atom-vacancy exchanges, containing
244 atomic sites when repeated 4 times in the 〈11̄0〉 direction. One
vacancy is introduced at a lettered site near the dislocation, and
white atoms are relaxed while shaded ones form a fixed boundary to
maintain the dislocation structure. Vacancy migration between any
neighboring pair of sites can be studied using two configurations
of such a cell, each with a vacancy inserted at one of those sites.
Vacancies are never inserted adjacent to the boundary.

and S were also used. The slab of atoms in the figure has a
depth of b and is repeated four times in the 〈11̄0〉 direction of
the dislocation line. So, when periodic boundary conditions
are applied in this direction, the single vacancy is separated
from its periodic image by 4b, and their interactions with
one another are assumed to be negligible. Periodic boundary
conditions are also applied within the (11̄0) plane of Fig. 1,
such that neighboring hexagonal cells meet at the dashed
perimetral line to fill the plane continuously with atoms.
Prior to vacancy insertion, positions of atoms at the 76 sites
within the relaxation region were optimized within the con-
fines of the fixed boundary. Residual forces were on average
∼0.002 eV/Å with a total energy change of ∼10−4 eV/atom
on relaxations. One vacancy was inserted in each cell, and the
76 free sites of each cell (now containing 75 atoms and the
vacancy) were relaxed again. These configurations were used
as initial and final geometries for vacancies moving between
adjacent sites. Throughout this process, vacancies were never
introduced at sites that bordered a fixed boundary region.
�-centered 3 × 3 × 5 k meshes were used for these relax-
ations following convergence testing. Because of the presence
of the dislocation and stacking fault in the otherwise fcc ge-
ometry, there are geometrical mismatches where the hexagon
borders meet one another. Three checks confirmed that the
supercells were large enough to confine the significant effects
of this mismatch within the fixed boundary region in order to
not significantly affect vacancy behavior near the center of the
relaxation region [38].

B. Vacancy hop rate calculation

Reaction pathways were identified using a nudged elastic
band (NEB) method [39–42]. In this approach, i intermediate
images discretely represent a minimum energy path (MEP)
between two known states of a system. Here these states
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are two relaxed configurations of one hexagonal cell with
vacancies at adjacent sites, e.g., at sites A and B in Fig. 1.
The vacancy migration energy barrier is calculated by

Em,v0→v f = Esaddle,v0→v f − Ev0, (1)

where Em,v0→v f is the migration energy for the vacancy to
move from site 0 to site f , Esaddle,v0→v f is the NEB-calculated
energy of the saddle point of the vacancy transition from
site 0 to site f , and Ev0 is the energy of the cell when the
vacancy is at initial site 0. All of these energies are obtained
through electronic structure calculations. Each saddle point
provides two Em values, e.g., Em,A→B and Em,A←B where the
arrow indicates the direction of the vacancy. These vary as
EvA and EvB are not equal for most pairs of sites. An initial
configuration of each image is linearly interpolated from the
geometries of the cell with its vacancy at initial site 0 and final
site f . Then these images are relaxed along NEB forces until
they converge along the MEP [38].

For exchanges with migration barriers <0.8 eV, more
accurate climbing image NEB (CNEB) simulations rigorously
converged on the saddle points of these particularly significant
jumps [40]. This threshold was chosen because it includes all
vacancy hops between sites that are adjacent to the partial
core as well as hops between those sites and sites that lie in
the stacking fault. (This energy threshold included 99% of the
jumps in later diffusion simulations.)

For each vacancy exchange, a standard NEB calculation
was performed to identify a reaction pathway, with the CNEB
method optionally following. Variations between NEB and
CNEB results were almost always �0.01 eV, so this step was
omitted when describing less significant jumps. The CNEB
approach would have been necessary to describe all jumps if
the diffusion mechanisms in the study were more complicated
than vacancies hopping between neighboring sites. A trial
that looked at a vacancy exchange between two sites near the
partial core that were in each others’ second shells of neigh-
bors saw the reported saddle point energy raise by 0.07 eV
after the CNEB method was applied. The resultant Em value
of 1.95 eV was high enough that this exchange and others
involving comparable interatomic distances were assumed to
be energetically unfavorable enough to be negligible. Using
one intermediate image was sufficient to study each path
[38]. A similar single-image approach has been taken by
other authors studying diffusion with similar methodologies
[43,44].

These migration energies, along with the Vineyard attempt
frequency ν∗ [45,46], were then used to calculate the fre-
quency w of each vacancy hop:

w = ν∗ exp

(
− Em

kBT

)
, (2)

ν∗ =
∏3

i=1 νi∏2
i=1 ν ′

i

, (3)

where νi are the vibrational frequencies of an atom at its
equilibrium position prior to a hop and ν ′

i are its nonimaginary
frequencies when it is at the saddle point along the hop. A
previous study found that including only frequencies of the
hopping atom provides a good approximation of ν∗ while lim-
iting error that would otherwise accumulate through inclusion

of many frequencies in the product terms [44]. These attempt
frequencies were also calculated for hops with energy barriers
<0.8 eV, while otherwise the fcc value was used to provide an
estimate.

C. Kinetic Monte Carlo calculations

Jump frequencies for all possible vacancy hops within the
system were included in a catalog of rate constants for the
KMC code, which moves a single vacancy through a system
of atomic coordinates according to the Bortz-Kalos-Lebowitz
algorithm, also known as the N-fold way [47–49]. A vacancy
at a given site has N neighbors within some cutoff distance
and a hop rate r to each neighbor [38]. In fcc Ni, the cutoff
distance is chosen to be the nearest neighbor distance of
2.49 Å. Within the dislocation cell, it is set slightly higher
to accommodate possible vacancy hops within the distorted
geometries of the first shells of nearest neighbors of various
sites, as discussed later. These neighbors are referred to as
“nearby neighbors” of a given site in this work.

At each temperature studied, a vacancy made k random
walks through the KMC cell, where each walk consisted of
1000N hops with N being the number of atoms in the system.
During each walk, one atom in the cell is selected to be a
tracer atom, and its behavior is tracked to generate a diffusion
coefficient DKMC:

DKMC =
∑k

i=1[zi(ti)]2

2nt
, (4)

where zi(ti ) is the displacement of the tracer atom over the
time ti elapsed on walk i, n is the dimensionality of the
system, and t is the total time of all walks. In the dislocation
system, z is the component of displacement in the direction
of the dislocation line and n = 1. Since the tracer atom
relies on the vacancy to move and the vacancy remains in the
vicinity of the tracer atom after moving it “forward” in some
diffusion direction, correlation effects emerge as the vacancy
has some probability of moving the tracer atom “backward,”
whether on its next hop or after making several hops. One
major advantage of the KMC method is that these effects
are automatically included, provided that the vacancy’s rate
catalog is well constructed. A correlation factor that describes
this behavior can be calculated as follows [45]:

fi = [zi(ti )]2∑k
j=1 λ2

k

, (5)

f = 〈 fi〉, (6)

where k is the number of hops that the tracer atom makes
during the ith vacancy walk, λk is the tracer’s displacement
during hop k, and 〈 fi〉 is the mean value of fi. In the dislo-
cation system, λk is the component of displacement along the
direction of the dislocation line.

Diffusion coefficients were scaled by the number of vacan-
cies expected within the KMC cell at equilibrium Nv:

D = DKMCNv, (7)

Nv =
N∑

i=1

exp

(
−Evf,i

kBT

)
, (8)
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Evf,i = (Ecell, vi + μNi) − Ecell, (9)

μNi = 1

N
Efcc, (10)

where Evf,i is the energy of vacancy formation at site i,
Ecell, vi is the VASP-calculated electronic energy of a supercell
containing a vacancy at site i, μNi is the chemical potential of
Ni (−5.46 eV/atom), Ecell is the energy of the supercell with
no vacancy, and N is the number of atoms in a defect free fcc
supercell with energy Efcc. In Eq. (9) the dislocation, stacking
fault, and same fixed boundary region are present in both of
the supercell configurations that have Ecell, vi and Ecell. The
energy difference that is not accounted for by the chemical
potential of the missing Ni atom is therefore the energy of
vacancy formation at site i [50].

Evf,i at a given site could fluctuate <0.02 eV when a par-
ticular vacancy was considered in different hexagonal cells.
This effect arose because different hexagonal cells contained
different proportions of the three possible types of sites:
partial core adjacent, stacking fault, and fcc. For instance, the
cell centered on site F contained more stacking fault sites than
the cell centered on site A shown in Fig. 1. These variations
could slightly change the volume of the relaxation region.
In these cases, the lowest Evf,i value that was calculated for
a particular site i was used in later calculations, under the
assumption that the higher energies corresponded to vacancies
and their surrounding atoms being unable to completely relax
because of the boundary conditions of the specific hexagonal
cell choice. Differences in migration energies from different
cells were similarly <0.02 eV. This is within the predicted
margin of error given that DFT calculations are generally
accurate to approximately 2–3 meV/atom.

D. KMC supercell geometry

KMC simulations of diffusion in the partial dislocation
core took place in a cell generated from atomic coordinates,
derived by the LGF approach, repeated ten times along the
dislocation line, and with periodic boundary conditions ap-
plied in the direction of the dislocation line. This cell is
depicted in Fig. 2. Migration energy barrier calculations in-
formed the choices of these sites, as is discussed in Sec. III B.
Simulations in the 350-atom dislocation core cells consisted
of at least 100 000 walks or about 3 × 1010 steps. Separate
simulations of an 864-atom fcc Ni cell were also performed
with 4000 walks or about 3 × 109 steps. The fcc cell was
larger to provide the vacancy with enough separation from its
images in neighboring supercells in all three dimensions in
order to more accurately describe correlation effects. Fewer
total steps were required for these results to converge due to
symmetry.

In all cases, tracer atoms and vacancies were inserted
randomly throughout the cell. This was done to avoid biased
sampling of particular diffusion pathways. Each simulation
was tested for convergence through an analysis of the squared
displacement of the tracer atom on each walk. Calculating the
standard error s/

√
(k) of that displacement, where s is the

standard deviation and k is the number of walks, confirms that
it was less than 1% of the mean squared displacement at each
temperature.

FIG. 2. View of the cell used for the KMC simulation normal
to the dislocation line, visualized in and with the dislocation core
identified using the dislocation extraction algorithm (DXA) of the
Open Visualization Tool OVITO [51–53]. White sites surround the
partial dislocation core (near core), red sites lie in the stacking
fault, and green sites are surrounding fcc. The white perimeter sites
compose an fcc boundary condition region and the dark blue sites
indicate a stacking fault boundary condition region.

Upon initialization of a KMC simulation, nearby neighbors
of all potentially vacant sites are identified and jump rates
to each of them are calculated. An example of the possible
vacancy destinations from an “A” site hop, viewed from within
the plane normal to the dislocation line, is illustrated in Fig. 3.
Hops into the perimeter boundary region of Fig. 2 are assumed
to behave like those in the pure fcc case. Upon a vacancy

FIG. 3. In-plane view of possible vacancy hop destinations when
a vacancy is at the central A site. Perspective is exaggerated to
indicate distribution of the sites in the 〈001〉 direction. Atomic sites
are shifted from their fcc positions because of the partial screw
dislocation, which runs vertically between the A, B, and C sites.
Eleven nearby neighbors are depicted rather than the 12 nearest
neighbors that a normal fcc site would have. In this example, the 12th
nearest site is a second “C” atom with a migration energy barrier that
is high enough that the probability of the vacancy hopping to that site
is negligible.
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entering this region, it is randomly returned to another site
that borders the boundary. This allows the model to account
for the effects of a vacancy randomly wandering from and to
the core, assuming this is an isotropic process. If the vacancy
hopped along the stacking fault in the direction of the other
partial core, e.g., from an M site to an O site in Fig. 1, it
was returned to an N site as though it had migrated from the
equal and opposite counterpart partial core. Vacancy diffusion
from one partial to the other was also assumed to be isotropic.
Results are scaled with the equilibrium vacancy concentration
term of Eq. (7), and effects of vacancy buildup or depletion
are omitted as only one isolated vacancy is ever considered.
This assumption is validated by the equilibrium concentration
of vacancies at the highest temperature of 1400 K being about
one per 230 KMC cells or 4 × 104 sites.

III. RESULTS AND DISCUSSION

A. Electronic structure calculations

Vacancy migration energy barriers Em between adjacent
sites, which were used as input for the KMC simulations, are
provided in Fig. 4(a). There they are organized by intersite
distance and categorized by the type of site that the vacancy
hops from. Each intersite distance is defined as the distance
between a pair of atoms in the LGF-produced geometry,
before any vacancies are inserted. The distorted geometry near
the dislocation causes the nearby intersite distances to vary
around the 2.49 Å distance seen in defect free fcc Ni. Many
of the migration energies near the dislocation core and in the
stacking fault are significantly less than the fcc value, and a
trend towards restoring the fcc behavior is observed as these
distortions diminish. Increasing this distance does not have a
one-to-one correspondence with increases in migration energy
for two reasons. The geometries of atoms that surround two
pairs can be different depending on location. For example, an
F site has two H-type neighbors that are both 2.47 Å away, but
the vacancy migration energy barriers of the two F → H hops
are 0.74 and 1.17 eV. Second, the energy of a vacancy hop
calculated using Eq. (1) can vary with the direction of the hop
between two sites. For instance, an A site has an E neighbor
that is 2.51 Å away, and the barrier for that E → A vacancy
hop is 1.04 eV even though the intersite distance is greater
than that seen in fcc Ni. The counterpart E ← A hop has a
barrier of 1.15 eV.

Many of the lowest energies are near the partial core, e.g.,
a vacancy hopping from an A site to a B site in Fig. 3. In
Fig. 4(a), all neighbors of core-adjacent sites within their
distorted first shell of nearby neighbors up to 2.63 Å are
included, while otherwise a cutoff distance of 2.50 Å is
applied. All jumps were analyzed with at least NEB accuracy
with the exception of some jumps involving the “R” and “S”
sites in the fcc region adjacent to the stacking fault, which
were approximated using representative values from nearby
exchanges. Beyond the cutoff distance and outside the core
region, migration energies become sufficiently large that one
can assume their probabilities of occurrence are negligible.
Two pairs with intersite distances near 2.6 Å, which both
involve a “C” site, are the most extreme examples of this
behavior deviating near the core. The tensile side of the edge

FIG. 4. (a) Migration energy barriers and (b) jump attempt fre-
quencies for all analyzed jumps in the dislocation system. Colors
and shapes correspond to the site that the vacancy initiates its hop
from. The distance on the x axis is that between atomic sites in the
LGF-prepared geometry before a vacancy is introduced.

component of the screw dislocation causes these greater dis-
tances to be seen only around this site, and the low migration
energy barriers arise from the softened structure of this region,
even though the intersite distance is considerably larger than
the fcc value.

Since the migration energies contribute to the exponential
term in Eq. (2), the energy differences observed throughout
this range are the dominant contributors in determining the
actual hop rates of the transitions. The attempt frequencies
calculated using Eq. (3), which are plotted in Fig. 4(b) for
each hop, are mostly near the fcc value of 4.4 THz. These
values were only calculated for particularly significant jumps
with migration barriers of <0.8 eV. For the most part, these
are slightly diminished near the dislocation core and in the
stacking fault relative to the value in fcc Ni.

After inserting vacancies at the sites shown in Fig. 1, the
vacancy formation energy Evf,i is calculated at each site i
using Eq. (9), as shown in Table I. The three most favorable
sites for vacancy formation (A, B, and F) are on the side
of the cell that contains the compressive side of the edge
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TABLE I. Vacancy formation energies (eV) at sites around a
partial dislocation core of the a

2 〈11̄0〉 screw dislocation.

Near partial In fault Surroundings

A 1.17 F 1.20 D 1.27
B 1.15 G 1.35 E 1.29
C 1.36 M 1.29 H 1.31

N 1.34 I 1.30
O 1.33 J 1.39
P 1.29 K 1.42

L 1.41
Q 1.33
fcc 1.38

dislocation component of the screw dislocation. Formation
of vacancies on that side is energetically favorable as their
insertion relieves some of that compression. The directional
differences in migration energy, discussed above and shown
in Fig. 4(a), are reflected in the varying formation energies at
each site.

By summing these values, effective activation energies
Q = Em + Evf can describe the diffusive behavior of one par-
ticular vacancy hop. For instance, Evf,A and the Em value of the
A → A hop provide Q〈11̄0〉 = 1.94 eV. This could be applied
to describe vacancy diffusion specifically along A sites in that
direction. Insertion of these energies into the KMC model
is necessary to describe the collective mass transport that
depends on many different jumps taking place and interacting
in ways that could not be determined a priori. Qualitatively,
one can note that Q〈11̄0〉 values near the core are significantly
less than the fcc value, which is restored as site distance from
the core increases.

B. Kinetic Monte Carlo simulations

Diffusivity in a real material as a function of distance to
an isolated dislocation is a continuous function that has a
maximum near the core and decays to the bulk value as that
distance increases [19]. Practically, an effective dislocation
radius is typically assigned such that diffusion within that
cross sectional area can be described with one dislocation
diffusion coefficient, while outside of that radius, diffusion is
assumed to behave like it does in the bulk lattice. Changing
the radius of the KMC supercell that contains the disloca-
tion core effectively determines the dislocation density of
the KMC simulation, which directly affects the calculated
diffusion coefficient. Increasing this radius and therefore the
number of fcc sites that lie in the plane that cross sections the
dislocation line causes the diffusion coefficient to diminish
at a given temperature, both because hops in fcc regions
take longer than those that are near the dislocation core and
because increasing this area introduces more possibilities for
diffusion perpendicular to the dislocation line. Classically, this
radius has traditionally been assumed to be well approximated
by twice the Burger’s vector (∼5 Å) [19,54]. A molecular
dynamics study of dislocation cores in Al plotted D values
as a function of simulation radius and used a curve-fitting
technique to identify the radius of their core as approxi-
mately 6 Å [19]. In another study Lu and co-workers found

FIG. 5. Correlation factor f in an a
6 〈1̄21̄〉 Ni partial screw dislo-

cation core as a function of temperature. Low values at low temper-
atures are due to the vacancy tending to oscillate along low-energy
pathways.

that exchanges involving stacking fault sites are particularly
important in describing diffusion near the core [22]. The
migration energy results plotted in Fig. 4 suggest that some
jumps from the core-adjacent sites to surrounding ones can
have high probabilities, for example, Em,A→D = 0.63 eV. For
the pure Ni system, omitting these would hamper the accurate
description of vacancy behavior in this region. In another
system with vacancies more tightly bound to the dislocation
core, this might not be the case. With this in mind, sites under
consideration here lie within 2b or 4.98 Å of the imaginary
line in the [1̄1̄2] direction on the (11̄0) plane that originates
at the partial core and bisects the stacking fault as shown in
Fig. 2. This is effectively equivalent to the 5 Å radius assumed
for experiments and is also the closest integer multiple of b to
the value from the MD study; each multiple corresponds to
one perimetral layer seen in Fig. 2.

While the primary goal of the KMC model is to calculate
diffusion coefficients, one can also extract from it information
on the correlation effects that it automatically accounts for as
it moves the vacancy through the cell. Correlation factors f for
the dislocation core system are calculated using Eq. (6) and
plotted as a function of temperature in Fig. 5. These values
are consistently lower than the fcc value of 0.78145 [55]
due to the vacancy’s tendency to oscillate along low-energy
pathways between pairs of sites. In an fcc crystal, jumps
to any of a vacant site’s 12 nearest neighbors are equally
energetically favorable. This symmetry causes the vacancy to
tend to diffuse through the crystal rather than oscillate along
a particular pathway, and also causes the correlation factor to
be temperature independent. For the results depicted in Fig. 5,
correlation factor values near room temperature particularly
pronounce this effect; most of the time, there is not enough
kinetic energy in the system to initiate a series of jumps that
produces more efficient transport along the dislocation line.
As temperature increases, f rises with exponential behavior at
the lowest temperatures, adopts a linear trend, and then begins
to level off as it approaches the high temperature regime where
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TABLE II. A comparison of Arrhenius diffusion parameters for
fcc Ni from the current study, another density functional study, and
experimental observation.

System D0 (m2/s) Q (eV)

fcc 4.30 × 10−7 2.43
Other simulation [18] 4.29 × 10−7 2.48
Experiment [11] 9.2 × 10−5 2.88

this analysis stops due to the expected emergence of other
diffusion mechanisms [10] and anharmonic effects.

C. Diffusion coefficients

The KMC-generated diffusion coefficients for bulk Ni
are in good agreement with those reported by Wu and co-
workers using GGA pseudopotentials within VASP [18]. The
Arrhenius parameters are listed along with these results in
Table II. Minor differences between the two results can be
attributed to slight variations in methodology. Also listed are
experimental results from one particularly relevant study by
Maier [11], which used a relatively accurate direct sectioning
technique at comparable temperatures of 813–1193 K while
taking measures to omit any contributions from pipe diffusion
to their final results.

Multiple factors contribute to the disagreement between
the simulation results and the experimental ones. To explain
the difference in activation energy, there is an established
error in DFT calculations in systems that contain a vacancy.
Mattsson and Mattsson have shown that the internal surface
area surrounding the vacancy (e.g., a low electron density
region) leads to calculated Evf values in Eq. (9) that system-
atically underestimate experimental values [56]. Using local
density approximation (LDA) pseudopotentials can lead to
some cancellation of this error (in this case, at the expense
of underestimating the lattice constant of Ni), but as Wu
et al. point out, correctional terms would be needed regardless
of the pseudopotential choice to closely match experimental
results [18]. They offer correctional shift terms Ashift and Eshift

for D0 and Q, which have not been applied to the values
reported here, but could be applied if desired. One means
of bringing the diffusion prefactor into better agreement with
experimental results would be to include vibrational contri-
butions to the equilibrium number of vacancies calculated
with Eq. (9). These are highly temperature dependent and
accurately calculating them in the dislocation system goes
beyond the scope of the current study. Recent ab initio work
investigating this topic in detail for fcc Ni is available in the
literature [57].

With this context for interpreting the results in place,
diffusion coefficients from the partial dislocation cell are
compared with the fcc values. Diffusion coefficient plots for
both systems, along with Maier’s experimental data for fcc
Ni [11], are plotted in Fig. 6. The diffusivities within the
partial dislocation system are consistently higher than those
found in the fcc system. These values are about one order of
magnitude higher at the very highest temperature of 1400 K,
and eight orders of magnitude higher near 300 K. For the sake
of comparing with other data, Arrhenius parameters have been

FIG. 6. A comparison of KMC simulation-generated diffusion
coefficients in the dislocation cell and in fcc Ni. Experimental
data for the fcc case is included from a study that focused on the
monovacancy diffusion mechanism in the Ni lattice at comparable
temperatures [11].

fit to this pipe diffusion data and are compiled in Table III.
Because of the previously discussed temperature effects on
correlation factor and hop activity, fits have been made to the
entire range as well as in the regions where f displays its
approximately prelinear and linear behavior. The traditional
D = D0 exp(−Q/kBT ) formalism wraps f up in D0, which
is better suited for describing symmetrical systems like the
fcc lattice with temperature-independent f values. Regardless,
the activation energies of the fits to the dislocation system
data are consistently less than the fcc values, which is to be
expected given the lowered vacancy migration energy barriers
and comparable formation energies in the near-core region.
In the low temperature dislocation Arrhenius fit, the diffusion
prefactor D0 is suppressed due to correlation effects. At higher
temperatures, Q rises because jumps that require more thermal
energy are more active.

By multiplying the diffusion coefficient of the dislocation
cell by its area, which is approximately 17b2, the integrated
flux (P) can be calculated through the dislocation region. This
term, “integrated flux,” is in use for consistency with previous
literature. For the simulated data, this term is a proportionality
constant such that the ratio of flux through different regions,
each with some known Pi, can be quickly assessed, and com-
parisons with experiment can be readily made. The integrated
flux was traditionally measured in experiments and used to

TABLE III. Arrhenius diffusion parameters and integrated flux
coefficient P0 for an a

6 〈1̄21̄〉 Shockley partial screw dislocation in fcc
Ni, obtained by fitting the data at different temperature ranges.

Fit temperature range D0 (m2/s) P0 (m4/s) Q (eV)

300–1400 K 6.89 × 10−8 7.26 × 10−26 1.93
300–700 K 4.28 × 10−8 4.51 × 10−26 1.91
800–1400 K 1.28 × 10−7 1.35 × 10−25 1.98
Experiment [8,54] 2.6 × 10−4 6.6 × 10−23 1.95
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FIG. 7. (a) Integrated flux in the screw dislocation compared to
experimental results from a dissociated a

2 〈11̄0〉 screw dislocation in
fcc Ni [8]. (b) Critical dislocation densities for pipe diffusion and fcc
diffusion to contribute equally to diffusive flux, compared to num-
bers derived from experimentally determined Arrhenius parameters
assuming an effective dislocation area of π (5 Å)2 [8,11].

derive the diffusion coefficient by making an assumption
about the area of the diffusion pipe radius as discussed
above. This quantity can be fit to temperature to produce
an integrated flux coefficient P0, which is analogous to the
Arrhenius prefactor D0. In Fig. 7(a) the integrated flux through
the system is plotted as a function of temperature, along with
that which was observed experimentally using radiotracers
in dissociated a

2 〈110〉 screw dislocations in fcc Ni [8]. (To
our knowledge, this is the only experimental work available
that specifically considered screw dislocations in Ni.) The
calculated and experimental activation energies, which are
listed in Table III, are in good agreement with one another
with a difference of <0.05 eV, which is significantly less
than the deviation between simulated and experimental fcc
Ni (∼0.4 eV). Like in the fcc case, the intercept or prefactor
of the experimental data is significantly higher than the simu-
lated value, but in the case of the dislocation this difference be-
comes even more pronounced. One factor that helps to explain
this discrepancy is that the experimentally observed screw

dislocations were prepared in a grain boundary (GB), and the
entropies of vacancy formation S f in such a geometry can
raise D0. Another theoretical study found S f /kB of up to 5.13
at sites in Cu GBs [58]. Given that D0 is directly proportional
to exp(S f /kB), this effect could contribute significantly to an
increase in the equilibrium vacancy concentration. Addition-
ally, the experiment operated at 873–1243 K and its findings
were extrapolated to the entire temperature range.

In a deformed bulk sample that includes regions of high
and low dislocation density, a critical dislocation density
can be defined so that the diffusion flux through these two
regions is the same. To calculate the critical density, an fcc
cross section area is calculated such that its flux is equal to
the flux through the dislocation cross section area depicted
in Fig. 2. Dividing the number of dislocations (1) by the
sum of these two cross section areas gives the corresponding
critical dislocation density, which is depicted in Fig. 7(b).
The deformed bulk, having this density, is assumed to contain
only parallel screw dislocations and no other debris. The
calculated dislocation density therefore is a threshold, above
which diffusion through dislocations would be the dominant
contributor to overall diffusion. The dislocation density of
a well-annealed fcc crystal is about 1010 m−2 [59], while
a recent plastic deformation study suggested a saturation
density of about 3 × 1014 to 2 × 1015 m−2 in Ni, depending
on the measuring method [60]. The well-annealed value is
significantly less than the theoretical ones plotted in the figure,
but the necessary density could be present in the deformed
sample at low temperatures up to around 700 K. Theory and
experiment agree that pipe diffusion could be the primary
means of mass transport that occurs in emerging ultrafine-
grain (UFG) materials that have dislocation densities at these
levels, though the experimentally suggested threshold density
is much lower. The disagreement between experimental and
calculated diffusion coefficients for pipe diffusion [reflected
in Fig. 7(a)] results in the separation of the two curves in
Fig. 7(b) by several orders of magnitude. If a correctional
term was applied to account for this, these two lines would
intercept one another at high temperature. Another reason for
the disagreement between reported thresholds is the signifi-
cantly greater experimentally reported activation energy for
fcc diffusion (seen in Table II), which causes the experimental
curve in Fig. 7(b) to decrease more sharply than the theoretical
curve as temperature decreases. (The comparison of data from
the two experimental studies is not perfect due to the different
methodologies and extrapolation of higher temperature Arrhe-
nius parameters to calculate D values near room temperature.)

Considering Figs. 6 and 7(b), pipe diffusion is not the dom-
inant isotropic bulk diffusion mechanism in well-annealed fcc
Ni, which is in line with expectations. However, the local
effects of pipe diffusion on deformation (i.e., climb and creep
mechanisms) will be quite significant, since pipe diffusion
consistently provides greater diffusivities than would other-
wise exist in fcc Ni. One could expect pipe diffusion to be
the rate limiting process for diffusion-controlled dislocation
motion over a wide range of dislocation densities. Also, these
results provide support for the proposed idea that pipe dif-
fusion makes grain boundary sliding possible in these UFGs
at low temperatures where deformation is assumed to be
negligible in traditional metals [61].
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IV. CONCLUSION

Pipe diffusion was analyzed along a partial screw disloca-
tion in fcc Ni using a first-principles approach. Diffusion co-
efficients describing monovacancy-facilitated diffusion along
a dislocation line were calculated for a temperature range
of 300–1400 K. These values are consistently significantly
higher than those calculated in crystalline fcc Ni, even when
correlation effects made mass transport along the dislocation
core inefficient at low temperatures. This diffusion depends
significantly on vacancies hopping to and from stacking fault
sites as well as those that were adjacent to the core. Com-
parisons were made to experimental findings, and limitations
of directly comparing the two were discussed. Pipe diffusion
is likely to contribute to creep and climb mechanisms that
involve mass transport near or along dislocations. Finally,

integrated fluxes across the core structure were calculated to
assess the critical dislocation density required to exceed con-
ventional (bulk) mass transport. We observe that the required
dislocation densities are achieved in stage II–III deformed
metals and are also likely to be encountered in ultrafine grain
materials at low temperatures.
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