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Zirconium alloys are the most widely used nuclear fuel cladding materials for light water power reactors where
irradiation damage causes solute redistribution, leading to degradation of alloy properties such as corrosion
resistance. Designing radiation-tolerant zirconium alloys requires a thorough understanding of the atomic-scale
transport behavior of the alloying elements in Zr. We perform density function theory calculations to investigate
the diffusion of Sn, Cr, Fe, Be, Al, and Ni in the hexagonal close-packed (HCP) Zr matrix. We develop a
methodology to accurately model the metastable vacancy states along the basal migration path, known to occur in
group IV metals. We compute the vacancy-mediated solute diffusion coefficients and drag ratios using the kinetic
Monte Carlo method and an analytic Green’s function method—the agreement between the two validates our
methodology. The computed diffusion coefficients of Sn and Al show good agreement with the experimental data
and we expect these solutes to diffuse via the vacancy-mediated mechanism. We use a Green’s function approach,
parameterized with data from density functional theory calculations, to compute the interstitial diffusion coeffi-
cients of Cr, Fe, Be, and Ni in the HCP Zr lattice. The computed diffusion coefficients of Cr, Ni, and Be agree
with the experimental measurements within one order of magnitude, while those of Fe are within two orders of
magnitude of the experimental measurements. The drag ratios for Cr, Fe, Be, and Ni are positive up to 1235 K,
which suggests that nonequilibrium vacancy fluxes could drag these solutes toward sinks such as dislocation
loops and grain boundaries. We also compute the transport coefficients without including the metastable states,
and using the eight- and thirteen-frequency model. Our results show significant differences in drag ratio for the
eight- and thirteen-frequency model predictions compared with the Green’s function methodology, but smaller
errors in the solute diffusivity. Combining interstitial and vacancy-mediated diffusivities, we predict the unusual
result that increased vacancy concentration slows down solute diffusivity, while a sufficiently high vacancy
concentration can change the dominant mechanism to an accelerated vacancy-mediated diffusion.
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I. INTRODUCTION

Zirconium alloys exhibit high corrosion resistance, struc-
tural stability, and low neutron absorption cross section, which
makes them suitable as nuclear fuel cladding materials for
light water power reactors at service temperatures [1]. The
two common zirconium alloys used as cladding materials in
light water power reactors are Zircaloy-2(Sn,Cr,Fe,Ni) and
Zircaloy-4(Sn,Cr,Fe) [2]. The solutes Sn, Cr, Fe, and Ni are
major alloying additions in the zirconium alloy claddings
[2], and exposure of these alloys to neutron irradiation is
known to cause a redistribution of alloying elements [3–7]
with significant consequences to the corrosion performance
of the alloy [6,8–11]. An understanding of the atomic-scale
transport of point defects in Zr will provide a step forward
for new alloy development with increased tolerance to radi-
ation. Recent advances in computer processing speeds and
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availability of massively parallel computing facilities have
allowed density functional theory (DFT) simulations to deter-
mine the atomistic properties of point defects [12]. Combining
DFT results with advanced diffusion models [13] helps con-
nect the macroscopic properties with the complex interplay
of processes that occur on an atomic scale [14–16]. For the
present study, we focus on the four major alloying elements,
as well as Be and Al in the HCP Zr matrix. Aluminum
could potentially diffuse in to the Zr matrix from the Fe-Cr-
Al alloy coatings being developed to improve the oxidation
resistance of Zr [17]. Beryllium addition could also improve
the oxidation resistance based on a recent computational study
of Be stability in Zr surfaces [18].

First-principles studies have computed defect energies
and migration barriers of vacancies [19–24], self-interstitials
[25–27], and solute-vacancy complexes [28,29] in the Zr
matrix; however, the information is insufficient to characterize
solute-vacancy flux coupling and there are open issues such
as the modeling of metastable vacancy configuration in Zr
[22]. First-principles calculations have shown that group IV
HCP metals such as Ti [30,31] and Zr [22] exhibit a double-
humped basal vacancy migration barrier (cf., Fig. 1) through a
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FIG. 1. Double-humped basal vacancy migration in HCP Zr. The
metastable geometry of the vacancy in the 96-atom VASP calculation
is 0.52 eV higher in energy than the ground state (lattice site) and
located halfway between the initial and final positions. The transition
state is 0.55 eV higher in energy than the ground state.

metastable configuration; however, previous investigations do
not account for the metastable states [29,31,32] and assume
that a vacancy directly transitions between lattice sites. So-
lutes could either destabilize these states or form metastable
solute-vacancy states [31], resulting in a complicated diffu-
sion network, but existing diffusion models for HCP such
as the eight-frequency model [33] and the thirteen-frequency
model [34] are insufficient to capture such a network. A
recent study [15,16] on vacancy-mediated diffusion in HCP
Mg illustrated the use of an exact Green’s function [13] (GF)
approach that computes accurate transport coefficients for any
arbitrary crystal, but there are no studies to validate the results
of this approach for a system with metastable states.

The solutes Fe and Ni were shown to segregate toward
grain boundaries in irradiated zirconium alloys [35,36] while
Sn, Cr, Fe, and Ni form nanometer-sized clusters in the
vicinity of dislocation loops [37–39]. In particular, Fe appears
to cluster near 〈c〉-type dislocation loops which are vacancy
type [39], suggesting correlation between solute and vacancy
fluxes. Segregation of solutes could be mediated by vacancies
wherein the diffusion of vacancies toward sinks drags the
solutes along; however, experimental measurements of diffu-
sivity show that Cr [40,41], Fe [42,43], and Ni [43,44] are
fast diffusers in the Zr matrix, and the interstitial mechanism
is likely dominant under equilibrium conditions. On the other
hand, the diffusivity of Sn in the Zr matrix [45] is similar to
self-diffusion of Zr [46–50], suggesting a vacancy-mediated
mechanism, but clustering of Sn appears to be anticorrelated
with Fe and Cr [37,39] which suggests Sn and vacancy fluxes
could also be anticorrelated.

First-principles studies also show that Fe [51,52] prefers
interstitial sites over substitutional sites in HCP Zr. Pasianot
et al. [53] performed first-principles calculations and found
low migration barriers for Fe to jump between interstitial

sites, which could explain why Fe is a fast diffuser in the Zr
matrix. In contrast, the solutes Cr [29,51], Be [18], and Ni [52]
prefer substitutional sites in HCP Zr. Christensen et al.’s DFT
study found that Fe and Cr have a low-energy substitutional
configuration with a high magnetic moment and that Cr, Fe,
and Ni have a weakly attractive binding with a vacancy in the
first neighbor shell [28], which suggests a positive coupling
between these solutes and vacancies. A recent study by Lu
et al. [29] shows that vacancy has attractive binding with Cr
but repulsive binding with Al and Sn, which suggests that
the latter two solutes could be uncorrelated with vacancy
fluxes; however, this correlation has not been quantified. The
study also shows that Cr diffuses via the interstitial mecha-
nism, which does not explain how solute-vacancy correlation
could influence diffusion. There are currently no computa-
tional studies of diffusion coefficients of Fe, Be, and Ni in
the Zr matrix. Further, the experimental measurements were
carried out at near equilibrium conditions but the dominant
diffusion mechanism can change under the effects of irradi-
ation such as higher vacancy concentrations [54–57]. Thus,
a combined study of both vacancy-mediated and interstitial
diffusion mechanisms, along with their vacancy concentration
dependence, can provide important quantitative data to model
transport in zirconium alloys in equilibrium and radiation
environments.

In this work, we extend a recently developed Green’s func-
tion approach [13,58] to account for the metastable states and
use it with inputs computed from DFT to examine vacancy
and interstitial mediated diffusion of Sn, Cr, Fe, Be, Al, and
Ni in the Zr matrix. We also perform kinetic Monte Carlo [59]
(KMC) simulations for comparison with the results of the GF
approach. In Sec. II, we discuss our unique treatment of the
metastable vacancy states encountered in Zr and the defini-
tions of solute-vacancy binding energies and transition rates.
Section III describes the procedure for calculating the binding
energies and transition rates from DFT. Section IV discusses
the DFT results, the diffusion coefficients, and the drag ratios
computed using the GF approach and KMC simulations. Our
results show that the vacancy-mediated diffusion coefficients
for Sn and Al are comparable to the experimental results.
The interstitial diffusion coefficients computed using the GF
approach and the competition between the interstitial and
vacancy-mediated diffusion mechanisms. Our results show
that the interstitial diffusion coefficients for Cr, Be, and Ni
in HCP Zr agree to within one order of magnitude with the
experimental results while those of Fe agree within two orders
of magnitude. The drag ratios of Cr, Fe, Be, and Ni are
positive, which suggests that vacancy fluxes at nonequilibrium
concentrations retained due to irradiation damage could drag
these solutes. We also predict that excess vacancies slow down
the interstitial diffusion and accelerate vacancy-mediated
diffusion.

II. METHODOLOGY

A. Vacancy-mediated transport

The Onsager transport coefficients [60] are second-rank
tensors which describe the overall transport of point defects
in alloys. In a binary alloy, the fluxes �JS and �JV of solute S and
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vacancy V are proportional to the gradient of their chemical
potentials μS and μV(

�JS
�JV

)
= −

(
LSS LSV

LVS LVV

)(
�∇μS
�∇μV

)
, (1)

where LSS , LSV = LVS , and LVV are the Onsager transport
coefficients. In the dilute limit, the solute diffusivity DS is
proportional to LSS ,

DS = lim
cS→0

kBT

cS
LSS, (2)

where kB is the Boltzmann constant, T is temperature in
Kelvin, and cS is the solute concentration. The term LSV

measures the correlation between solute and vacancy fluxes,
and the drag ratio LSV(LSS )−1 quantifies the solute drag by
vacancies. A positive drag ratio means that the vacancy drags
the solute along with it while a negative value means that
the solute diffuses away from the vacancy. Calculation of
the transport coefficients requires identifying the set of states
occupied by defects and the transition rates between these
states. The following subsections discuss the definitions of
these states and transition rates.

B. Solute-vacancy complexes in the dilute limit

We use the definition of a state introduced in the Green’s
function methodology [13] and extend it to include the de-
scription of the metastable states observed in HCP Zr. We
consider an infinite three-dimensional lattice containing N
sites in the unit cell (i = 1 . . . N), with the basis vectors ui. We
define each site with the position vector R = x + ui, where x
is a linear combination of the unit cell lattice vectors. Then
the position of a solute is xS + uiS , and the position of a
vacancy at a lattice site relative to the solute is xS + xV + uiV .
Therefore, we can represent a solute-vacancy complex state as
xSiSxViV when the vacancy occupies a lattice site. In the case
of metastable complex states, the vacancy does not occupy
a lattice site; instead, two lattice sites are simultaneously oc-
cupied by “half vacancies” and we use two adjacent vacancy
positions xViV and yV jV to define a metastable complex state
as xSiSxViVyV jV. In the dilute limit, we consider only one
solute and one vacancy in the system, and set xS = 0 using
the translational invariance of the lattice. Therefore, the set
of states can be represented by 0iSxViV and 0iSxViVyV jV.
Note that the states 0iSxViVyV jV and states 0iSyV jVxViV are
equivalent.

We determine the thermodynamic range of interaction be-
tween the solute and vacancy using the solute-vacancy bind-
ing energies Eb

0iSxViV
and Eb

0iSxViVyV jV
for a vacancy occupying

a lattice site and metastable state, respectively. We assume
that the thermodynamic range is finite, and the vacancy state
and transition state energies are independent of the solute
beyond this range. We define the binding energies relative to
the energy E0iS of a single solute in the system without the
vacancy, and energy E0iV of a single vacancy at a lattice site
without the solute in the system

Eb
0iSxViV = E0iSxViV − (

E0iS + E0iV

)
, (3)

Eb
0iSxViVyV jV = E0iSxViVyV jV − (

E0iS + E0iV

)
, (4)

where E0iSxViV is the energy of the complex 0iSxViV
and E0iSxViVyV jV is the energy of the metastable complex
0iSxViVyV jV. The binding energy decays to zero as the sepa-
ration between the solute and vacancy approaches the thermo-
dynamic range. Based on the chosen reference, if the vacancy
occupies any metastable state outside the thermodynamic
range, then Eb

0iSxViVyV jV
reduces to the relative energy of

metastable state without the solute: E0iVyV jV − E0iV .We define
a positive binding energy as repulsive interactions while a
negative binding energy denotes attractive interactions.

C. Transition rates

The minimum energy transition pathway between two
states goes through a saddle-point configuration in the po-
tential energy surface and we use the harmonic transition
state theory [61] to compute the transition rate. We refer
to the saddle-point configuration as the transition state, and
its location along the minimum energy path as the reaction
coordinate. The transition rate ω0iSxViV−x′

S i′Sx′
Vi′V between the

initial state 0iSxViV and the final state x′
Si′Sx′

Vi′V is then

ω0iSxViV−x′
S i′Sx′

Vi′V = ν0iSxViV−x′
S i′Sx′

Vi′V e
−Em

0iS xV iV−x′
S i′S x′

V i′V
/kBT

, (5)

where ν0iSxViV−x′
S i′Sx′

Vi′V is the attempt frequency and
Em

0iSxViV−x′
S i′Sx′

Vi′V
is the migration energy. The migration

energy Em
0iSxViV−x′

S i′Sx′
Vi′V

is

Em
0iSxViV−x′

S i′Sx′
Vi′V

= ET
0iSxViV−x′

S i′Sx′
Vi′V

− E0iSxViV , (6)

where ET
0iSxViV−x′

S i′Sx′
Vi′V

is the energy of the transition state.
Similarly, the transition rate ω0iSxViV−0iSxViVyV jV between the
initial state 0iSxViV and the metastable state 0iSxViVyV jV is

ω0iSxViV−0iSxViVyV jV = ν0iSxViV−0iSxViVyV jV e−Em
0iS xV iV−0iS xV iVyV jV

/kBT
.

(7)
We assume that the vacancy at a metastable state only tran-
sitions to the adjacent lattice sites. Note that the transition
states 0iSxViV − 0iSxViVyV jV and 0iSxViVyV jV − 0iSxViV are
equivalent, but different from 0iSyV jV − 0iSxViVyV jV or
0iSxViVyV jV − 0iSyV jV.

The combined effect of various transition rates governs
the solute transport kinetics via the vacancy-mediated mech-
anism. Vacancy-mediated diffusion of solutes requires solute-
vacancy exchange jumps followed by reorientation jumps of
vacancy around the solute. Therefore, the solute diffusion co-
efficient depends on the rate-limiting step between exchange
and reorientation. Solute drag occurs when the solute and
the vacancy diffuse as a complex. Attractive binding ener-
gies increase the probability that vacancies migrate toward
the solute and form complexes. Alternatively, drag is also
possible when binding energies are repulsive, provided that
the vacancy reorientation rates around the solute are much
faster than the rates to escape away from the solute, which
increases the probability that solute and vacancy diffuse as a
complex.

Calculating the interstitial diffusion coefficient requires
identifying the set of interstitial sites and the transition rates
between them. In the dilute limit, we consider only one solute
diffusing in the system. Therefore, we use the translational
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invariance of the system to describe the complete set of states
using only the interstitial sites located in the unit cell. We use
harmonic transition state theory [61] to compute the transition
rate ωα-β for an interstitial to jump from a site α to another site
β. The minimum energy path for this jump passes through a
transition state α-β. The transition rate ωα-β is

ωα-β = να-βe−Em
α-β/kBT , (8)

where να-β is the attempt frequency and Em
α-β is the migration

energy. The migration energy Em
α-β is

Em
α-β = ET

α-β − Eα, (9)

where ET
α-β is the energy of the transition state and Eα is the

energy of the initial site.

III. COMPUTATIONAL DETAILS

We perform density functional theory (DFT) calcula-
tions using the Perdew-Burke-Ernzerhof (PBE) exchange-
correlation functional [62] and the projector augmented wave
(PAW) method [63] implemented in the Vienna ab initio
simulation package (VASP) [64,65]. We describe the Zr, Sn,
Cr, Fe, Be, Al, and Ni atoms with the electronic configura-
tions [Kr]4d2 5s2, [Kr 4d10] 5s25p2, [Ar]3d5 4s1, [Ar]3d6 4s2,
[He]2s2, [Ne]3s2 3p1, and [Ar]3d8 4s2, respectively. We use
a plane-wave energy cutoff of 500 eV to converge the total
energy of Zr below 1 meV per atom. We use a supercell of
size 4 × 4 × 3 (96 atoms) which requires a Monkhorst-Pack
[66] k-point mesh size of 6 × 6 × 4 to sample the Brillouin
zone. We use Methfessel-Paxton smearing [65] with an energy
smearing width of 0.2 eV to integrate the density of states. The
convergence criterion for electronic minimization is an energy
difference smaller than 10−8 eV. We relax the geometries
using conjugate gradient until the force on each atom is less
than 5 meV/Å. We use spin polarization for the calculations
involving Cr and Fe, because the ground-state substitutional
configurations of these solutes have magnetic moments of
3.82 μB and 3.62 μB respectively. We use the climbing im-
age nudged elastic band (NEB) method [67] with a single
image to determine the transition states for vacancy jumps.
The lattice constants for HCP Zr obtained from structural
relaxation are a = 3.234 Å and c = 5.171 Å, which agree
well with experimental data [68] and previous DFT studies
[69,70]. The calculated vacancy formation energy in Zr is
2 eV, which is comparable to other DFT results reported in
the literature [22,32,70–72]. The experimental measurements
[47,73] estimate that the lower bound for vacancy formation
energy is 1.5 eV; however, accurate measurements are not
available. The vacancy formation energies computed using the
Zr PAW potentials with 4 valence electrons and 12 valence
electrons differ by less than 20 meV. We performed spin-
polarized calculations for cells containing Fe, but we find that
all interstitial configurations have a zero magnetic moment.

We compute total energies of Zr supercells containing a
single solute atom in various interstitial sites and transition-
state geometries and use these energies to calculate the defect
formation energies and migration barriers, respectively. The
formation energy E f

α of a single solute atom S at the interstitial

site α in the Zr lattice is

E f
α = EDFT[Sα + (M )Zr] − EDFT[(M )Zr] − EDFT[S], (10)

where EDFT[Sα + (M )Zr] is the DFT energy of the supercell
containing a solute at the interstitial site α and M Zr atoms,
EDFT[(M )Zr] is the DFT energy of the supercell containing M
Zr atoms, and EDFT[S] is the DFT energy of an isolated solute
atom. For the 4 × 4 × 3 bulk supercell, M is 96. We set the
lowest energy site as the reference and report the energies of
all other sites relative to this reference. As a result, the last
two terms in Eq. (10) cancel out. We calculate the migration
energy Em

α-β as

Em
α-β = EDFT[Sα-β + (M )Zr] − EDFT[Sα + (M )Zr], (11)

where EDFT[Sα-β + (M )Zr] is the DFT energy of the transition
state between the sites α and β.

For solute vacancy complexes and associated transition
states, we use DFT supercells of the same size (M = 96) to
determine the energies EDFT[(M − 1)Zr+iS] of Zr contain-
ing a single substitutional solute, EDFT[(M − 1)Zr+iV] of Zr
containing a single vacancy, and EDFT[(M − 2)Zr+0iSxViV]
of Zr containing the solute-vacancy complex. The binding
energy Eb

0iSxViV
of the solute-vacancy complex state 0iSxViV

from DFT is then

Eb
0iSxViV = EDFT[(M − 2)Zr + 0iSxViV]

− (EDFT[(M − 1)Zr + iS]

+ EDFT[(M − 1)Zr + iV])

− EDFT[(M )Zr], (12)

where the term EDFT[(M )Zr] on the right-hand side balances
the DFT energy of M Zr atoms. Similarly, the binding energy
Eb

0iSxViVyV jV
of the metastable state 0iSxViVyV jV is

Eb
0iSxViVyV jV = EDFT[(M − 2)Zr + 0iSxViVyV jV]

−{EDFT[(M − 1)Zr + iS]

+ EDFT[(M − 1)Zr + iV]}
− EDFT[(M )Zr], (13)

where EDFT[(M − 2)Zr + 0iSxViVyV jV] is the DFT energy
of the metastable state 0iSxViVyV jV. The migration energy
Em

0iSxViV−x′
S i′Sx′

Vi′V
for a vacancy jump between states 0iSxViV and

x′
Si′Sx′

Vi′V is

Em
0iSxViV−x′

S i′Sx′
Vi′V

= ET, DFT[(M − 2)Zr

+ 0iSxViV − x′
Si′Sx′

Vi′V]

− EDFT[(M − 2)Zr + 0iSxViV], (14)

where ET, DFT[(M − 2)Zr + 0iSxViV − x′
Si′Sx′

Vi′V] is the DFT
energy of the transition state between the states 0iSxViV and
x′

Si′Sx′
Vi′V. The migration energy between a state 0iSxViV and a

metastable state 0iSxViVyV jV is given by a similar expression.
We compute the vibrational frequencies of the jumping

atom in the initial state and transition state from DFT, and
use these frequencies to determine the attempt frequencies.
We approximate the Vineyard expression [61] of the attempt
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frequency for interstitial transitions as

να-β =
∏3

l=1 ν∗
α,l∏2

l=1 ν∗
α-β,l

, (15)

where ν∗
α,l are the vibrational frequencies of the interstitial

atom at site α and ν∗
α-β,l are the real vibrational frequencies

of the interstitial atom in transition state α-β. For vacancy-
mediated transitions, we find

ν0iSxViV−x′
S i′Sx′

Vi′V =
∏3

l=1 ν∗
0iSxViV,l∏2

l=1 ν∗
0iSxViV−x′

S i′Sx′
Vi′V,l

, (16)

where ν∗
0iSxViV,l are the vibrational frequencies of the jump-

ing atom in state 0iSxViV and ν∗
0iSxViV−x′

S i′Sx′
Vi′V,l are the real

vibrational frequencies of the moving atom in transition state
0iSxViV − x′

Si′Sx′
Vi′V. We determine the vibrational frequen-

cies from the eigenvalues of the force constant matrix, by
displacing the jumping atom by small amounts (±0.01 Å)
along three orthogonal directions and calculating the resulting
forces. Similar procedure applies for the transitions between a
lattice site and a metastable state.

The linearly interpolated migration barrier (LIMB) ap-
proximation uses the transition-state energies for vacancy
migration without the solute and the solute-vacancy binding
energies to approximate the transition-state energies in the
presence of the solute. The results from the LIMB approxi-
mation improve for the vacancy transitions which are further
away from the solute because the energy landscape becomes
similar to bulk. Computing a large number of transition-state
energies using DFT is expensive; therefore, we use LIMB to
approximate the transition-state energies for vacancy jumps
away from the nearest neighbor shell of solutes which limits

the number of DFT calculations. The LIMB approximation
for the transition-state energy of a vacancy jump between two
lattice sites is

ET, LIMB
0iSxViV−x′

S i′Sx′
Vi′V

= (1 − r)E0iSxViV + rEx′
S i′Sx′

Vi′V

+ [
ET

0iV−x′
Vi′V

− (1 − r)E0iV − rEx′
Vi′V

]
,

(17)

where ET
0iV−x′

Vi′V
is the transition-state energy for a vacancy

jump without a solute and 0 � r � 1 is the reaction coordinate
of the transition state relative to the initial state. Similarly,
the LIMB approximation for the transition-state energy of a
vacancy jump between a lattice site and metastable state is

ET, LIMB
0iSxViV−0iSxViVyV jV

= (1 − r)E0iSxViV + rE0iSxViVyV jV

+ [
ET

0iV−0iVyV jV − (1 − r)E0iV − rE0iVyV jV

]
, (18)

where ET
0iV−0iVyV jV

is the transition-state energy for a vacancy
jump without a solute between a lattice site and a metastable
state.

IV. RESULTS

A. Vacancy migration in bulk Zr

Figure 1 illustrates the geometries of a single vacancy at
a lattice site in HCP Zr and the metastable state located along
the basal transition path, which is 0.52 eV higher in energy.
The vacancy transitions between a lattice site and metastable
state via basal jumps along 〈112̄0〉 directions and between
two lattice sites via pyramidal jumps along 〈022̄3〉 direction.
The basal migration barrier computed from DFT is 0.553 eV

FIG. 2. The solute-vacancy complex configurations up to the seventh neighbor shell in HCP Zr. The large spheres mark the lattice sites and
the small spheres mark the metastable states. The numbers 1–7 correspond to the successive neighbor shells of an ideal HCP lattice with c/a
ratio = √

8/3. The letters b, p and c denote basal, pyramidal, and c-axis neighbors, respectively. The darker colors are closer to the solute and
lighter colors are further away. There are six 1b, three 4b and 4b, and six 6b sites in the basal plane of the solute; six 1p, six 2p, twelve 4p, and
twelve 7p sites, located one plane above and below the plane of solute; and two 3c and twelve 5p sites located two planes above and below the
plane of the solute. The sites 4b and 4b are equidistant from the solute but nonequivalent by symmetry. The neighbors below the basal plane
of the solute atom are located at symmetric positions along the c axis (not shown). No metastable state exists between the solute and the 1b
neighbors.
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and the reaction coordinate of the transition state is located at
r = 2/3. Therefore, the vacancy undergoes a basal transition
between two lattice sites via a double-humped barrier. The
pyramidal migration barrier is 0.613 eV, and the reaction co-
ordinate is located at r = 1/2. The attempt frequency for basal
jumps and pyramidal jumps out of a lattice site are 5.205 and
5.849 THz, respectively. The attempt frequency for a jump out
of the metastable state is 1.758 THz. Our results are compa-
rable to the vacancy migration barriers from DFT calculations
reported in the literature: 0.51 [22], 0.54 [70], 0.57 [72], 0.5
[32], and 0.55 [32] eV for the basal jumps and 0.67 [22], 0.65
[70], 0.70 [72], 0.53 [32], and 0.62 [32] eV for the pyramidal
jump. To simplify the description of metastable states, we
choose to map the metastable states onto a sublattice of sites
located between the lattice sites and use this mapping in our
GF calculations. Therefore, our HCP unit cell includes six ad-
ditional symmetry-equivalent basis sites which have the same
symmetry and Wyckoff positions as the basal crowdion sites.

B. Solute-vacancy complexes

Figure 2 illustrates the various possible solute-vacancy
complexes when the vacancy occupies the lattice sites or
metastable states around a solute atom, up to the seventh
neighbor shell in HCP Zr. The lattice sites and their multi-
plicities (in parentheses) in increasing order of distance from
the solute for an ideal HCP lattice are: 1p (6), 1b (6), 2p (6),
3c (2), 4p (12), 4b (3) and 4b (3), 5p (12), 6b (6), and 7p (12).
Note that the sites 4b and 4b are at the same distance in the
unrelaxed geometry but they are symmetrically nonequivalent
and relax independently when a solute is introduced. There is
a metastable state between any two neighboring lattice sites on
the same basal plane, except between the solute (S) and 1b. We
label these metastable states using the labels of the neighbor-
ing lattice sites; for example, the metastable state connecting
2p and 4p is 2p4p. There are two sets of symmetrically
nonequivalent metastable states located along [011̄0] and
[1̄100], which connect the 1b sites, and we label these states
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FIG. 3. Binding energies of the solute-vacancy complexes shown in Fig. 2 calculated using Eq. (12) for Sn, Cr, Fe, Be, Al, and Ni. The
black bars and the black horizontal scale measure the binding energies between a solute and a vacancy at lattice sites, while the red bars and red
scale are for metastable states. We shift the red scale by 0.52 eV, which is the difference between the energy of a vacancy in bulk metastable
configuration and the energy of a vacancy in the ground-state configuration. The red cross indicates if there is no metastable state. For all
solutes, 3c has the largest repulsive binding energy among the lattice sites. The metastable state 1b1b for Fe, Be, and Ni has lower binding
energies than the lattice sites.
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TABLE I. Attempt frequencies (νxp and νxb) in THz and migra-
tion barriers (Em

xp and Em
xb) in eV computed from DFT for solute-

vacancy pyramidal and basal exchange jumps. The reference energy
is the corresponding site energy, that is, 1b for a basal exchange and
1p for a pyramidal exchange.

Pyramidal Basal

Solute νxp Em
xp νxb Em

xb

Sn 3.409 0.992 3.300 0.764
Cr 3.116 0.751 4.507 0.680
Fe 3.664 0.637 3.852 0.632
Be 0.835 0.963 0.916 0.834
Al 0.989 1.057 1.012 0.905
Ni 4.275 0.712 11.247 0.657

as lb1b and 1b1b respectively. The same distinction applies to
the metastable states 5p5p and 5p5p connecting the 5p sites as
well. Note that these sites are equivalent for vacancy migration
in bulk but the presence of both a solute and a vacancy lowers
the symmetry of the system, thus introducing nonequivalent
configurations. Previous computational studies of diffusion in
HCP systems have neglected the difference between lb1b and
1b1b jumps [29,31–34], which was first shown by Agarwal
et al. [15] and here again we show that these jumps have
significantly different characteristics. The metastable states
and their multiplicities (in parentheses) in increasing order of
distance from the solute are 1p1p (6), 1b1b (3) and 1b1b (3),
1p2p (12), 1p4p (12), 1b4b (6) and 1b4b (6), 2p4p (12), 1b6b
(6), 4p4p (6), 3c5p (12), 2p7p (12), 4b6b (6) and 4b6b (6),
5p5p (6) and 5p5p (6), and 4p7p (12). A complete description
of the mapping between our simplified state labels and the
mathematical description of states is presented in the Table V.

Figure 3 shows the binding energies computed using
Eq. (12) for all the complex configurations shown in Fig. 2,
indicating that the solute-vacancy interactions are non-
negligible up to the fifth neighbor shell. Every solute exhibits
cases where there are no metastable states (marked by a
red ×), most notable for Sn where there are no metastable
states between the nearest neighbors and next nearest neigh-
bors, except for 1b1b and 1b1b. We find attractive binding
with the vacancy in the first and second shells for Sn, Fe, and
Ni. Tin shows repulsive binding with the vacancy at 1b and
2p, while Cr, Be, and Al have repulsive binding energies at
all lattice sites. The site 3c has the largest repulsive binding
among lattice sites for all solutes. In addition, the metastable
complex 1b1b for Fe, Be, and Ni have the strongest binding,
which makes them the lowest energy configurations for these
systems, and we expect strong correlations between these
solutes and the vacancy. The geometries of these low-energy
1b1b complexes are particularly unusual as the moving Zr
atom displaces close to the solute due to the attractive binding
(cf., Fig. 18). The binding energies at the sites 6b and 7p
become negligible for all solutes, so we consider these outside
the interaction range and set their binding energies to zero in
our calculations.

Table I shows that the migration barriers for pyramidal
exchange are considerably larger than basal exchange for all
solutes except Fe, where they are comparable. Therefore, we

FIG. 4. The side view (top) and the (0001) plane projection
(bottom) of the HCP Zr lattice showing the interstitial sites for
Cr, Fe, Be, and Ni solutes. The Zr matrix atoms are in light gray,
octahedral (o) sites are in red, the crowdion sites (c) are in yellow, the
distorted face center sites (fc′) are in light green, and the off-centered
octahedral sites (o′) are in dark orange. In the two-atom unit cell of
HCP Zr, there are two o, six c, six fc′, and twelve o′ sites. The set
of o′ sites are displaced away from the o site at symmetric positions.
The Wyckoff letters for the sites o, c, fc′, and o′ corresponding to the
P63/mmc group are a, g, h, and k, respectively.

expect isotropic diffusion for Fe and anisotropic behavior for
all other solutes. Moreover, the barriers are consistently higher
than the bulk vacancy diffusion barriers, which suggests that
the exchange barrier is the rate-limiting step for diffusion and
we expect the activation barriers for diffusion of these solutes
to be higher than self-diffusion in Zr. Iron is the only exception
where the pyramidal exchange is faster than the bulk diffusion
barrier. We have also listed the corresponding attempt fre-
quencies, and these values show the largest deviations from
the bulk attempt frequencies for all solutes, as compared to
other vacancy jumps, which are away from the solute. Our
results for Sn, Cr, and Al agree well with those reported in a
recent study on diffusion in Zr [29].

C. Interstitial positions

Figure 4 illustrates the relative positions of all the stable
interstitial sites that we find for the solutes Cr, Fe, Be, and Ni
in the HCP Zr lattice. There are six off-centered octahedral o′
sites located around the octahedral o site. Similarly, there are
three distorted face-center fc′ sites located in the basal plane
between the two o sites. We find that the o and o′ sites are
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FIG. 5. The networks of interstitial sites for Cr, Fe, Be, and Ni solutes in HCP Zr. The first two networks in the top row contribute only to
basal diffusion while the next two contribute to both c axis and basal diffusion. The three networks in the bottom row contribute only to c-axis
diffusion. In the cases where a jump starts and ends at the same type of site (such as o′-o′), we distinguish the diffusive jump as (b) for a basal
jump and (c) for a c-axis jump.

never simultaneously stable for the same solute. Chromium
is stable at o (lowest energy), fc′, and c. Iron is stable at
o′ (lowest energy), c, and fc′. We previously reported that
Be occupies an octahedral interstitial site in Zr [18] but find
that upon displacement, the octahedral site relaxes to an o′
geometry. Ni is stable at o′(lowest energy) and fc′. In addition,
the lowest energy interstitial sites for Cr, Be, and Ni are
higher in energy relative to the substitutional sites by 0.80,
0.63, and 0.23 eV, respectively. Iron prefers the o′ site to the
substitutional site by 0.21 eV. Note that the lowest energy sub-
stitutional Cr and Fe configurations have a nonzero magnetic
moment of 3.82 μB and 3.62 μB, respectively. Further, we find
that non-spin-polarized calculations increase the energy of the
substitutional Cr and Fe configurations by 0.77 and 0.57 eV,
respectively. However, the magnetic moment of all interstitial
sites is zero even with spin-polarized calculations.

The seven possible diffusion networks in Fig. 5, formed
from the stable interstitial sites in Fig. 4, have different
contributions to diffusion in the basal plane and along the c
axis. The first network between o sites and c sites contributes
to the basal diffusion of Cr. The second network has two con-
nections: o′-o′ and o′-c, where the former leads to transitions
within the set of o′ sites in the same unit cell and the latter
contributes to the basal diffusion of Fe. The third network also
has two connections, fc′-fc′ and fc′-c, where the former leads
to transitions within the set of fc′ sites in the same unit cell and
the latter contributes to both basal and c-axis diffusion of Fe.
The fourth network has three connections between the o′ sites:
transitions within the same unit cell, the basal connection (b),
and the c-axis connection (c). The basal connection between

o′ sites contributes to the basal diffusion of Be and Ni, while
the c-axis connection contributes to the c-axis diffusion of Be.
The fifth network between c sites contributes to the c-axis
diffusion of Cr. The sixth network between o sites and fc′

sites also contributes to the c-axis diffusion of Cr. The seventh
network has three connections: o′-o′, o′-fc′, and fc′-fc′, where
the o′-fc′ connection contributes to the c axis diffusion of Fe
and Ni.

Figure 6 depicts the energies of all stable interstitial sites
and transition states for Cr, Fe, Be and Ni solutes in Zr, which
determines the dominant diffusion pathways. For Cr, the o-c
and o-fc′ are the dominant contributions to basal and c-axis
diffusion, respectively, with the c-axis jump being faster. For
Fe, the o′-o′ and fc′-fc′ jumps are nondiffusive while the
o′-c and o′-fc′ jumps which have similar migration barriers
contribute to basal and c-axis diffusion. Beryllium is only
stable at o′ and both basal (b) and c-axis (c) diffusive jumps
are between the o′ sites, with the basal jump being faster. For
Ni, the o′-o′ (b) and o′-fc′ jumps contribute to the basal and
c-axis diffusion, respectively, and we expect faster diffusion
along the c axis because of the lower migration barrier.

D. Diffusion coefficients and drag ratios

Figure 7 shows that the vacancy-meditated diffusion co-
efficients of Sn and Al are comparable to the experimen-
tal data [45,74], and there is good agreement between GF
calculations and KMC results. Since the two methods give
almost identical results, we compute the results for Al and Ni
using only the GF method, which is faster and more accurate.
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FIG. 6. Relative energies of the stable interstitial sites and the
transition states for Cr, Fe, Be, and Ni in Zr. The thick bold lines indi-
cate the relative energy levels of the interstitial sites which are labeled
below with the corresponding energy values. The thin lines starting
from and ending at a site represent transitions between these sites.
The values associated with these thin lines are the corresponding
transition-state energies. We mark the diffusive transitions between
same type of sites as (b) for a basal jump and (c) for a c-axis jump.

The diffusivity is nearly isotropic for all solutes except Sn,
which diffuses slightly faster in the basal plane than along
the c axis. As there is limited experimental data available for
comparison, it is difficult to comment on the disagreement
between theory and experiments. Analysis of the finite-size
effects of the simulations, presented in Appendix A 2, shows
that this is insufficient to explain this discrepancy; we found
larger cells increase in the activation barrier, which in turn
will cause larger disagreements with the experiments. Possible
explanations for the disagreement could be faster diffusion in
polycrystalline samples or a nonequilibrium vacancy concen-
tration. The vacancy-mediated diffusion coefficients of Cr, Fe,
Be, and Ni are 105 to 108 orders lower than the experimental
data (not shown), which reinforces the idea that theses solute
diffuse via the interstitial mechanism at equilibrium.

Table II shows that the activation barriers and prefactors
from Arrhenius fits of diffusion coefficients computed using
the thirteen-frequency models agree well with the GF ap-
proach, while those from the eight-frequency model show
large deviations for all solutes except for Al. For the eight-
and thirteen-frequency models, we assume that the basal tran-
sitions are between lattice sites only and use the larger of two
transition-state energies. Even with these approximations, the
thirteen-frequency model predicts activation barriers within
20 meV of GF method for both basal and c-axis diffusion

of all solutes. We attribute these results to the fact that the
unique transition state energies in the GF approach beyond
the scope of thirteen-frequency model are comparable to the
bulk transition state energies, as evident from LIMB com-
parisons presented in Appendix A 1. Therefore, the impact
on diffusivity predictions are negligible. However, we see
significant deviations between the eight-frequency and GF
results. The crucial difference between eight- and thirteen-
frequency models are the escape jumps out of the 1p and
1b configurations. The thirteen-frequency model assumes two
unique escape jumps (basal and pyramidal) each from 1b
and 1p sites, while the eight-frequency model assumes one
unique escape jump each from 1b and 1p. We choose the
escape rates which take the vacancy farthest away from the
solute. For the eight-frequency model, these rates correspond
to the 1b-6b and 1p-5p jumps. For the thirteen-frequency
model, these jumps are 1b-6b, 1b-4p, 1p-4p, and 1p-5p. The
latter combination creates an energy landscape which closely
approximates the transition pathways when considering the
full range of interactions. However, the limited choices in
the eight-frequency model severely restrict the diffusion path-
ways, causing deviations in the activation barrier predictions.

Figure 8 shows that the basal and c-axis drag ratios of
Cr, Fe, Be, and Ni are positive while those of Sn and Al
are negative, and there is good agreement between the GF
and KMC results. Similar to the diffusion coefficients, we
compute the results for Al and Ni using only the GF method. A
positive drag ratio depends on two factors: (1) attractive bind-
ing energies and (2) low migration barriers for the vacancy to
reorient around the solute compared to dissociation barriers,
which increases the probability that the solute and vacancy
diffuse as a complex. We attribute the negative drag ratios
of Sn and Al to the repulsive binding energies, which cause
vacancies to form away from the solute. The reorientation
jump barriers for Sn and Al are comparable to the dissociation
jump barriers and do not contribute to drag. For Cr, Fe, Be, and
Ni, even though most of the binding energies are repulsive, a
crucial difference is the low transition-state energies of jumps
between the bound states near the solute compared to jumps in
the farther neighbor shells. As a result, if the vacancy migrates
toward the solute atom, it undergoes repeated transitions
within the thermodynamic range of solute. Therefore, the
solute and vacancy diffuse as a complex instead of the vacancy
escaping away from the thermodynamic range. For example, a
common factor for these four solutes is the low barrier to jump
from 1b to 1b1b: 0.250 eV for Cr, 0.115 eV for Fe, 0.129 eV
for Be, and 0.116 eV for Ni. These barriers are much smaller
than the escape barriers, which are close to 0.5 eV. Therefore,
Cr, Fe, Be, and Ni can exhibit drag via vacancy fluxes in the
HCP Zr matrix.

Figure 9 shows that the drag ratios change significantly
depending on the model used to approximate the energy land-
scape, even though the changes in diffusion coefficients may
be negligible. We find that replacing the double-humped bar-
rier with a single transition that uses the maximum transition-
state energy closely approximates the results with all states
included. The largest changes are for the basal drag ratios of
Sn, with differences between 0.18 to 0.25 for 600 K to 1235 K.
Substituting the metastable state energy for transition states
results in increased deviations, most notable for Sn, Be, and
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FIG. 7. Diffusion coefficients and activation barriers for vacancy-mediated transport of the solutes Sn, Cr, Fe, Be, Al, and Ni in Zr along the
basal plane (black) and parallel to the c axis (red). We show the activation barriers as sum of two values, where the first value is the contribution
from the vacancy-formation energy and the second value includes contributions from the binding energy and the dominant migration barriers
in the diffusion calculations. For Sn, Cr, Fe, and Be, we compare the diffusivities computed using GF and KMC, and the results are in good
agreement. We also plot the available experimental data for Sn [45] and Al [74]. The diffusivity is nearly isotropic for all solutes except Sn.

Al. In particular, the c-axis drag ratio of Be becomes negative
above 1200 K, thus predicting a crossover temperature. The
largest observable change is in the basal drag ratio of Al
with differences between 1.23 to 0.16 from 600 K to 1235 K.
However, there is no qualitative change in the drag behavior of
Al as the values remain negative throughout the temperature
range. The eight- and thirteen-frequency models, on the other
hand, lead to both qualitative and quantitative changes in
drag predictions for some of the solutes. For example, the
thirteen-frequency model predicts a crossover temperature for
basal drag of Sn at 700 K, c-axis drag of Cr at 1120 K, c-axis
drag of Be at 990 K, and basal drag of Al at 1170 K. Similarly,
the eight-frequency model predicts a crossover temperature
for c-axis drag of Cr at 1100 K, c-axis drag of Be at 1080 K,
and basal drag of Al at 1060 K. We expect these results to
change if different combinations of escape rates are used in
the eight- and thirteen-frequency models. In addition, these
models also treat the two different transitions between 1b
sites as equivalent (1b-1b1b and 1b-1b1b). A recent study
[15] discusses how this approximation influences drag ratios,
depending on the relative magnitudes of 1b-1p, 1p-1p, 1b-1b,
and 1b-1b migration barriers. None of the approximations
have a significant impact on the drag behavior of Fe and Ni—
which suggests that even the transition rates accounted for by
eight-frequency model are sufficient to capture the correlation
between solute and vacancy fluxes. Based on these results,
we conclude that accurate prediction of drag ratios potentially
requires treating all symmetry unique states and transitions
up to the sixth neighbor shell. Replacing the double-humped
barrier with a direct transition using the larger energy is a
reasonable approximation for predicting drag. However, it
is worth pointing out that efficiently obtaining the correct
DFT transition state energy for any basal jump first involves

relaxing the metastable state, followed by single-image CNEB
calculations between the metastable configurations and the
lattice sites. At the very least, computing the metastable state
energy is useful because the migration barriers may be ap-
proximated using LIMB. As demonstrated in Appendix A 1,
linear interpolation works better between a lattice site and the
metastable state.

Figure 10 shows that the calculated interstitial solute dif-
fusion coefficients for Cr, Be, and Ni agree with the experi-
mental measurements within one order of magnitude, while

TABLE II. Activation barriers (E a) and prefactors (ν) from
Arrhenius fits of vacancy-mediated diffusion coefficients (D =
νe−Ea/kBT ). The barriers are in eV and the prefactors are 10−6 m2/s.
The activation barrier predictions from full treatment and the
thirteen-frequency model are within 20 meV. The eight-frequency
model shows larger deviations for all solutes except Al.

Full 13 frequency 8 frequency

Solute direction ν E a ν E a ν E a

Sn Basal 0.531 2.784 0.603 2.792 0.607 2.922
c axis 0.633 2.924 0.704 2.933 0.707 3.065

Cr Basal 0.770 2.744 0.859 2.754 0.866 2.830
c axis 0.567 2.764 0.625 2.772 0.625 2.824

Fe Basal 1.318 2.596 1.554 2.606 1.430 2.764
c axis 0.638 2.582 0.729 2.591 0.729 2.711

Be Basal 0.106 2.948 0.113 2.955 0.113 2.994
c axis 0.100 2.986 0.107 2.994 0.107 3.037

Al Basal 0.186 3.070 0.202 3.067 0.202 3.067
c axis 0.187 3.134 0.202 3.131 0.202 3.131

Ni Basal 2.048 2.604 1.997 2.603 1.987 2.806
c axis 0.886 2.611 0.867 2.609 0.867 2.785
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FIG. 10. The calculated interstitial diffusivities compared to the experimental data for the solutes Cr [40,41], Fe [42,43], Be [75], and Ni
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experimental data. The VASP and CASTEP calculations for Fe are in good agreement but the calculated diffusion coefficients are two orders of
magnitude higher than the experimental data.

those of Fe are within two orders of magnitude. We correctly
predict the anisotropy of diffusion for Cr. For Fe, we also
present the results obtained by repeating the calculations
using a larger cell (150 atoms) and a different DFT code
(CASTEP) (see Appendix A 2 for details), showing good agree-
ment, which indicates negligible effects due to differences in
DFT codes, pseudopotentials, and supercell sizes. However,
the calculations predict nearly isotropic diffusivities for Fe,
while experimental results show faster diffusion along the c
axis. These disagreements between theoretical calculations
and experimental measurements suggest that the simplistic
mechanism of a single solute atom jumping through the
interstitial network does not accurately describe the diffusion
of Fe in Zr, even for dilute concentrations. Moreover, the
experimental results show two distinct slopes above and below
900 K, which suggests different processes maybe dominating.
Burr et al. [51] used DFT calculations to demonstrate that
Fe dumbbells in Zr have lower formation energies than iso-
lated point defects, and that even dilute concentrations of Fe
could exhibit clustering tendencies. However, more work is
necessary to determine the effect of Fe dumbbells and clusters
on the transport mechanisms. To our knowledge, there are no
single crystal diffusivity measurements for Be diffusion in Zr.

For Ni, we found single-crystal diffusivity measurements at
one temperature only [44]. Therefore, it is difficult to make
valid comparisons with experiments regarding the diffusion
anisotropy of Be and Ni in Zr. Lastly, we expect the val-
ues of the activation barriers to be similar to the dominant
migration barriers. However, we note that only Be and Ni
show this behavior but the activation barriers for Cr and Fe
are smaller than the dominant migration barriers. The reason
for this anomaly is that at high temperatures, the probability
of occupying the higher energy sites for these solutes is
comparable to that of the ground state, because the site energy
differences are similar to kBT . As a result, the average energy
of the interstitial site is higher than the ground-state energy,
and consequently, the activation barriers are smaller than the
dominant migration barriers.

V. VACANCY SUPERSATURATION

At thermal equilibrium, both vacancy-mediated and inter-
stitial mechanisms contribute to the total diffusivity DS of the
solute S. The total diffusivity DS is then a weighted sum of the
interstitial diffusion coefficient DSi and the vacancy-mediated
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diffusion coefficient DSZr

DS = fSi DSi + fSZr DSZr . (19)

Note that vacancy-mediated diffusion requires the vacancies
to exchange with the solute atoms; therefore, the term DSZr

is proportional to the vacancy concentration cV. The terms
fSi and fSZr are the fractional concentrations of the solute as
interstitial and substitutional defects

fSi = cSi

cSi + cSZr

= cSi

cS
,

(20)
fSZr = cSZr

cSi + cSZr

= cSZr

cS
,

where cSi is the interstitial solute concentration and cSZr is the
substitutional solute concentration.

The solute atoms occupying the interstitial sites combine
with the vacancies to form substitutional solutes via the Frank-
Turnbull [76] mechanism. As a result, the concentration of
solute at interstitial and substitutional sites can be affected by
vacancies through the reaction

Si + VZr � SZr. (21)

If the solutes and vacancies are in local equilibrium through
this reaction, then we can apply the law of mass action to find

aSi aV = kaSZr (22)

for a temperature-dependent reaction constant k and activities
aSi , aSZr , and aV of the interstitial solute, substitutional solute,
and vacancy. For dilute solute and vacancy concentrations,
we can rewrite Eq. (22) in terms of concentrations of the
interstitial solute cSi , vacancy cV, and substitutional solute cSZr

cSi cV = ceq
Si

ceq
V

ceq
SZr

cSZr , (23)

where ceq
V , ceq

Si
, and ceq

SZr
are the equilibrium vacancy, inter-

stitial, and substitutional solute concentrations. Rearranging
Eq. (23) using Eq. (20) gives

fSi

fSZr

= ceq
V

cV

(
f eq
Si

f eq
SZr

)
, (24)

where the term in parentheses depends only on temperature.
We plot the fractional concentrations in Fig. 11 for the four
solutes at equilibrium, which shows that Cr and Be prefer
substitutional sites and Fe prefers interstitial sites at equi-
librium throughout the temperature range. Nickel starts out
at substitutional sites but there is an appreciable increase in
interstitial fraction at higher temperatures.

Radiation damage or quenching leads to supersaturated
vacancy and self-interstitial concentrations in the Zr matrix, as
evidenced by the formation of 〈a〉 and 〈c〉 loops in irradiated
Zr samples [54–57]. The 〈a〉 loops develop at lower fluences
and are formed by both interstitials and vacancies, while the
〈c〉 loops develop at higher fluences and are formed by vacan-
cies only. Moreover, interstitials diffuse much faster than the
vacancies for a range of temperatures and annihilate at sinks
while the vacancies accumulate. Therefore, we expect higher
vacancy concentrations at longer lifetimes of zirconium al-
loys. A nonequilibrium vacancy concentration retained in the
matrix can change the equilibrium between the interstitial

600 800 12001000
T K

f S

Be

Cr CASTEP
f eq
SZr

f eq
SI

Fe VASP
Fe CASTEP

Ni

eq

FIG. 11. The fractional substitutional and interstitial solute con-
centration of Cr, Fe, Be, and Ni at equilibrium as a function of
temperature. Solid lines correspond to data from VASP calculations
and dotted lines correspond to data from CASTEP calculations.

solutes and substitutional solutes by decreasing the fraction
of interstitials. If the vacancy concentration remains dilute,
then the fractional solute concentrations under nonequilibrium
vacancy concentrations

fSi = f eq
Si

ceq
V

f eq
SZr

cV + f eq
Si

ceq
V

,

fSZr = f eq
SZr

cV

f eq
SZr

cV + f eq
Si

ceq
V

. (25)

The contribution from interstitial diffusion fSi DSi scales with
c−1

V , while the contribution from vacancy-mediated diffusion
fSZr DSZr scales with cV. Therefore, excess vacancies mod-
ify the contributions from different diffusion mechanisms
and a sufficiently high vacancy concentration may cause the
vacancy-mediated diffusion mechanism to dominate even if
the interstitial diffusion mechanism dominates at equilibrium.

Figure 12 shows nonmonotonic behavior of diffusion with
increasing vacancy concentration connected to changes in
the dominant diffusion mechanism. The excess vacancies
decrease the concentration of solute at interstitial sites while
increasing the substitutional sites. As a result, the contribution
from interstitial diffusion decreases while the contribution
from vacancy-mediated diffusion increases. Since the inter-
stitial mechanism dominates at equilibrium, the diffusion
decreases until both mechanisms contribute equally. Fur-
ther increases in vacancy concentration causes the vacancy-
mediated mechanism to dominate and the diffusion coefficient
increases. The slowdown in interstitial diffusion due to ex-
cess vacancies may provide an alternate explanation for the
discrepancy between theoretical predictions and experimental
measurements for Fe diffusion in Zr, as high vacancy concen-
tration would contribute to slower diffusion.

VI. CONCLUSION

We extend a recently developed Green’s function method-
ology to accurately model the vacancy metastable states
observed in Zr and calculate transport coefficients for
vacancy-mediated diffusion and interstitial in the dilute limit
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V
V

Interstitial

Interstitial

Interstitial

Interstitial

Vacancy mediated Vacancy mediated

Vacancy mediated Vacancy mediated

FIG. 12. Diffusivity of Cr, Fe, Be, and Ni in m2/s as a function of temperature and the ratio cV/ceq
V of supersaturated vacancy concentration

to equilibrium vacancy concentration. The dashed line separates the upper region where the vacancy-mediated mechanism dominates from the
lower region where the interstitial mechanism dominates. The diffusion coefficients are the sum of interstitial diffusion and vacancy-mediated
diffusion mechanisms as a function of cV/ceq

V , using Eqs. (19) and (25).

of the solutes Sn, Cr, Fe, Be, Al, and Zr in the HCP Zr
matrix. We perform DFT calculations to determine the set
of unique solute-vacancy complexes and transition rates in
Zr which inform both the GF methodology and the KMC
simulations. The excellent agreement between the calculated
diffusivities and the experimental measurements validates our
methodology and results. The calculated drag ratios for Cr,
Fe, Be, and Ni are positive, which suggests that vacancy
fluxes at nonequilibrium concentrations can drag these solutes
toward sinks such as grain boundaries, dislocation loops, and
surfaces. We also compute the transport coefficients using
eight- and thirteen-frequency models, and our results indicate
that accurate treatment of energies and transition rates up to
the sixth neighbor shell is essential to correctly predict the

drag ratios for solutes such as Sn, Cr, Be, and Al. The transport
coefficients calculated in this work can inform higher length-
scale models which study microstructural changes such as
solute segregation, growth of precipitates, etc.

For the first time, we demonstrate the effect of irradiation
on the atomic scale diffusion mechanisms by combining
the interstitial diffusivities computed in this study and the
vacancy-mediated diffusivities. We predict that a nonequilib-
rium vacancy concentration can slow down interstitial diffu-
sion and accelerate vacancy-mediated diffusion and that a suf-
ficiently high radiation-induced vacancy concentration could
change the dominant diffusion mechanism. The combined
results of interstitial and vacancy-mediated diffusion can
also inform higher length-scale models, which allow for the
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modeling of solute redistribution behavior under irradiation.
The change in transport mechanisms at higher vacancy con-
centrations reinforces the importance of performing atomic-
scale transport studies, as experimental diffusivity measure-
ments carried out at equilibrium are insufficient to account for
the effects of irradiation.

The excess vacancies not only affect the transport mecha-
nisms in systems under irradiation but also have consequences
for diffusion in any system containing nonequilibrium point
defect concentration. We demonstrate that the excess vacan-
cies strongly influence transport if the solute prefers substi-
tutional sites. For such solutes, it is imperative to maintain
a near-equilibrium vacancy concentration during diffusion
experiments; otherwise, the measurements will overpredict
diffusivity if the vacancy-mediated mechanism dominates or
underpredict diffusivity if the interstitial mechanism domi-
nates. Moreover, even the excess vacancies retained during
quenching can significantly influence diffusion, particularly
in metals with low vacancy-formation energies.

All of the computational data are available in a publicly
accessible database [77].
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APPENDIX A: DENSITY-FUNCTIONAL THEORY
COMPARISONS

1. LIMB predictions of transition state energies

Figure 13 shows poor agreement between LIMB predic-
tions using Eq. (17) and NEB calculations of the pyramidal
transition-state energies for the vacancy jumps closer to the
solute, but the agreement improves for jumps which are fur-

1p-1b
1b-2p
1b-4p
1p-3c
1p-5p
2p-4b

0.2 0 0.2 0.4 0.6

Sn
Cr
Fe
Be
Al
Ni

eVE T, LIMB E T, DFT

FIG. 13. Difference between the transition-state energies from
LIMB predictions using Eq. (17) and NEB calculations of pyramidal
vacancy jumps. The dotted lines correspond to ±kBT at T = 600 K.
The LIMB predictions disagree with NEB for the jumps 1p-1b and
1b-2p, but the agreement improves for the jumps to farther neighbors.

1p-1p1p

1b-1b1b
1b-1b1b
1p-1p2p
2p-1p2p
1p-1p4p
4p-1p4p

1b-1b4b
4b-1b4b
1b-1b4b
4b-1b4b

1b-1b6b
6b-1b6b

0.2 0 0.20.4 0.4

Sn
Cr
Fe
Be
Al
Ni

eVE T, LIMB ET, DFT

FIG. 14. Differences between the transition-state energies from
LIMB predictions using Eq. (18) and NEB calculations for basal
vacancy jumps. The dotted lines correspond to ±kBT at T = 600 K.
The LIMB predictions are generally in good agreement with NEB
except for the jumps between first nearest neighbors, and a few
outliers such as the jumps out of 1p2p for Ni. The latter case can
be attributed to the low binding energy of Ni with vacancy at the
1p2p metastable state.

ther out. Since we are interested in temperatures above 600 K,
we set our error tolerance to ±kBT at T = 600 K, marked
by the dotted lines on the figure. For Sn, LIMB agrees well
with DFT for all the jumps. In cases of Cr, Be, and Al, LIMB
disagrees with DFT for 1p-1b and 1b-2p but the difference
is within tolerance for further jumps. In cases of Fe and Ni,
LIMB disagrees with DFT for almost all jumps out of 1b
and 1p but agrees within tolerance for the 2p-4b jump. We
use DFT energies for the transitions shown in Fig. 13 but use
LIMB to approximate the further transitions such as 4p-4b,
2p-5p, 4p-5p, etc. We use the attempt frequencies of the bulk
pyramidal jump for the interpolated transitions in the LIMB
approximation.

Figure 14 shows an overall good agreement between LIMB
predictions using Eq. (18) and NEB calculations of the
transition-state energies for basal jumps between lattice sites
and metastable states. There are a few outliers such as jumps
between the first nearest neighbors for all the solutes and the
jumps out of 1p2p for Ni. For Sn, the two jumps out of 1b
show good agreement and the rest of the metastable states con-
necting 1b and 1p to the next nearest neighbors are unstable.
For Cr, LIMB disagrees with DFT for the jumps out of 1p1p,
1b1b, 1p2p, and 1p4p, but the agreement improves for 1b4b.
Beyond 1p1p, 1b1b, and 1b1b, the agreement is good for Fe,
Be, and Al. For Ni, the disagreement for jumps out of 1p2p
is high and we attribute this to the large attractive binding
energy of the 1p2p complex and its unusual geometry where
the moving Zr atom displaces close to the solute. Similar to
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0.2 0 0.2 0.4

Sn
Cr
Fe
Be
Al
Ni

eVE T, LIMB E T, DFT

FIG. 15. Difference between the transition-state energies from
LIMB predictions using Eq. (17) and NEB calculations of basal
jumps where there are no metastable states. The dotted lines cor-
respond to ±kBT at T = 600 K. For such jumps, LIMB predictions
generally disagree with NEB and we use the NEB energies as input
to our diffusion model.

the case of pyramidal jumps, we use DFT energies for the
transitions shown in Fig. 14 but use LIMB to approximate
further basal transitions such as 2p-2p4p, 4p-2p4p, 4p-4p4p,
etc. We use the attempt frequencies of the bulk basal jump for
the interpolated transitions.

Figure 15 shows that LIMB predictions using Eq. (17) and
NEB calculations generally disagree for the transition-state
energies of basal jumps where metastable states are unstable.
Such cases have no bulk analog, so we use Eq. (17) to estimate
the transition-state energies by making the following choices:
(1) We set r = 0.5 (where the transition state would be if
the bulk metastable state was unstable), and (2) we use the
energy of the basal transition state ET, DFT

0iV−0iVyV jV
(V, ZrM−1) for

ET, DFT
0iV−x′

Vi′V
(V, ZrM−1). However, our choice of linear interpola-

tion is insufficient to capture the changes induced by solutes
to the energy landscape, and most of the LIMB predictions
differ from NEB by more than the error threshold of ±kBT at
T = 600 K. Therefore, we use NEB to compute the transition
state energies of all jumps where there are no metastable states
and use the computed values in our diffusion calculations.

TABLE III. Comparison of vacancy formation energies and
migration barriers computed from VASP and CASTEP. The values
of the migration barriers are relative to the ground-state vacancy
configuration. The change in the vacancy formation energies and the
basal vacancy jump barrier are less than 25 meV while the change
in the pyramidal jump barrier is 68 meV between the 96-atom and
288-atom CASTEP calculations.

VASP-96 CASTEP-96 CASTEP-150 CASTEP-288

Formation energy (eV)
Ground state 2.002 2.048 2.061 2.025
Metastable state 2.517 2.609 2.597
Migration barrier (eV)
Basal 0.553 0.598 0.591 0.609
Pyramidal 0.631 0.682 0.729 0.750

1p

1b

2p

3c

4p

4b

4b

5p

6b

7p

0 0.200.100.10
0.52 0.62 0.720.42

Sn

Binding energy eV
Binding energy +0.52 eV 

96-VASP
96-CASTEP
150-CASTEP
288-CASTEP

1b1b

1b1b

FIG. 16. Comparison of binding energies for Sn-vacancy com-
plexes using different DFT codes and supercell sizes. The gray
shaded bars and the black horizontal scale measure the binding
energies of lattice sites, while the red shaded bars and the red scale
are for metastable states. We shift the red scale by 0.52 eV, which
is the energy of vacancy in bulk metastable configuration relative to
the ground-state configuration of the 96-atom VASP calculation. The
results of the 96-atom supercell calculations from VASP and CASTEP

are in good agreement. The intermediate state 1b1b is unstable in the
150-atom and 288-atoms CASTEP calculations. The 1p and 2p sites
show the largest differences in the binding energies across supercell
sizes: 65 and 62 meV, respectively. The rest of the changes are less
than 25 meV.

2. Finite-size effects in the DFT calculations

We investigate the variability of results with different DFT
codes, pseudopotentials, and supercell sizes by performing
calculations of Sn in Zr with the CASTEP code [79]. We choose
Sn for this parallel study for several reasons: We can eliminate
the effect of magnetism from our study; albeit limited, there
is some experimental data for Sn; and lastly, we expect Sn
to diffuse via the vacancy-mediated mechanism and serve as
validation for our methodology. We use the PBE functionals
with ultrasoft pseudopotentials [80] and a plane-wave energy
cutoff of 450 eV. We describe the Zr and Sn atoms with [Ar
3d10]4s2 4p6 4d2 5s2 and [Kr]4d10 5s2 5p2 valence electrons.
We kept all other simulation parameters the same as those re-
ported in Ref. [51]. We use supercells containing 96, 150, and
288 Zr atoms (4 × 4 × 3, 5 × 5 × 3, and 6 × 6 × 4 replicas
of the conventional unit cell). We keep the k-point density
as constant as possible across the three supercells, using
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TABLE IV. Comparison of vacancy migration barriers for Sn as
a substitutional solute in Zr, computed from VASP and CASTEP. The
values of the migration barriers are relative to the initial site. The
complex 1b1b is unstable in the 150-atom and 288-atom CASTEP

calculations and there is a direct 1b-1b transition. The basal and pyra-
midal exchange barriers show the largest changes between supercell
sizes. The changes in the basal vacancy jump barriers are less than
25 meV while the 1p-1b pyramidal jump barrier changes by 39 meV
between the 96-atom and 288-atom CASTEP calculations.

Migration barriers (eV)

Jump VASP-96 CASTEP-96 CASTEP-150 CASTEP-288

Basal exchange 0.764 0.815 0.807 0.898
Pyramidal exchange 0.992 1.040 1.070 1.156
1p-1b 0.667 0.717 0.778 0.756
1b-1b1b 0.461 0.502
1b-1b 0.507 0.516
1b-1b1b 0.593 0.655 0.671 0.645

Monkhorst-Pack [66] k-point meshes of 4 × 4 × 3, 3 × 3 × 3,
and 2 × 2 × 2 and a Methfessel-Paxton smearing width of
0.1 eV. Notably, we observe a significant difference in binding
energies with coarser k-point grids. The convergence criterion
for electronic minimization is an energy difference smaller
than 10−8 eV. We relax the atomic configurations at constant
volume with the memory-reduced BFGS algorithm [81,82]
until forces on atoms are less than 10 meV/Å. We use the
linear and quadratic synchronous transit method (LST/QST)
[83] within CASTEP to determine the transition states for
vacancy jumps. We did not enforce symmetry operations on
any of the CASTEP calculations.

Table III shows that the 96-atom VASP calculations and
the 96-, 150-, and 288-atom CASTEP calculations all predict
similar vacancy formation energies and bulk vacancy migra-
tion barriers in Zr. Our findings suggest that the existence
of a metastable state is independent of the DFT codes and
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FIG. 17. Comparison of 96-atom VASP and 150-atom CASTEP

calculations of site and transition state energies for interstitial Fe in
Zr. Both calculations predict the same set of stable interstitial sites
with o′ as the ground state. The relative energies of sites c and fc′

differ between the two calculations by 130 and 90 meV, respectively.
The transition-state energy between two calculations for the basal
diffusive barrier o′-c differs by 140 meV and the c-axis diffusive
barrier o′-fc′ differs by 30 meV.

TABLE V. Mapping between the mathematical description of a
solute vacancy complex state described in the methodology section
and the simplified labels illustrated in Fig. 2. There are two basis
sites in the HCP unit cell, a

12 [044̄3] and a
12 [404̄9], and we assume

that the solute occupies the first basis site. We list the multiplicity of
each state, a representative vector which describes the state relative to
the position of the solute in Miller Bravais notation, and the distance
between the solute and the vacancy (or the solute and the moving
Zr atom for metastable state). The full set of symmetry equivalent
vectors can be obtained using point group operations to transform the
representative vector. Note that the set of vectors changes when the
solute occupies the second basis site, and the space group operations
transform the first set of vectors into the second set.

Site Multiplicity Representative vector Distance (Å)

1p1p 6 a
6 [112̄3] 2.749

1b1b 3 a
6 [303̄0] 2.801

1b1b 3 a
6 [033̄0] 2.801

1p 6 a
6 [022̄3] 3.189

1b 6 a
6 [224̄0] 3.234

1p2p 12 a
6 [213̄3] 3.576

1p4p 12 a
6 [134̄3] 4.245

1b4b 6 a
6 [145̄0] 4.278

1b4b 6 a
6 [415̄0] 4.278

2p 6 a
6 [404̄3] 4.542

2p4p 12 a
6 [325̄3] 4.822

1b6b 6 a
6 [339̄0] 4.851

3c 2 a
6 [0006] 5.171

4p4p 6 a
6 [055̄3] 5.336

3c5p 12 a
6 [112̄6] 5.418

4p 12 a
6 [246̄3] 5.576

4b 6 a
6 [066̄0] 5.602

4b 6 a
6 [606̄0] 5.602

2p7p 12 a
6 [437̄3] 5.806

4b6b 6 a
6 [257̄0] 5.831

4b6b 6 a
6 [527̄0] 5.831

5p5p 6 a
6 [303̄6] 5.881

5p5p 6 a
6 [033̄6] 5.881

5p 12 a
6 [224̄6] 6.099

4p7p 12 a
6 [358̄3] 6.240

6b 6 a
6 [448̄0] 6.468

7p 12 a
6 [4 6 10 3] 7.212

potentials and it is not an artifact of the finite-size effect.
We attribute the energy differences between VASP and CASTEP

96-atom calculations to the Zr potential used for the latter
case, where the valence shell includes 4s and 4p electrons as
well. Subsequent changes in supercell size add only 25 meV
to vacancy formation energy and 11 meV to the basal migra-
tion barrier, which suggests that finite size does not have a
significant affect on these energies. However, there is an in-
crease of 68 meV between the 96-atom and 288-atom CASTEP

calculations in the pyramidal barrier, which suggests stronger
influence of finite-size effects on the barriers.

Figure 16 shows that finite-size effect lowers the Sn-
vacancy binding energies by less than 25 meV for most con-
figurations and Table IV shows that finite-size effects increase
the Sn-vacancy exchange barriers. Comparing the 96-atom
supercell calculations from VASP and CASTEP, we find the
largest changes in the configurations and transitions closest
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to the solute atom. The energy of the 1b1b configuration is
lower by 35 meV, while the basal and pyramidal exchange
barriers are higher by 49 and 48 meV, respectively. We note
similar changes in the energy of transition states for jumps
around the solute atom and we attribute these changes to the
use of potentials with more valence electrons in the CASTEP

calculations. Finite size strongly affects the binding energies
of 1p and 2p configurations, which show differences of 65
and 62 meV, respectively, between 96-atom and 288-atom
cells. We also find a metastable state between the basal
solute-vacancy exchange when simulated in the 288-atom
cell with CASTEP, which could modify the basal diffusion
coefficient. Going from a 96-atom to 150-atom cell, the cell
size increases in the basal plane but not along the c axis,
while going from 150 to 288 atoms, cell size increases in both
directions. For most configurations, the energy differences are
larger between 96-atom and 150-atom calculations compared
to 150-atom and 288-atom calculations, suggesting a larger
finite-size effect on configurations in the basal plane than
along the c axis. Among the migration barriers, the basal and
pyramidal exchange barriers show the largest changes in the
288-atom CASTEP calculation: 83 and 116 meV higher than
the corresponding 96-atom CASTEP calculations. However, the
changes are less significant going from 96-atom to 150-atom
calculations, suggesting stronger finite-size effects along the
c axis on exchange jumps. The high exchange barriers will
directly effect the diffusivities of Sn in Zr by increasing
the activation energy for diffusion. Further, we note that the
exchange barriers in all cases are larger than the vacancy
migration barriers around the solute atom, which indicates
that the solute-vacancy exchange is the rate-limiting step for
the diffusion of Sn. While we did not compute the full range
of transition-state energies using the larger cell sizes, the
negligible changes in the site energies away from the Sn atom
suggests that the far jumps will not be affected by larger
supercell sizes.

Figure 17 shows that the 96-atom VASP and 150-atom
CASTEP calculations predict the same set of sites and dominant
transitions for Fe interstitials in Zr, but the site and transition

Fe Fe 2.52.75

RelaxedUnrelaxed

FIG. 18. The figure illustrates the unrelaxed and relaxed geome-
tries of the 1b1b complex for the case of Fe in Zr. The neighbor cage
compresses on relaxation in order to increase the nearest neighbors
of Fe, which leads to stronger bonding. In particular, the distance
between the Fe atom and the moving Zr atom located halfway
between two 1b sites changes by 0.2 Å, while Fe displaces towards
the [01̄10] direction.

TABLE VI. Migration barriers (Em
α−β ) and attempt frequencies

(να−β ) for transitions. The barriers are in eV and the frequencies are
in THz.

Forward Reverse

Solute Jump να−β Em
α−β νβ−α Em

β−α

Cr o-fc′ 8.087 0.214 3.207 0.137
o-c 6.779 0.419 4.132 0.176
c-c 5.945 0.390 5.945 0.390

Fe (VASP) o′-o′ 5.055 0.032 5.055 0.032
o′-c 6.335 0.302 5.515 0.238

o′-fc′ 6.573 0.291 3.104 0.177
fc′-fc′ 2.968 0.034 2.968 0.034

Fe (CASTEP) o′-o′ 5.472 0.030 5.472 0.030
o′-c 6.498 0.443 5.721 0.252

o′-fc′ 6.953 0.344 3.199 0.134
c-fc′ 6.104 0.255 3.189 0.236

fc′-fc′ 2.969 0.319 2.969 0.319
Be o′-o′ 13.095 0.014 13.095 0.014

o′-o′(b) 13.217 0.615 13.217 0.615
o′-o′(c) 12.896 0.746 12.896 0.746

Ni o′-o′ 4.950 0.014 4.950 0.014
o′-o′(b) 5.931 0.493 5.931 0.493
o′-fc′ 4.485 0.399 2.757 0.009
fc′-fc′ 2.789 0.017 2.789 0.017

state energies are different. We extend the discussion pre-
sented in the first part of the study for Sn to Fe interstitials as
well. Once again we can eliminate the effect of magnetism as
interstitial configurations have a zero magnetic moment. Both
calculations predict o′ as the ground state, followed by c and
fc′. We previously noted that using potentials with more elec-
trons in the valence shell alone introduced energy differences
of approximately 50 meV in the transition states. We attribute
the additional differences to finite-size effects, such as the
o′-c barrier computed from CASTEP, which is 140 meV higher.
The CASTEP calculation predicts an additional diffusive jump
c-fc′; however, it has a relatively high barrier of 260 meV
which will not be dominant. Past DFT calculations of Fe in Zr
using different codes and simulation parameters have shown
significant variation in relative energies as well as ground
states [28,51,52]. We find that the calculations performed

TABLE VII. Activation barriers (E a) and prefactors (ν) from
Arrhenius fits of diffusion coefficients (D = νe−Ea/kBT ). The barriers
are in eV and the prefactors are 10−6 m2/s.

VASP CASTEP

Solute Direction ν E a ν E a

Cr Basal 0.072 1.16
c axis 0.114 0.96

Fe Basal 0.080 0.27 0.232 0.34
c axis 0.058 0.26 0.221 0.34

Be Basal 0.344 1.25
c axis 0.862 1.38

Ni Basal 0.566 0.72
c axis 0.140 0.63
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with lower k-point mesh size than 3 × 3 × 3 for a 5 × 5 × 3
cell size artificially stabilize Fe interstitial sites which are
unstable, and even predict a nonmagnetic ground state for
substitutional Fe which is higher in energy. Our results from
two well-converged sets of calculations agree with each other;
however, we expect the diffusion coefficients predicted using
the CASTEP data set to have marginally higher activation
barriers.

APPENDIX B: ADDITIONAL DATA

Table V contains the mapping representation of solute-
vacancy complexes, Fig. 18 shows the relaxed geometry of
the low-energy Fe solute-vacancy complex in Zr, Table VI
contains the migration barriers and attempt frequencies for
interstitial diffusion (cf., Fig. 6), while Table VII contains the
Arrhenius fits for interstitial diffusion.
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