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We have performed a computational screening of topological two-dimensional (2D) materials from the
Computational 2D Materials Database (C2DB) employing density functional theory. A full ab initio scheme
for calculating hybrid Wannier functions directly from the Kohn-Sham orbitals has been implemented and the
method was used to extract Z2 indices, Chern numbers, and mirror Chern numbers of 3331 2D systems including
both experimentally known and hypothetical 2D materials. We have found a total of 48 quantum spin Hall
insulators, seven quantum anomalous Hall insulators, and 21 crystalline topological insulators. Roughly 75%
are predicted to be dynamically stable and one-third was known prior to the screening. The most interesting of
the topological insulators are investigated in more detail. We show that the calculated topological indices of the
quantum anomalous Hall insulators are highly sensitive to the approximation used for the exchange-correlation
functional and reliable predictions of the topological properties of these materials thus require methods beyond
density functional theory. We also performed GW calculations, which yield a gap of 0.65 eV for the quantum spin
Hall insulator PdSe2 in the MoS2 crystal structure. This is significantly higher than any known 2D topological
insulator and three times larger than the Kohn-Sham gap.
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I. INTRODUCTION

The concept of topological band theory was initially de-
veloped in order to explain the quantum Hall effect, which
was observed experimentally in 1980 [1]. The measurements
were soon interpreted as a topological effect arising from the
phases of Bloch states winding around the boundary of the
magnetic Brillouin zone [2] and is thus closely related to
the k-space Berry phase [3]. In 1988, Haldane proposed a
model system that exhibited the quantum Hall effect with-
out an external magnetic field, but with intrinsically bro-
ken time-reversal symmetry [4]. Such materials are referred
to as quantum anomalous Hall insulators (QAHI) and the
first experimental demonstration of the effect was reported
in 2013—25 years after it was proposed. In the meantime,
Kane and Mele had showed that any time-reversal invariant
two-dimensional (2D) insulator can be characterized by a Z2

topological index ν. Time-reversal invariant materials with
nontrivial topology (ν = 1) are known as quantum spin Hall
insulators (QSHI) and the effect was observed immediately
after a theoretical prediction of the effect in HgTe quantum
wells [5,6]. Subsequently, the concepts have been generalized
to bulk 3D systems [7,8] and several well-known materials
have been shown to comprise examples of topological insu-
lators [9]. Most notably, Sb2Te3, Bi2Se3, and Bi2Te3 [10,11],
but also several 2D materials have been shown to exhibit a
nontrivial band topology. In fact, graphene comprised the first
theoretical prediction for a QSHI and while it is still believed
that graphene has a nontrivial band topology it is practically
impossible to verify experimentally due to the small band
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gap. However, several other 2D materials have been shown to
comprise examples of QSHIs. For example, the graphene-like
materials silicene [12,13], germanene [14,15], and stanene
[16] are all predicted to be QSHIs [17] and so are several of
the transition metal dichalcogenides in the 1T′ phase [18,19].

While the quantum spin Hall effect has been observed
in a wide range of both 2D and 3D materials, the quantum
anomalous Hall effect has proven more elusive and has so
far only been observed in a few Z2 topological insulators,
where time-reversal symmetry is broken by introducing mag-
netic impurities [20,21]. There have been a few proposals for
pristine 2D materials that are predicted to be intrinsic QAHIs
by first principles calculations [22–26], but the effect has not
yet been confirmed experimentally for any of the materials
and the topological properties seem to be somewhat sensitive
to the details of the calculations. Moreover, first principles
calculations typically only pertain to the case of zero kelvin,
but for 2D materials magnetic order is highly fragile to
finite temperature effects and can only be stabilized in the
presence of magnetic anisotropy [27,28]. Realistic theoretical
predictions of 2D QAHIs thus have to take into account that
the magnetic order must persist at experimentally relevant
temperatures—preferably room temperature.

Since the discovery of topological classifications of solids,
the field has witnessed a tremendous development of the
theoretical concepts, which have been extended to include
topological semimetals [29], topological crystalline insulators
[30,31], and higher order topological effects [32–35]. In ad-
dition to QAHIs and QSHIs we will focus on a particular
class of topological insulators in the present work, namely,
the topological crystalline insulators where the topology is
protected by mirror symmetry in a plane parallel to the 2D
material [36,37]. It is particularly easy to understand the
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topology in this case since the topological index is simply de-
fined as the difference between the quantum anomalous Hall
conductance of the two eigenspaces of the mirror operator.
Moreover, the fact that the mirror plane coincides with the
plane of the materials implies that any edge that conserves
the mirror symmetry will host gapless states that are protected
from eleastic backscattering by the topology.

Although topological properties are in principle derivable
from the ground state of bulk materials, the observable
consequences are very limited in bulk. It is, for example, not
possible to distinguish a nontrivial topological state from a
trivial one by looking at the band structure alone. However,
any interface between materials belonging to different
topological classes is guaranteed to host gapless states that
are localized at the boundary. Since the boundary states are
protected by topology, they are extremely stable and have
been proposed as candidates for dissipationless electronics
circuits. Moreover, since the spin of boundary states are
locked to the direction of propagation in QSHIs, such
materials are promising for spintronics applications [38].

A crucial ingredient for operating topological insulators at
room temperature is a sizable band gap. Typically, the band
gap in topological insulators is determined by the strength of
spin-orbit coupling and common values of the gap are on the
order of 0.1–0.2 eV. With such small band gaps it becomes
hard to maintain full control of the gapless boundary states
and the applicability of the materials becomes questionable.
It would thus be highly desirable to find new topological
insulators with large band gaps. Large-scale screening studies
based on first principles computations have previously been
performed for 3D materials [39,40] and very recently for
2D materials based on experimentally known van der Waals
bonded crystals [41]. The latter study predicted a 2D material
in the Jacutingaite prototype to be a QSHI with a band gap of
0.5 eV [42]. Remarkably, the PBE gap of the material was
only 0.15 eV, but a quasiparticle gap 0.5 eV was obtained
with the G0W0 approximation. It is thus far from obvious that
the simple Kohn-Sham gap provides a good estimate of the
quasiparticle gap in 2D topological insulators.

Finally, we emphasize that it has not yet been possible to
demonstrate the quantum anomalous Hall effect in a pristine
2D material. This is perhaps not so surprising since a magnet-
ically ordered ground state is a minimal requirement for the
effect and until very recently magnetic order had not been ob-
served in 2D [43]. The discovery of the first pristine 2D QAHI,
which exhibits magnetic order at reasonable temperatures,
thus comprises a tremendous challenge and it is highly likely
that theoretical predictions may aid this quest by significantly
decreasing the number of relevant materials to investigate.

In the present work we have screened more than 3000
hypothetical 2D materials using first principles simulations
and identified 61 2D topological insulators. We have focused
on three topological classes. (1) QAHIs, which require a mag-
netically ordered ground state and are characterized by the
Chern number C that may take any integer value. (2) QSHIs,
which require time-reversal symmetry and are classified by
the binary Z2 index. (3) Mirror crystalline topological insula-
tors, where the topology is protected by mirror symmetry and
the ground state is classified according to the mirror Chern
number CM , which may take any integer value. In order to

FIG. 1. Colored area indicate the unit cell in reciprocal space. For
each value of k2, the Berry space is calculated by parallel transporting
the Bloch states along k1 (indicated by dashed lines).

extract the topological properties we have implemented a full
calculation of k-space Berry phases that allow us to extract
the topological indices in a semi-automated way and does not
depend on a mapping to tight binding models through Wannier
functions [44].

The paper is organized as follows. In Sec. II, we describe
the Berry-phase implementation and exemplify how the topo-
logical indices are extracted for the three cases described
above. In Sec. III, we present the computational details and
provide a comprehensive list of all the 2D materials with
nontrivial topology that have been found in the screening. We
then analyze the topological properties of a few representative
materials in more detail and investigate the effect of the
approximations for exchange-correlation energy and G0W0

calculations. In Sec. IV we provide a discussion of the results.

II. BERRY PHASES AND HYBRID WANNIER FUNCTIONS

In this section we will briefly introduce the notion of
parallel transport and show how it can be applied to obtain
the Berry phase matrix of a closed path in k space. We will
closely follow the discussions in Refs. [44–46]. We consider a
minimal unit cell in reciprocal space spanned by the reciprocal
lattice vectors b1 and b2. A generic point in the reciprocal unit
cell can then be written as

k = k1b1 + k2b2, (1)

where 0 � ki < 1 are the reciprocal fractional coordinates.
We wish to calculate the Berry phase obtained by transporting
the occupied Bloch states along k1 through the reciprocal
unit cell at a fixed value of k2 (see Fig. 1). In a numerical
treatment of the Bloch Hamiltonian H (k), one obtains a set
of occupied eigenstates |unk〉 at different k points and each
set of eigenstates come with an arbitrary set of phases. In
fact, any unitary rotation in the space of occupied states leaves
the ground state invariant and in order to evaluate the phases
picked up along a closed path in k space one needs to construct
eigenstates with phases that are smooth along the path. This
can be accomplished by the so-called parallel transport gauge.
For a single occupied state we fix the phase along the path by
requiring that 〈uk|∂k1 uk〉 = 0, which enforces that the change
in the state along the path is orthogonal to the state itself.
When the Bloch states are calculated at a string of N k
points with fixed k2 and k1 = 0, 1/N, 2/N, . . ., the parallel
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transport condition can be implemented by requiring that
〈uk|uk+b1/N 〉 is real at any point along the path. Thus for an
initial state at k on the path we can fix all phases on the path
sequentially by the parallel transport condition, which will
result in a smooth phase along the path. The phase at k1 = 1
can then be obtained by imposing the periodic gauge such that
|uk+b1〉 = e−ir̂·b1 |uk〉 and the Berry phase is obtained as the
phase difference between k1 = 0 and k1 = 1.

In the case of multiple occupied bands, the condi-
tion is generalized by requiring that the matrix Mmnk =
〈umk|unk+b1/N 〉 is Hermitian. This uniquely fixes the unitary
rotation among the occupied states at all points along the path
in terms of an initial set of occupied states at particular point
k on the path. This is due to the fact that a single value
decomposition yields M = V �W † = V �V †VW †, where V
and W are unitary matrices and � is diagonal and real. We
can thus take |unk+b1/N 〉 → WV †|unk+b1/N 〉, which renders M
Hermitian and completely fixes the gauge at k + b1/N . This
procedure is continued along the path until the states at k +
b1 are obtained using the periodic gauge where |unk+b1〉 =
e−ir̂·b1 |unk〉. Finally, the eigenvalues of the unitary matrix
relating the states at k and k + b1 are the Berry phases
acquired by the individual bands.

The method can also be used to obtain the individual states
|ũnk〉 that are parallel transported without mixing and thus
acquire the distinct eigenvalues of the Berry phase matrix
[45]. Since these are smooth, one may construct hybrid Wan-
nier functions (HWFs) localized along the direction parallel
to b1 as

∣∣Wn jk2

〉 =
∫ 1

0
dk1e−ik·(r̂+R̂ j )|ũnk〉. (2)

Writing r = x1a1 + x2a2 with ai · b j = 2πδi j , one can show
that [47]

x1,n(k2) ≡ 〈
Wn0k2

∣∣x̂1

∣∣Wn0k2

〉 = γ1,n(k2)/2π, (3)

with

γ1,n(k2) = i
∫ 1

0
dk1

〈
ũnk

∣∣∂k1 ũnk
〉
. (4)

Except for a factor of 2π , the Berry phases obtained from
the parallel transport gauge are thus the charge centers of
the HWFs. This construction allows one to calculate various
properties associated with the individual phases. For example,
the spin expectation value

S(z)
n (k2) ≡ 〈

Wn0k2

∣∣Ŝ(z)
∣∣Wn0k2

〉
, (5)

which will serve as a useful tool for analyzing the topological
properties of 2D materials below.

The Berry phases will be smooth functions of k2, which
implies that one can track the evolution of the phases while k2

is cycled through the reciprocal space unit cell. The dispersion
of the spectrum of Berry phases gives rise to topological
classifications as explained below. We will provide examples
of ab initio calculations of the Berry phase spectrum for
the three topological classes considered in the present work,
but postpone a compilation of the computational details until
Sec. III.

A. Quantum anomalous Hall insulators

The Hall conductance σxy relates an electric current in
the x direction to a uniform field in the y direction by Jx =
σxyEy. A finite Hall conductance requires broken time-reversal
symmetry and it follows from the Kubo formula that it can be
written in terms of the k-space Berry curvature 	z(k) as [48]

σxy = −e2

h

∫
BZ

d2k

2π
	(k), (6)

with

	(k) = i
∑
i jn

fnkεi j∂ki

〈
unk

∣∣∂k j unk
〉
. (7)

Here i, j runs over x and y, ε is the two-dimensional Levi-
Civita symbol, and fnk are occupation factors.

For insulators, the integral can be shown to yield an integer
known as the Chern number C and the Hall conductance
becomes

σxy = −C
e2

h
, C ∈ Z. (8)

In 2D metals, a gap can be opened due to the Landau levels
emerging when an external magnetic field is introduced and
the value of the Chern number can be controlled by the
magnitude of magnetic field. That is the quantum Hall effect.
Moreover, as shown by Haldane [4], materials with sponta-
neously broken time-reversal symmetry can exhibit intrinsic
quantum Hall effect without an external magnetic field. Such
materials are known as quantum anomalous Hall insulators
(QAHI) (or Chern insulators) and have a finite Chern number
and a nontrivial band topology.

We now briefly discuss how the k-space Berry phase cal-
culations outlined above can be related to the Chern number
in QAHIs. A constant electric field in the y direction of
magnitude E0 can be included in the Bloch Hamiltonian
by the substitution ky → ky − eE0t/h̄. Clearly the physical
properties of the Bloch Hamiltonian are restored after a
period T = 2π h̄/eE0. If E0 is sufficiently small, the system
will evolve adiabatically and the charge transported in the
x direction in the time interval is Q = ∫ T

0 Jxdt = T σxyE0 =
hσxy/e. Expressing the Hall conductance as σxy = −Ce2/h,
we see that the transferred charge is Q = −eC. One can thus
obtain the Chern number as the number of Wannier charge
centers that are transported by a unit cell in the x direction,
while ky is cycled through the reciprocal space unit cell in
the backward direction. This argument comprises a modified
version [7] of the explanation originally provided by Laughlin
to account for the quantum Hall effect [49]. This also explains
the appearance of gapless edge states in QAHIs. For a bulk
system an adiabatic cycling of k2 through a reciprocal unit
vector will return the system to itself by transferring C charges
by one lattice vector. However, in the presence of an edge
charges will pile up at the edge and the argument breaks
down unless there is a different mechanism that can remove
the charges from the edge. One may thus conclude that any
edge has to host chiral gapless states that connect the valence
band with the conduction band, such that C units of charge
are transferred out of the valence bands at the edge while k2 is
cycled by a unit.
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FIG. 2. Top: structure and Brillouin zone of FeBr3 in the BiI3

crystal structure. Middle: band structure of FeBr3 with colors de-
noting the expectation value of Sz. The band PBE gap is 42 meV.
Bottom: Berry phases of the four highest occupied states of FeBr3

calculated as a function of k in the direction of M2.

In Fig. 2 we show the Berry phases of FeBr3 in the BiI3

crystal structure. Due to Eq. (3), the vertical axis in the plot
can be regarded as the unit cell in the x direction and it is clear
that at any horizontal line there will be a total of one state
crossing in the downward direction. We can thus calculate the
Chern number as the total number of chiral crossings—that is,
the number of crossing points with negative slope minus the
number of crossing points with positive slope at any horizontal
line and we conclude that C = 1. We have confirmed this
result by a direct integration of the Berry curvature 	z over
the Brillouin zone.

B. Quantum spin Hall insulators

Materials with time-reversal symmetry must have a vanish-
ing Hall conductance and thus cannot have a nonzero Chern
number. From the Berry phase perspective this is due to the
fact that any phase at k will be accompanied by an equal

phase at −k, which excludes the possibility of having a finite
number of chiral crossings at a horizontal line. Nevertheless,
as shown by Kane and Mele [50,51] all 2D time-reversal
invariant insulators belong to one of two topological classes
and can thus be characterized by a Z2 topological index.
The simplest way to understand the Z2 index is by consid-
ering a system where Sz is a good quantum number. Then
one can calculate the Chern numbers of the two spin states
and obtain C↑ = −C↓, since C = C↑ + C↓ = 0. Due to time-
reversal symmetry all Berry phases have Kramers degenerate
partners at time-reversal invariant points such as M and �.
If one introduces spin-mixing (but time-reversal conserving)
perturbations in the Hamiltonian, the two Chern numbers are
no longer well defined but two distinct ways of connecting
phases between time-reversal invariant points remain, which
gives rise to a Z2 topological classification. In particular, if C↑
is even in the case where Sz is a good quantum number, there
will be an even number of Kramers pairs at � and M that
may hybridize and open a gap in the Berry phase spectrum,
once spin-mixing terms are introduced. In contrast, if C↑ is
odd, there will be an odd number of Kramers pairs at M
and � and the Berry phase spectrum must remain gapless
when spin-mixing terms are included. In general the Z2 index
distinguishes whether there is an odd or even number of
Berry phases crossing any horizontal line in half the Brillouin
zone.

In Fig. 3 we show the band structure and Berry phase
spectrum for stanene (Sn), which comprises an example of
a quantum spin Hall insulator. Due to inversion symmetry
in stanene, all bands are doubly degenerate and cannot be
colored according to spin. However, the degeneracy of the
Berry phases are split due to spin-orbit coupling, which will
allow the spectrum to exhibit a single crossing in half the
Brillouin zone. Qualitatively, the spin-down electrons are
transported upwards, while the spin-up electrons are trans-
ported downwards indicating that one would be able to assign
spin Chern numbers of C↑ = −C↓ = 1 if the Hamiltonian of
the system could be continuously connected to a Hamiltonian
that commutes with Sz without closing the gap.

C. Mirror crystalline topological insulators

As shown by Fu [30], crystal symmetries alone may give
rise to a topologically nontrivial band structure. However, the
consequences (gapless boundary states) are only observable at
edges or surfaces that conserve the crystal symmetry. In this
respect, mirror symmetry comprises a particularly simple type
of crystal symmetry that gives rise to an integer topological
classification. Whenever a material has mirror symmetry all
the occupied states may be labeled according to their mirror
eigenvalues ±i and one can define Chern numbers C± for
these subsets of bands. The total Chern number is then C =
C+ + C−, but we might as well consider the Z × Z classifi-
cation based on C+ and C−. In the case where the total Chern
number vanishes the topology can be specified by the mirror
Chern number CM = (C+ − C−)/2, which is readily verified
to be an integer.

For 2D materials, mirror symmetry in the plane of the ma-
terial plays a special role, since any clean edge of the material
will conserve the symmetry. A 2D material with nonvanishing
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M2 K
M1

FIG. 3. Top: structure and Brillouin zone of stanene. Middle:
band structure of stanene. Bottom: Berry phases of the four highest
occupied states of stanene calculated as a function of k in the
direction of M2 with colors denoting the expectation value of Sz.

mirror Chern number is thus guaranteed to host gapless edge
states and gapless boundary states if the material is interfaced
with a topologically trivial material that exhibits mirror sym-
metry in the plane. Strictly speaking, the interface or edge
itself may break the symmetry by reconstruction of adsorption
of atoms or molecules and as such the gapless edge states are
more fragile than in the case of QSHI where the topology
is defined by time-reversal symmetry. If C = 0 an edge will
host CM edge states of positive chirality and CM edge states of
negative chirality. In Fig. 4 we show the Berry phase spectrum
of SnTe, which is an example of a mirror crystalline topolog-
ical insulator with CM = 2 [36]. We note that the spinorial
part of the mirror operator in the z plane is represented as
iσz and the mirror eigenvalues thus closely follow the spin of
the hybrid Wannier functions. This is evident in Fig. 4, where
the spin up states are largely transported downward (C+ = 2)
and the spin down states (C− = −2) are largely transported

FIG. 4. Top: structure and Brillouin zone of SnTe in the PbSe
crystal structure. Middle: band structure of SnTe. Bottom: Berry
phases of the eight highest occupied states of FeBr3 calculated
as a function of k in the direction of Y with colors denoting the
expectation value of Sz.

upward. This is of course only a qualitative argument, since
the mirror operator also affects the orbital part, but the spin
structure of the hybrid Wannier functions does allow one
to obtain an intuitive picture of the (mirror-resolved) charge
transport.

It is interesting to note that, in the presence of time-reversal
symmetry, the Z2 index can be obtained as CM mod 2. This is
due to the fact that time-reversal symmetry enforces mirror
symmetry on the Berry phase spectrum around the vertical
axis at the � point. In particular, we can represent the time-
reversal symmetry operator as T = σyK , where K denotes
complex conjugation and the mirror symmetry operator by
Mz = iσz. Due to the fact that σy and σz anticommute, it
follows that if |u+〉 is an eigenstate of Mz with eigenvalue
+i then T |u+〉 will be an eigenstate of Mz with eigenvalue
−i. The Berry phase spectrum of the negative eigenvalue
sector can thus be obtained from that of the positive mirror
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eigenvalues by reflection through the vertical line at �. This
results in an odd number of crossings in half the Brillouin zone
if CM is odd and an even number of crossings if CM is even.
Materials with odd mirror Chern number and time-reversal
symmetry thus have a dual topological character such that the
edge states will remain protected if either mirror symmetry or
time-reversal symmetry is broken. This can be regarded as a
2D analog of the dual topological character in Bi2Se3 [52,53].
In that case the strong topological index can be calculated
from the Chern-Simons axion coupling θ , which is restricted
to the values of zero and π in the presence of either mirror
symmetry or time-reversal symmetry.

III. RESULTS

A. Computational details

All the calculations presented in this work were based on
the Computational 2D Materials Database (C2DB), which
currently contains DFT calculations for 3331 2D materials
[54]. The calculations were performed with the electronic
structure software package GPAW [55], which is based on
the projector augmented wave method [56] combined with the
atomic simulation environment (ASE) [57]. All materials have
been fully relaxed with the PBE functional [58] and treated
according to a strict work flow and a wide range of properties
are calculated for materials that are both dynamically and
thermodynamically stable. We refer to Ref. [54] for details on
the calculations. The database can be browsed online or the
full database can be downloaded from the repository.

As a first screening for 2D materials with nontrivial topol-
ogy, we have sorted the C2DB for insulators with direct PBE
band gaps below 0.7 eV. This primary criterion is based on
the fact that the topological gaps are driven by spin-orbit
coupling and we do not expect spin-orbit coupling to open
band gaps by more than 0.7 eV. For all these materials, we
carried out the parallel transport described in Sec. II and
identified topological insulators as the materials with a gapless
Berry phase spectrum. The procedure is highly convenient
for automated screening, because no reference to the type of
topological insulator is needed for the calculations and one
can simply sort out whether a given material is a QAHI, QSHI,
or a crystalline topological insulator (protected by mirror
symmetry) afterwards.

The only nonstandard ingredient in the procedure is the
calculation of the matrix elements

Mmn(k, k + δk) = 〈um(k)|un(k + δk)〉
= 〈ψm(k)|e−iδk·r̂|ψn(k + δk)〉, (9)

which is needed for the parallel transport algorithm. Within
the PAW formalism the all-electron wave functions are
written as

|ψn〉 = |ψ̃n〉 +
∑

ai

〈
p̃a

i

∣∣ψ̃n
〉[∣∣φa

i

〉 − ∣∣φ̃a
i

〉]
, (10)

where |ψ̃n〉 are soft pseudowave functions, |φa
i 〉 are atomic

orbitals of atom a, and | p̃a
i 〉 are projector functions satisfying

〈p̃a
i |φ̃a

j 〉 = δi j . Denoting the position of atom a by ra the

TABLE I. Overview of known topological materials found by
computational screening. The topology is specified by either the
Chern number C, the Z2 index ν, or the mirror Chern number CM .
We also state the calculated Kohn-Sham gap (KS gap).

Material Prototype Topology KS gap (meV)

C2 [51] C2 ν = 1, CM = 1 0.3
Si2 [59] C2 ν = 1 1.6
Ge2 [59] C2 ν = 1 25
Sn2 [59] C2 ν = 1 65
SnF [60] CH ν = 1 316
HgSe [61] GeSe ν = 1 90
HgTe [61] GeSe ν = 1 156
MoS2 [18] WTe2 ν = 1 51
MoSe2 [18] WTe2 ν = 1 41
WSe2 [18] WTe2 ν = 1 32
OsCl3 [24] BiI3 C = 1 64
GeTe2 [62] MnS2 ν = 1 32
SnS [36] PbS CM = 2 67
SnSe [36] PbS CM = 2 84
SnTe [36] PbS CM = 2 28
PbS [36] PbS CM = 2 422
PbSe [36] PbS CM = 2 478
PbTe [36] PbS CM = 2 271

matrix elements can thus be written as

Mmn(k, k + δk) = 〈ψ̃m(k)|e−iδk·r̂|ψ̃n(k + δk)〉
+

∑
ai j

e−iδk·ra〈ψ̃m(k)
∣∣p̃a

i

〉
(11)

× [〈
φa

i

∣∣φa
j

〉 − 〈
φ̃a

i

∣∣φ̃a
j

〉]〈
p̃a

j |ψ̃n(k + δk)
〉
,

where we assumed that 〈φa
i |e−iδk·r̂|φa

j 〉 = e−iδk·ra〈φa
i |φa

j 〉,
since the partial waves |φa

i 〉 are localized at the atom a and
e−iδk·r is a slowly varying function when δk is small. All
quantities entering in Eq. (11) are calculated during standard
DFT calculations with GPAW and are thus readily available
for Berry phase calculations.

B. Overview of topological insulators in C2DB

In Tables I–IV we provide an overview of all the topo-
logical insulators found in the screening. We emphasize
again that all these were simply identified by looking for
materials with a gapless Berry phase spectrum. The topo-
logical indices ν, C, and CM , relevant for QSHIs, QAHIs
and MCTIs respectively, were then assigned to the different
materials afterwards.

Table I contains known topological 2D materials. We
find most of the materials that have previously been pre-
dicted to exhibit a nontrivial band topology. For example,
graphene [51] and its derivatives silicene, germanene, and
stanene [59], as well as the transition metal dichalcogenides
MoS2, MoSe2, and WSe2 in the 1T′ phase (WTe2 crystal
structure) [18]. However, some well-known 2D topological
insulators are missing from this table, for example, WTe2

and WS2 in the 1T′ phase. These materials are present in
C2DB, but are semimetals in the PBE approximation [18]
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TABLE II. Overview of novel QSHIs without mirror symmetry. All the materials have a Z2 index of ν = 1. We also state the calculated
Kohn-Sham gap (KS gap), the heat of formation (HOF), and the energy above the convex hull (EACH). The dynamically stable materials are
shown in boldface.

Material Prototype Topology KS gap (meV) HOF (eV) EACH (eV)

AuCl FeSe ν = 1 20 0.10 0.30
CrAsBi BiTeI ν = 1 35 0.31 0.46
IrSe GaSe ν = 1 134 0.18 0.45
TiTe GaSe ν = 1 109 − 0.08 0.63
ZrTe GaSe ν = 1 207 − 0.28 0.65
AuI3 BiI3 ν = 1 109 0.10 0.10
TiIN FeOCl ν = 1 62 − 1.18 − 0.26
TlClSe FeOCl ν = 1 27 − 0.36 0.32
TiS CH ν = 1 54 − 1.13 0.31
TiCl CH ν = 1 13 − 0.64 0.45
ZrS CH ν = 1 132 − 1.16 0.26
ZrSe CH ν = 1 20 − 0.91 0.25
ZrCl CH ν = 1 37 − 0.59 0.73
ZrBr CH ν = 1 45 − 0.34 0.68
SbCl CH ν = 1 434 − 0.46 0.13
SbBr CH ν = 1 442 − 0.31 0.10
SbI CH ν = 1 584 − 0.12 0.13
HfS CH ν = 1 158 − 0.89 0.43
HfSe CH ν = 1 42 − 0.64 0.54
ReS CH ν = 1 309 0.10 0.54
HgCl CH ν = 1 129 − 0.37 0.23
HgBr CH ν = 1 188 − 0.25 0.22
PbF CH ν = 1 116 − 1.43 0.45

and are therefore excluded from the present compilation. In
addition CoBr2 in the CdI2 crystal structure has previously
been predicted to be a QAHI based on PBEsol [26], which
we have confirmed but the material is metallic within PBE
and is therefore not included here. On the other hand, we
find both HgSe and HgTe to be QSHIs although these ma-
terials have previously been reported to be trivial insulators
based on calculations with a modified Becke-Johnson LDA
functional [61].

Tables II–IV contain all the topological insulators that to
our knowledge have not been reported prior to this work. The
dynamically stable compounds (shown in boldface) are likely
to be the only ones that are experimentally relevant, but we
include all materials that we have found for completeness.

We find 27 time-reversal invariant topological insulators
that are dynamically stable and have not been reported previ-
ously (Tables II and III). We start by noting that the list is dom-
inated by 15 materials in the CH crystal structure (graphane),

TABLE III. Overview of novel crystalline topological insulators protected by mirror symmetry. The topology is specified the mirror Chern
number CM . All the materials are invariant under time-reversal symmetry and the associated Z2 index thus becomes ν = 1 if CM is odd and
ν = 0 if CM is even. We also state the calculated Kohn-Sham gap (KS gap), the heat of formation (HOF), and the energy above the convex hull
(EACH). The dynamically stable materials are shown in boldface.

Material Prototype Topology KS gap (meV) HOF (eV) EACH (eV)

HgO BN ν = 1,CM = 1 302 −0.15 0.21
PdSe2 MoS2 ν = 1,CM = 1 229 −0.02 0.27
AuTe GaS ν = 1,CM = 1 37 0.03 0.11
WO GaS ν = 1,CM = 1 53 −1.01 0.49
RhO GaS ν = 1,CM = 3 67 −0.38 0.25
IrO GaS ν = 1,CM = 3 122 −0.16 0.51
ReI3 AgBr3 ν = 1,CM = 1 141 0.37 0.43
ReCl3 TiCl33 ν = 1,CM = 1 220 −0.18 0.52
WI3 TiCl33 ν = 1,CM = 1 222 0.19 0.19
GeTe2 MnS2 ν = 1,CM = 1 32 0.27 0.33
RuTe2 MnS2 ν = 1,CM = 1 157 0.34 0.68
OsS2 MnS2 ν = 0,CM = 2 111 0.25 0.63
OsSe2 MnS2 ν = 0,CM = 2 144 0.51 0.68
OsTe2 MnS2 ν = 0,CM = 2 117 0.70 0.77
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TABLE IV. Overview of novel QAHIs found by computational screening. The topology is specified by either the Chern number C. We also
state the calculated Kohn-Sham gap (KS gap), the heat of formation (HOF), and the energy above the convex hull (EACH). The dynamically
stable materials are shown in boldface.

Material Prototype Topology KS gap (meV) HOF (eV) EACH (eV)

PdF2 GeS2 C = −2 27 −0.83 0.38
FeCl3 BiI3 C = 1 13 −0.66 −0.08
FeBr3 BiI3 C = 1 42 −0.38 −0.04
PdI3 BiI3 C = −1 36 −0.13 0.06
CoBr3 AgBr3 C = −2 27 −0.21 −0.16
MoS2 MnS2 C = 2 133 0.10 1.05

the antimony halides exhibiting band gaps exceeding 0.4 eV.
Among the remaining materials, PdSe2 in the MoS2 crystal
structure is the one with the largest band gap of 0.23 eV.
However, it is situated 0.25 eV/atom above the convex hull
with two other materials of the same stoichiometry being more
stable. Nevertheless, the difference in stability is similar to the
difference between MoS2 in the 2H phase and the 1T′ phase,
which are both accessible by modern synthesis techniques. To
test the reliability of the topological gap obtained with PBE,
we have calculated LDA and GW band structures fully includ-
ing spin-orbit coupling in the self-energy [63]. The result is
shown in Fig. 5. The LDA gap is 0.225 eV, which is very sim-
ilar to the PBE value. However, the GW gap is 0.65 eV, which
nearly comprises a threefold increase of the Kohn-Sham gap.
In fact, to our knowledge this is one of the largest gaps re-
ported for a two-dimensional topological insulator. A similar
dramatic increase was recently reported for a Jacutingaite
crystal structure where PBE yielded a gap of 0.15 eV and GW
predicted a gap of 0.5 eV [42]. Such a large increase in band
gap has not been reported for three-dimensional topological
insulators and could be related to the reduced screening in 2D.
In principle, the predicted topology of the materials may de-
pend on the approximation used to obtain the eigenstates. For
example, in Ref. [64] it was that shown that DFT can lead to a
false-positive conclusion for the nontrivial topology of certain
3D materials and GW calculations may reverse the band
inversion leading to the predicted nontrivial topology in DFT.
However, we will not perform full GW calculations (with
spin-orbit coupling) for all the materials in the present work,
but note that false positives could be a caveat for the present
method. We discuss this issue further below in the context
of QAHIs.

In addition to the six well-known mirror crystalline topo-
logical insulators displayed in Table I, we also find three
osmium dichalcogenides in the MnS2 crystal structure with
a mirror Chern number of CM = 2, which are displayed in
Table III. Only one of these—OsO2—is stable though. As
noted previously, any Z2 odd topological insulator with mirror
symmetry must have an odd Chern number. In those cases
the Z2 index does not exhaust the topological properties and
we may distinguish the topological classes corresponding to
CM = 1 and CM = 3, for example, as in the case of RhO
and AuTe in the GaS crystal structure. Again the physical
consequences only emerge when considering an edge where
the difference in Chern numbers would yield the number of
protected gapless edge states. In general, one would not expect

an interface between two Z2 topological insulators (ν = 1)
to exhibit gapless interface modes. However, any interface
between RhO and AuTe that conserves the mirror symmetry
would host four topologically protected gapless edge modes
—two for each mirror sector.

We would also like to emphasize that the screening has
resulted in six candidates for quantum anomalous Hall insu-
lators, which are displayed in Table IV. This is of particular
interest, since an experimental demonstration of the quantum
anomalous Hall effect in a pristine 2D material is still lacking.
Specifically, the materials FeCl3 and FeBr3 are highly stable
and situated less than 0.1 eV/atom above the convex hull.
However, the band structure of FeBr3 shown in Fig. 2 exhibits
rather flat bands and indicates that the electrons in these
materials are strongly correlated. It is thus likely that the PBE
band gap provides a poor estimate of the fundamental gap
of the material and even the topological properties could be
wrong if PBE does not describe the band inversion correctly.
In order to test the reliability of PBE we have tested the
topological properties with various semilocal functionals and
with PBE+U . Using LDA, RPBE, and PBEsol yield a trivial
topology, whereas PBE and revPBE predicts a QAHI with
C = 1. Using PBE+U we obtain a QAHI for values of U
below 0.18 eV and a trivial insulator for U > 0.18 eV. In all
cases the geometry was optimized with the given functional.
The topological properties of FeBr3 are thus highly sensitive
to the method used and with the methodology applied here it
is not possible to determine whether or not the material is a
QAHI.

C. Magnetic anisotropy

The quantum anomalous Hall effect is driven by spin-orbit
mediated band inversion in magnetic materials. Moreover, as a
consequence of the Mermin-Wagner theorem magnetic order
cannot exist without magnetic anisotropy in 2D materials
and spin-orbit effects thus have another crucial role to play
for these materials. In fact, the Curie temperature in a 2D
ferromagnet is strongly dependent on the anisotropy as well
as the exchange coupling constants and the first example of
2D ferromagnetic order was only observed very recently in
the trivial insulator CrI3. Some of the present authors have
shown that the Curie temperatures in 2D can be obtained
from Monte Carlo simulations [28] based on the classical

024005-8



DISCOVERING TWO-DIMENSIONAL TOPOLOGICAL … PHYSICAL REVIEW MATERIALS 3, 024005 (2019)

FIG. 5. LDA (dashed) and GW (solid) band structures of PdSe2

in the MoS2 prototype. In both cases the energy of the top of the
valence band has been set to zero.

Heisenberg model

H = −1

2
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∑
〈i j〉
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∑
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2 − 1

2
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∑
〈i j〉

Sz
i Sz
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where 〈i j〉 denotes the sum over nearest neighbors. The
exchange and anisotropy constants J , A, and B can be obtained
from first principles calculations combined with an energy
mapping scheme that assumes magnetic moments to be lo-
cated on transition metal atoms [28,65]. Since the magnetic
structure is typically isotropic in the plane of the material a
minimal requirement for magnetic order at finite temperatures
is an out-of-plane easy axis. For the magnetic materials in
Table IV we find Tc = 2 K and Tc = 274 K, respectively,
for FeBr3 and CoBr3. The remaining magnetic materials are
predicted to lack magnetic order at any finite temperature due
to an in-plane easy axis or, more precisely, a negative spin-
wave gap [28]. From these calculations CoBr3 appears highly
promising. However, additional calculations show that this
material is more stable in the BiI3 crystal structure (similar
to CrI3), which is nonmagnetic and a trivial insulator. We
note that the materials with an in-plane easy axis that are
excluded here could in general give rise to a finite critical
temperature if there is additional small in-plane anisotropy
such that the rotational symmetry is explicitly broken. It is,
however, rather difficult to predict the critical temperature in
those cases and we expect critical temperatures to be low due
to the approximate in-plane anisotropy. One exception to this
may be provided by OsCl3 [24], which has a rather large
magnetic anisotropy of ∼40 meV per Os atom.

It is interesting to note that small gap magnetic insulators
with large spin-orbit coupling may undergo topological phase
transitions upon a rotation of the spin structure. As an exam-
ple, we take OsO2 in the CdI2 crystal structure, which has
an in-plane easy axis and is not found in Table IV because it

FIG. 6. Band gap as a function of magnetization angle with the
out-of-plane axis in OsO2. The material undergoes a topological
transition for C = 0 to C = −2 when the gap closes in the vicinity
of π/4.

is a trivial insulator. However, if the magnetic moments are
rotated out of plane to align with the axis perpendicular to
the plane of the material it becomes a QAHI with a Chern
number of C = −2. This is only possible if the band gap
closes at some point when the magnetic moments are rotated
from the in-plane to the out-of-plane configuration. In Fig. 6
we show the band gap as a function of the polar angle θ

that the magnetic moments form with the z axis. The band
gap is seen to close in the vicinity of θ = π/4, where the
system undergoes a topological phase transition from C = 0
to C = 2. Such a rotation can be accomplished by applying a
magnetic field and comprises a mechanism under which the
gapless edge states can switched on or off by external means.

IV. DISCUSSION

We have implemented and performed an automated search
for topologically nontrivial 2D materials in the Computational
2D Database. The method is based on a direct evaluation
of Berry phases from the Kohn-Sham states and circum-
vents the common mapping to tight binding models via
Wannier functions [44] that can sometimes make automation
cumbersome.

In addition to several well-known topological insulators
we have found 45 materials of which 18 are predicted to
be stable. Of particular interest are the six magnetic QAHI.
The experimental demonstration of the quantum anomalous
Hall effect in a pristine 2D material would constitute a major
breakthrough in the field of topological materials science.
However, even if any of these materials could be synthesized
the experimental verification of the effect will be highly tricky,
since all of the experimentally relevant QAHIs have band
gaps below 0.1 eV. Moreover, we have shown that the the-
oretical prediction of the topological properties is nontrivial
due to strong correlation and the predictions based on PBE
calculations may not be reliable as we exemplified in the case
of FeBr3. Nevertheless, the PBE predictions for QAHIs pre-
sented here provide indications that some of these materials
could be highly interesting to put under experimental scrutiny.
Most notable CoBr3 in the AgBr3 crystal structure, which we
predict to have a Curie temperature of 274 K, but which is also
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predicted to be less stable compared to the similar BiI3 crystal
structure.

The 10 stable QSHIs found have PBE band gaps between
0.05 and 0.23 eV. We have only performed full spinorial GW
calculations for PdSe2 where we found a threefold increase
of the band gap. It would be highly interesting to perform
carefully converged spinorial GW calculations for all the
topological insulators presented in Tables I–IV, but this is
beyond the scope of the present work. However, based on the
cases of PdSe2 and jacutegaite [42] we believe it is likely that
several of the materials could have significantly larger gaps
than predicted by PBE. None of the materials in Tables II–IV
have been synthesized yet. But considering the rapid pace
at which experimental techniques are currently evolving, we

expect an experimental realization of one or several of the
predicted topological insulators should be within reach in the
near future.
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