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Graphane with carbon dimer defects: Robust in-gap states and a scalable two-dimensional
platform for quantum computation
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We study the energy level structures of the defective graphane lattice, where a carbon dimer defect is created by
removing the hydrogen atoms on two nearest-neighbor carbon sites. Robust defect states emerge inside the bulk
insulating gap of graphane. While for the stoichiometric half-filled system there are two doubly degenerate defect
levels, there are four nondegenerate and spin-polarized in-gap defect levels in the system with one electron less
than half filling. A universal set of quantum gates can be realized in the defective graphane lattice, by triggering
resonant transitions among the defect states via optical pulses and ac magnetic fields. The sizable energy separa-
tion between the occupied and the empty in-gap states enables precise control at room temperature. The spatial
locality of the in-gap states implies a qubit network of extremely high areal density. Based on these results, we
propose that graphane as a unique platform could be used to construct the future all-purpose quantum computers.
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I. INTRODUCTION

Since the discovery of quantum algorithms that outper-
form all existing classical algorithms [1–4], there have been
growing interest in building a real-world quantum computer.
This desire is further fostered by the suggestion of Feynman
that quantum computers can simulate complex quantum me-
chanical systems more efficiently than classical computers
[5]. At present, although proof-of-principle demonstrations of
quantum computation exist [6,7] and the quantum supremacy
seems to be on the horizon [8,9], a practical all-purpose
quantum computer is at most in its early infancy. One major
challenge is to find a unique platform that can play the
role of silicon wafer in classical (digital) computers. In this
respect, a two-dimensional (2D) solid-state system is highly
advantageous. Existing examples of such platforms include
the semiconductor quantum dots [10–12] and the Joseph-
son junction arrays [13,14]. These artificial systems, while
highly tunable, have the deficiency that the basic constituents
(quantum dots, Josephson junctions) cannot be reproduced
exactly, and the properties of different qubits (quantum two-
level systems) vary unavoidably from one to another. This
shortcoming can lead to considerable cumulative error in
large-scale quantum computations. The defect energy levels
in a crystalline insulator, like the nitrogen-vacancy centres
in diamond [15] and 31P impurities in silicon (the Kane
quantum computer [16]), are free of this problem. The dia-
mond unfortunately is a three-dimensional system. The Kane
quantum computer, being a quasi-2D framework, relies on
the artificial engineering on the depth of the 31P impurities
underneath the silicon surface and the distances between
individual 31P impurities. Therefore a purely 2D solid-state
quantum computing network with stably reproducible energy
level structure to encode the qubits was lacking and is highly
desirable.

Here we show that graphane, the fully hydrogenated
graphene, could be an ideal 2D platform for quantum com-
puting. Graphane was theoretically predicted to be an insu-
lator with a huge band gap lying in the range from 3.42 to
5.97 eV [17–20] and was also synthesized experimentally
[21]. Introducing hydrogen vacancies to graphane leads to
in-gap states. Previous works focus on the hydrogen vacancies
that break the balance of the two sublattices and induce
ferromagnetic polarization [19,20,22–26,28]. We demonstrate
that the simplest hydrogen vacancy configuration keeping
the balance of the two sublattices, which is named as a
carbon dimer and is created by removing the hydrogen atoms
on two nearest-neighbor (NN) carbon sites, gives rise to
interesting in-gap defect states. Being intrinsic defects in a
crystalline insulator, different carbon dimers have exactly the
same in-gap states. In the stoichiometric half-filled system,
each carbon dimer gives rise to two doubly-degenerate defect
states. By removing one electron from the graphane lattice per
carbon dimer, the twofold degeneracy in the defect energy
levels of the half-filled system is removed, and there are
four nondegenerate in-gap defect states associated with each
carbon dimer. We show that the defect states are tunable by a
gate voltage and controllable by external stimuli such as laser
pulses and ac magnetic fields. In particular, both single-qubit
and nontrivial two-qubit unitary operations can be realized
on these defect states, thereby enabling universal quantum
computation. Based on the analyses, we discuss the feasibility
of utilizing the graphane lattice with carbon dimer defects as
a 2D solid-state platform for scalable quantum computation.

II. ENERGY STRUCTURES OF GRAPHANE WITH
A CARBON DIMER DEFECT

We focus on the qualitative changes in the quasiparticle
spectrum of graphane, before and after the creation of one
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carbon dimer. A minimal model for this purpose is constructed
by retaining the carbon pz orbitals and the hydrogen s orbitals.
We therefore consider a tight-binding model up to next-
nearest-neighbor (2NN) hopping of the carbon pz orbitals,
supplemented by the local carbon-hydrogen (C-H) bonds,
written as

Ĥgraphane = tNN

∑
〈i j〉σ

c†
iσ c jσ + t2NN

∑
〈〈i j〉〉σ

c†
iσ c jσ

+ εp

∑
iσ

c†
iσ ciσ + εs

∑
iσ

h†
iσ hiσ

+U
∑

i

c†
i↑ci↑c†

i↓ci↓

+ tCH

∑
iσ

(c†
iσ hiσ + h†

iσ ciσ ). (1)

σ = ↑ or ↓ is the spin index. We take tNN = −2.855 eV and
t2NN = −0.185 eV for the NN and 2NN hoppings among the
carbon pz orbitals [27,29]. The strength of the C-H bond is
taken as tCH = 5 eV. The on-site energies of the two orbitals
are taken as εp = 0 eV and εs = 3.271 eV [27]. The two

basis vectors are a1 = ( 1
2 ,−

√
3

2 )a and a2 = ( 1
2 ,

√
3

2 )a, with
a � 2.516 Å [17]. We have also incorporated the Hubbard
interaction within the carbon p orbitals, and will treat it at the
self-consistent mean-field level (see Appendix A). This model
captures the most important physics of the hydrogenation: the
formation of each C-H bond passivates one carbon p orbital
and the removal of each hydrogen atom releases one carbon p
orbital [29–34].

We first study the bulk band structures of graphane. Test
calculations with U up to 20 eV show no sign of spin ordering
or charge ordering transitions. From Fig. 1(a) for the band
structures of the above model at U = 6 eV, the hybridization
between carbon p orbitals and hydrogen s orbitals opens a
full energy gap of about 4.6 eV, the magnitude of which is
within the range of existing first-principles results [17,18,20].
Increasing U to a larger value (e.g., 9.3 eV [29]), the band
gap and the global band structure change only slightly. The
considered model therefore captures correctly the transition
from semimetal to insulator upon hydrogenation, the major
qualitative change in the band structures from graphene to
graphane.

We next create a carbon dimer defect by removing the hy-
drogen atoms on two NN carbon atoms, thereby releasing two
carbon p orbitals. We calculate numerically the eigenstates
of a graphane lattice with a single carbon dimer defect, in
the real space since translational invariance is broken by the
creation of the dimer. As shown in Fig. 1(b), we consider a
rectangular lattice with Nx × Ny C-H units (or carbon atom,
if the associated hydrogen atom is removed). The x (y) axis
runs along the zigzag (armchair) direction, and Nx (Ny) is the
number of carbon sites along each zigzag chain (the number of
zigzag chains). The periodic boundary condition is imposed,
so that the lattice is topologically a torus and both Nx and Ny

are even integers. The self-consistent mean-field calculations
(at zero temperature, unless otherwise specified) start with a
uniform charge-ordered ferrimagnetic initial state, to allow the
charge ordering and the (ferromagnetic or antiferromagnetic)
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FIG. 1. Band structures and lattice structures. (a) The band struc-
tures of the pristine graphane for U = 6 eV. The horizontal dotted
lines label the valence band top and conduction band bottom. The
vertical dotted lines label the high symmetry points in the Brillouin
zone, � = (0, 0), K = ( 1

2 ,
√

3
2 ) 4π

3a , and M = (
√

3
2 , 1

2 ) 2π√
3a

. Each band
is twofold degenerate. E = 0 eV labels the position of the chemical
potential. (b) A 12 × 8 graphane lattice with a carbon dimer defect
enclosed by a blue ellipse. The larger yellow (smaller red) balls
represent the carbon (hydrogen) atoms.

magnetic ordering to form spontaneously (see Appendix A for
more details).

As shown in Fig. 2 are the energy levels of a 30 × 30
graphane lattice with a single carbon dimer defect, for U =
6 eV. The energy level distributions are independent of the
orientation of the carbon dimer bond. Besides the stoichio-
metric half-filled system [Figs. 2(a) and 2(c)], we consider
the case where one additional electron is removed from the
system [Figs. 2(b) and 2(d)]. Additional energy levels appear
inside the bulk band gap for both cases. For the half-filled
system, there are two in-gap energy levels, with each one
twofold degenerate. The four in-gap defect states are posited
right at the center of the full sequence of all the states. That
is, among the 30 × 30 × (2 + 2) − 2 × 2 = 3596 states of the
30 × 30 lattice with two missing hydrogen atoms, the in-gap
states are numbered as the 1797th state to the 1800th state. To
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FIG. 2. Energy distribution of the quasiparticle states. A 30 ×
30 graphane lattice with one carbon dimer defect (two hydrogen
vacancies on two NN carbon sites) is considered. U = 6 eV. (a) and
(c) are for the half-filled system. (b) and (d) are for the system with
one electron less than the half-filled system. (c) and (d) are enlarged
plots close to the bulk band gap. The six symbols in (c) and (d),
E0 to E5, are the names defined for the six states right above the
corresponding symbols. The horizontal dashed lines at E = 0 eV
label the positions of the chemical potential.

be clear, we have defined on Figs. 2(c) and 2(d) the valence
band top as E0, the four defect states as E1 to E4 in an order
of increasing energy, and the conduction band bottom as E5.
So, in the ground state of the half-filled system, we have one
occupied and one empty twofold degenerate in-gap energy
levels [Fig. 2(c)]. By removing one electron from the half-
filled system, the twofold degeneracies in the in-gap energy
levels are broken and we now have four nondegenerate in-gap
energy levels [Fig. 2(d)]. The defect states are now fully spin
polarized and the ground state has a magnetic moment from
the occupied lowest-energy in-gap defect state (E1). The wave
functions of the in-gap states center around the two carbon
sites of the dimer. Away from the 2NN sites of the carbon
dimer sites, the weights of the in-gap states decay rapidly to
be negligible.

The case with one electron removed from the system per
carbon dimer [i.e., Figs. 2(b) and 2(d)] can be attained by
fine tuning a gate voltage in the presence of a static magnetic
field B0, or by grabbing an electron from the carbon dimer
with a positively charged scanning tunneling probe. Here,
we illustrate the first mechanism in Fig. 3, at both the room
temperature (300 K) and a lower temperature (100 K). A
uniform static magnetic field is applied to give a Zeeman
energy of μ0B0 = 0.001 eV, where μ0 is the Bohr magneton.
The magnetic field is assumed to be oriented along the z axis,
perpendicular to the graphane lattice. The magnetic field on
one hand splits the twofold degeneracy of the in-gap states
in the half-filled system, on the other hand fixes the spin
quantization axis along the z direction. The relevant fine
tuning of the electron occupation number is associated with
the jump of Ne from 1798 to 1797. Importantly, the width
of the chemical potential range for which the total electron
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FIG. 3. Total number of electrons (Ne) as a function of the
chemical potential (μ) in a 30 × 30 graphane lattice with one carbon
dimer defect. U = 6 eV. The self-consistent mean-field calculations
(at 300 and 100 K) are performed in the presence of a static magnetic
field B0, which gives a Zeeman energy of μ0B0 = 0.001 eV, with μ0

the Bohr magneton.

number is 1797 is determined not by the Zeeman energy, but
by the energy separation between E1 and E2 in the case with
one electron less than stoichiometry.

To test the robustness of the in-gap defect states, E1 to
E4, we study their dependence on U and the lattice size. The
dependence on U of several characteristic energy intervals are
shown in Fig. 4. First of all, for moderate and small correlation
strength U < 9 eV (U < 10 eV), the half-filled (one electron
less than half-filled) system always has four well-defined
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FIG. 4. Dependence of the in-gap defect states on the Hubbard
interaction U . A single carbon dimer defect is created inside a
30 × 30 graphane lattice. The subindices of the energies follow the
definitions of Figs. 2(c) and 2(d). (a) is for the half-filled system.
The curves for n + 1 = 2 and n + 1 = 4 coincide, which are zero
for all U . (b)–(d) are for the system with one electron less than
the half-filled system. The inset of (d) is the schematic energy level
structure of the defect states, for U � 9 eV. It also shows the four
possible transitions, corresponding to the four energy intervals on
Fig. 4(c), among the four defect states. γ and B1 represent the optical
field and the ac magnetic field, respectively.
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in-gap defect states. While we have E2 − E1 = E4 − E3 =
0 for the half-filled system [Fig. 4(a)], removing one elec-
tron from the system breaks this degeneracy for all U > 0
[Fig. 4(b)]. In the system with one electron less than half
filling and for U < 10 eV, E1 and E3 are found to have the
same spin, which is opposite to the spin of E2 and E4. We
have also checked for U = 6 eV that, as the size of the
graphane lattice becomes larger than 12 × 8 (up to 64 × 64),
there are only very tiny changes in the in-gap energy levels
and their positions with respect to the bulk conduction and
valence bands. Therefore the in-gap defect states for both the
half-filled system and the one electron less than half-filled
system are robust qualitative features of the graphane lattice
with a carbon dimer defect.

We now construct the low-energy effective model of the
defect states, for U � 9 eV. Because the graphane lattice
under periodic boundary conditions has the inversion sym-
metry both before and after the creation of a carbon dimer
defect [see Fig. 1(b)], the defect states should have definite
parities. Denoting the eigen-ket of the defect level Ei as |i〉
(i = 1, . . . , 4) and constructing the parity operator P̂ with
respect to the center of the carbon dimer bond, we find through
numerical calculations that the two lower (E1 and E2) and two
upper (E3 and E4) defect states have separately even and odd
parities. That is, P̂|i〉 = |i〉 for i = 1 and 2 and P̂|i〉 = −|i〉
for i = 3 and 4. In going from the half-filled system to the
system with one electron less than half filling, the twofold spin
degeneracy in the two in-gap energy levels are broken, but
the parities of the states do not change. Denoting the creation
operators for the states with even (odd) parity and σ (= ↑,
↓) spin as a†

σ (b†
σ ), namely a†

↑ (a†
↓) creates the E1 (E2) state

and b†
↑ (b†

↓) creates the E3 (E4) state, we write the low-energy

effective model ĤC2 for the in-gap defect states as

�

2

∑
σ

(b†
σ bσ − a†

σ aσ ) + m

2
(a†

↓a↓ − a†
↑a↑)

+ m′

2
(b†

↓b↓ − b†
↑b↑). (2)

� = (E3 + E4)/2 − (E1 + E2)/2. m and m′ are respectively
the spin splitting energies of the two even-parity and two odd-
parity states. For the half-filled system, we have m = m′ = 0.
For the system with one electron less than half filling, we
have m > 0 and m′ > 0. By applying a static magnetic field
along the z axis, during the process of removing one electron
from the carbon dimer, we can set the spin quantization
axis perpendicular to the graphane plane, introduce the basis
operator for the subspace expanded by the four defect states as
φ† = [a†

↑, a†
↓, b†

↑, b†
↓], and define σα and sα (α = x, y, z) as the

Pauli matrices in the subspace of parity and spin, respectively.
In this new basis, we write ĤC2 = φ†HC2φ, with

HC2 = −�

2
σz ⊗ s0 − m + m′

4
σ0 ⊗ sz − m − m′

4
σz ⊗ sz,

(3)

where σ0 and s0 are separately unit matrices in the parity and
spin subspaces.

III. QUANTUM MANIPULATIONS OF DEFECT STATES

Transitions between opposite-parity (opposite-spin) states
of the same spin (parity) could be triggered by an optical
field (ac magnetic field) through the electric dipole (magnetic
dipole) transition. These manipulations are summarized as the
following driving Hamiltonian [35]

Ĥd = −μ0B0

∑
σ

σ (a†
σ aσ + b†

σ bσ )

−μ0B1 cos(ω1t )(a†
↑a↓ + b†

↑b↓ + H.c.)

+ 2iγ cos(ωt )
∑

σ

(a†
σ bσ − b†

σ aσ ). (4)

In the basis φ†, we have Ĥd = φ†Hdφ, where

Hd = −μ0B0σ0 ⊗ sz − μ0B1 cos(ω1t )σ0 ⊗ sx

− 2γ cos(ωt )σy ⊗ s0. (5)

B0, B1, and γ are implicitly time-dependent, nonzero in
certain time intervals. B0 is the dc magnetic field along the
z direction that fixes the spin quantization axis of the system
with one electron less than half filling. B1 is the magnitude
of an ac magnetic field of frequency ω1 and directed along
the x direction. γ , which denotes the strength of the electric
dipole transition, depends on the polarization vector and the
intensity of the laser pulse. Both the B1 term and the γ term
induce two Rabi oscillations [see the inset of Fig. 4(d)]. For
the system with one electron less than half filling, the two tran-
sitions induced by the same stimulus have different resonant
frequencies. For B1, the two resonant frequencies are m and
m′. For γ , the two resonant frequencies are � + (m − m′)/2
and � + (m′ − m)/2. As is shown in Fig. 4(d), m 
= m′ holds
for general U .

Analysis of the quantum manipulations could be simplified
by introducing the rotating frame [36]. Consider the rotating
frame defined by (in the basis φ†, we assume h̄ = 1 hereafter)

H0 = −ω

2
σz ⊗ s0 − ω1

2
σ0 ⊗ sz. (6)

The effective rotating frame Hamiltonian for H = HC2 + Hd

with respect to H0 is [37]

H̃ = eiH0t He−iH0t − H0 = −m − m′

4
σz ⊗ sz

−
(

m + m′

4
+ μ0B0 − ω1

2

)
σ0 ⊗ sz − μ0B1

2
σ0 ⊗ sx

− � − ω

2
σz ⊗ s0 − γ σy ⊗ s0. (7)

The evolution of the defect states is thus driven by H̃ and H0,
which are both simpler than H . The terms in the second line
and third line of Eq. (7) control separately the evolutions in the
subspace of the two spins and the two parities. The first term
of H̃ couples the evolutions in the two channels. In arriving
at Eq. (7), we have applied the rotating-wave approximation
to discard the high-frequency terms [35,36]. Because m′ 
= m,
we can realize approximately the four transitions illustrated
in Fig. 4(d) one at a time, by tuning the frequencies of the
laser field and (or) the ac magnetic field, and by controlling
the lengths of the pulse sequences. For example, by tuning
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ω1 = m′ and turning off the optical field, we can realize a
quantum operation that exchanges E3 and E4.

A system can realize universal quantum computation under
the premise that arbitrary one-qubit unitary gates (i.e., unitary
quantum operations) and at least one nontrivial two-qubit gate
(e.g., the controlled-NOT gate) can be implemented with it
[37–41]. We explain in what follows why the graphane with
carbon dimer defects meets this requirement. More details are
contained in Appendix B.

First consider the one-qubit unitary gates. For the half-
filled system, we ignore the spin degree of freedom and the
defect states constitute a parity qubit. Tuning the defect states
with the optical field, the model consists of the last two terms
of Eq. (7). For ω = �, the Rabi oscillation induced by the γ

term act as a Y -rotation gate. Together with the Z-rotation gate
associated with the free evolution driven by HC2(m = m′ =
0), we can achieve arbitrary unitary transformations on the
parity qubit [37].

For the system with one electron less than half filling
(per carbon dimer), let us focus on the two low-energy even-
parity states, which constitute a single spin qubit. Now, the
Z-rotation gate is realized by the m term of HC2, and the ac
magnetic field B1 with frequency ω1 = m + 2μ0B0 actualizes
the X -rotation gate for this spin qubit. Again, we can combine
these two kinds of operations to perform arbitrary single-qubit
unitary gates on this spin qubit [37].

We consider next the two-qubit gates. A two-qubit gate is
encoded in any four states that can be manipulated in a non-
trivial manner at the two-qubit level [37,42–44]. In the present
defective graphane lattice, the four states may be the four
nondegenerate defect states of a carbon dimer with one
electron less than half filling, or the four doubly degenerate
defect states of two (stoichiometric) half-filled carbon dimers.
For the former case, the four transitions shown in Fig. 4(d)
have different resonant frequencies and can have separate
manipulations. The controlled-NOT gate, which performs a
swapping of two (e.g., E3 and E4) among the four in-gap
states, is certainly realizable (see Appendix B for more de-
tails). For the latter case, we have to couple the states of the
two carbon dimers. Compared to local couplings mediated by
the lumped electronic circuits or fine tuning the interdimer dis-
tances, the distributed quantum computing, which entangles
spatially separated qubits (i.e., the half filled carbon dimers)
via linear optics [45–49], seems more flexible and promising.
The application of the distributed quantum computing scheme
[45,46] to achieve nontrivial two-qubit gates in the system
with half-filled carbon dimers will not be explained here.

IV. A SCALABLE 2D QUANTUM COMPUTING PLATFORM

Based on the above analyses, graphane with carbon dimer
defects appear to be a unique 2D platform for quantum
computer, similar to the silicon wafer for digital computer.
Suppose we have prepared an ideal sample of graphane,
we then proceed by making analogy between this graphane
sheet and the silicon wafer of the semiconductor industry. A
carbon dimer is an atomic-size qubit (or, qudit, the multilevel
generalization of qubit [42–44]) immersed within the insulat-
ing bulk matrix of graphane, analogous to transistors in the
silicon wafer. By creating more carbon dimers, controlling

the distances and relative dimer bond orientations between
different dimers, we get a qubit network whose property
is controlled by design. The graphane lattice with properly
created carbon dimer defects then serves as an ideal scalable
quantum computing network. We discuss in what follows
several relevant issues.

For the preparation of a fiducial initial state [37], we may
take the ground state or a state connected to the ground
state by a Rabi flopping as the initial state. Since the energy
separation between the occupied and the empty defect states
has a magnitude of 0.5 eV (3 eV) for the system with
one electron less than half filling (half-filled system), the
mean-field parameters and the energy level structures at zero
temperature are barely changed at a temperature about 300 K,
which is confirmed by explicit numerical calculations. We
therefore expect to achieve high-fidelity quantum control at
room temperature, because the thermal fluctuation energy is
at least one order of magnitude smaller than the above energy
separation.

The decoherence may be alleviated by suspending the
graphane lattice to isolate it from the environment, and by
sweeping the gates at a speed faster than the decoherence
processes. The suspended graphane lattice follows directly
from the suspended graphene lattice, which is the natural
motherboard to produce the graphane. For resonant Rabi
transitions, the sweeping speed is determined by γ or μ0B1

[36,37,50] (see Appendix B). By increasing the intensity of
the laser pulse or the strength of the ac magnetic field, it
is possible to realize gates fast compared to the relevant
decoherence processes.

The spatial locality of the in-gap states implies that we
can process a tiny graphane single crystal into a chip with
an extremely high areal density of carbon dimer defects.
Suppose we create one carbon dimer in every 12 × 8 supercell
[e.g., according to Fig. 1(b)], the neighboring carbon dimer
defects are electronically isolated according to our numerical
calculations for U = 6 eV. Then, a nanometer-size graphane
flake may host a single carbon dimer, and a graphane flake of
an area about 1 μm × 1 μm can contain more than 720 × 650
isolated carbon dimer defects. This estimation is however
over-optimistic, because it is hard to reduce the cross section
of a beam of electromagnetic wave much smaller than its
wavelength. In the semiconductor industry, the immersion
lithography was introduced to reduce the feature size (e.g.,
22 nm) of the integrated circuit well below the wavelength
of the light (i.e., 193 nm) used in the lithography [51]. In
normal conditions, to independently manipulate different car-
bon dimers, the separation between NN carbon dimers should
be larger than the wavelength of the stimuli. For U � 6 eV,
the resonant transitions shown in Fig. 4(d) correspond to ac
magnetic fields of about 2.5 μm in wavelength (i.e., infrared
light) and optical fields of about 0.4 μm in wavelength (i.e.,
violet visible light). Therefore a graphane sample of an area
about 1 mm × 1 mm is able to host at least 100 × 100 well-
separated carbon dimers. This might already be enough to
illustrate the large-scale quantum computations [52]. If a large
computational overhead turns out to be necessary to perform
the quantum error corrections [53], a centimeter-size graphane
sample should contain sufficient number of carbon dimers for
large-scale quantum computation.
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Finally, we propose methods of creating the carbon dimers
in graphane. One approach is to remove the hydrogen atoms
mechanically or electrically by an atomic-size scanning tun-
neling probe [54–58]. In application, we flip the graphane
lattice after removing the target hydrogen atoms on one side of
the sample, and then remove the target hydrogen atoms on the
opposite side of the sample. A related technique, lithography
with the electron beam from a scanning electron microscopy
[59], might also be useful if the electron beam has a diameter
in the angstrom scale. Another prospective method is the C-H
activation, a technique of breaking and functionalizing the
C-H bonds in organic molecules [60–63]. One implementa-
tion of this method is to remove hydrogen atoms by forming
carbon-metal bonds and then remove the metallic atoms. This
method can be combined with the first method, by preparing
the scanning tunneling probe with the metal that can activate
the C-H bonds (e.g., Pd [62,63]). If the tip of the probe is stiff
enough (e.g., by alloying), we may remove directly the metal-
lic tip without leaving a metal atom above the carbon atom.
To make the first and the last methods feasible, the tip of the
scanning tunneling probe must be atomically sharp, to ensure
that only the hydrogen atom underneath the probe is removed.
This requirement, although seemingly demanding, is realistic
because tailoring microstructures at the single-atom level with
scanning tunneling microscope have been achieved long ago
[54–58]. To increase the accuracy of real-space positioning
associated with flipping the graphane lattice, we may embed
the graphane sample into a rigid frame, which can be rotated
around a fixed axis in a finely controlled manner. In addition,
besides controlling the accuracy of the flipping process, we
may run a (partial) scanning tunneling microscopy of the
graphane sample after the flipping. This will allow us to map
the distribution of the H vacancies introduced to the first side
of the graphane lattice. Based on this knowledge, we may
proceed to remove accurately the target H atoms on the second
side of the graphane sample. Finally, instead of flipping the
graphane sample, we may place the graphane lattice and the
frame holding it vertically, and then remove the H atoms on
the two sides of the graphane sample simultaneously with
two individual probes, in terms of a two-probe version of the
scanning tunneling microscopy [64,65].

V. SUMMARY

In summary, we have found robust in-gap states in
graphane with carbon dimer defects. Each carbon dimer defect
introduces four defect states, which fall into two doubly de-
generate energy levels in the stoichiometric half-filled system
and are all nondegenerate in the system where one additional
electron is removed from each carbon dimer. By encoding
the single-qubit and two-qubit systems in these in-gap states,
we can realize universal quantum computation at ambient
conditions. Being intrinsic defects of a crystalline solid-state
material, different carbon dimers have identical energy struc-
tures and can realize exactly the same quantum gate when
acted on by the same operation. The spatial locality of the
in-gap states ensures the scalability of the carbon dimers in
graphane. These features testify graphane as a unique two-
dimensional platform to realize future large-scale quantum
computations.
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APPENDIX A: THE SELF-CONSISTENT MEAN-FIELD
CALCULATIONS

In Eq. (1) of the main text, the only interaction term is
the on-site Hubbard interaction within the p orbitals of the
carbon atoms. The mean-field study of the model begins with
the following decoupling to the Hubbard term:

U
∑

i

c†
i↑ci↑c†

i↓ci↓ � U
∑

i

[〈c†
i↑ci↑〉c†

i↓ci↓ + c†
i↑ci↑〈c†

i↓ci↓〉

− 〈c†
i↑ci↑〉〈c†

i↓ci↓〉]. (A1)

〈Â〉 is the expectation value of the Â operator. At zero temper-
ature, 〈Â〉 = 〈GS|Â|GS〉 is defined in terms of the ground state
|GS〉. At nonzero temperature T > 0 K, 〈Â〉 = Tr{e−βK̂ Â}/Z ,
where Z = Tr{e−βK̂} and β = 1/(kBT ) (kB is the Boltzmann
constant). K̂ = Ĥ − μN̂ and μ is the chemical potential. N̂ =∑

i(c
†
i↑ci↑ + c†

i↓ci↓ + ηih
†
i↑hi↑ + ηih

†
i↓hi↓) is the operator for

the total number of electrons, where ηi = 0 for the hydrogen
vacancy sites and ηi = 1 otherwise. Tr{· · · } = ∑

n〈n| · · · |n〉
is the trace operation over the complete set of eigenstates.
For simplicity in notation, we define the two mean-field
parameters introduced for the ith carbon site as ni↑ = 〈c†

i↑ci↑〉
and ni↓ = 〈c†

i↓ci↓〉. By substituting Eq. (A1) into Eq. (1) of the
main text, we obtain the mean-field Hamiltonian. From the
above definitions, the mean-field Hamiltonian and its eigen-
spectrum depends on the mean-field parameters niσ (σ =
↑,↓), the mean-field parameters are defined by the eigenstates
of the mean-field Hamiltonian. This mutual dependence de-
fines a self-consistency loop for the mean-field parameters and
the mean-field Hamiltonian.

The self-consistent calculation begins by assigning an ini-
tial value to each of the independent mean-field parameters,
niσ = n(0)

iσ (σ = ↑,↓). Substituting these mean-field parame-
ters to Eq. (A1) and replacing the Hubbard term in Eq. (1) by
Eq. (A1), we get the mean-field Hamiltonian. This mean-field
model is then diagonalized, which gives its full eigenspectrum
and the corresponding eigenvectors. Then we determine μ

by requiring the correct total number of electrons in the
system, 〈N̂〉 = Ne. Substituting the eigenvectors and μ to
the definition of the mean-field parameters, we get a new
set of the mean-field parameters, which we denote as n(1)

iσ
(σ = ↑,↓). The above iterative calculations are repeated until
the difference |n(m)

iσ − n(m−1)
iσ | is smaller than a preseted small

positive number δ, for all i and σ . We then take n(m)
iσ (σ =

↑,↓) as our convergent mean-field parameters and calculate
the eigenstates of the corresponding mean-field model.

We have tested the convergence of the results with respect
to the choice of δ and n(0)

iσ (σ = ↑,↓). The results in the main
text are obtained for δ = 10−5. By reducing to δ = 10−8, no
appreciable changes are found in either the half-filled system
or the system with one electron less than half filling. For both
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the bulk ideal graphane and the real-space graphane lattice
with a carbon dimer defect, we take uniform initial states. We
therefore have four independent initial mean-field parameters,
n1↑, n1↓, n2↑, and n2↓. The subindices 1 and 2 denote the
two sublattices of the carbon atoms. We take n(0)

iσ = n1σ

(σ = ↑,↓) if the ith carbon atom belongs to sublattice
1 and set n(0)

iσ = n2σ (σ = ↑,↓) if the ith carbon atom
belongs to sublattice 2. The charge-ordered ferrimagnetic
initial state, which allows the spontaneous emergence
of charge ordering and (or) magnetic ordering from the
self-consistent calculations, is subject to the constraints
n1↑ + n1↓ 
= n2↑ + n2↓, (n1↑ − n1↓)(n2↑ − n2↓) < 0, and
(n1↑ − n1↓) + (n2↑ − n2↓) 
= 0. We have considered
several different sets of initial parameters, including
{n1↑ = 0.78, n1↓ = 0.32, n2↑ = 0.35, n2↓ = 0.55}, {n1↑ =
0.71, n1↓ = 0.39, n2↑ = 0.35, n2↓ = 0.55}, and {n1↑ = 0.57,

n1↓ = 0.45, n2↑ = 0.45, n2↓ = 0.53}. Consistent results for
the convergent mean-field parameters and the eigenspectrum
are obtained for both the half-filled system and the system
with one electron less than half filling.

APPENDIX B: QUANTUM OPERATIONS

In this section, we discuss in greater details the quantum
gates (i.e., quantum operations) mentioned in the main text.
These include the unitary one-qubit gates on the parity qubit
of the half-filled system, the unitary one-qubit gates on the
spin qubit of the system with one electron less than half filling
per carbon dimer, and the nontrivial two-qubit quantum gates
on the system with one electron less than half filling per
carbon dimer. We will first write down the formula for the
most general quantum operations that can be realized in the
present system, and then specialize to the cases relevant to our
discussions in the main text. In the following constructions
for the quantum gates, we assume that the applied stimuli
(i.e., the ac and the static magnetic fields, and the laser pulse)
turn on and turn off abruptly so that we can ignore the time
spent for these changes. We also assume that the amplitudes
of the external stimuli keep constant during the operations
of the quantum gates. We therefore restrict to rectangular-
wave pulses of the external stimuli. Also notice that, all the
constructed quantum gates are assumed to operate on a single
carbon dimer defect which is far away from and thus isolated
from neighboring carbon dimers.

1. General quantum operations

The Schrödinger equation in the laboratory frame is (we
assume h̄ = 1 hereafter)

i
∂

∂t
|χ (t )〉 = H |χ (t )〉, (B1)

where H = HC2 + Hd is the full Hamiltonian. In the basis
φ† = [a†

↑, a†
↓, b†

↑, b†
↓], we have

H = −�

2
σz ⊗ s0 − μ0B0σ0 ⊗ sz

− m + m′

4
σ0 ⊗ sz − m − m′

4
σz ⊗ sz

−μ0B1 cos(ω1t )σ0 ⊗ sx − 2γ cos(ωt )σy ⊗ s0. (B2)

We introduce the rotating frame defined, in the basis φ†, by
[36,37]

H0 = −ω

2
σz ⊗ s0 − ω1

2
σ0 ⊗ sz. (B3)

The dynamics in the rotating frame is governed by

|ϕ(t )〉 = eiH0t |χ (t )〉 (B4)

and

i
∂

∂t
|ϕ(t )〉 = (eiH0t He−iH0t − H0)|ϕ(t )〉 ≡ H̃ |ϕ(t )〉, (B5)

with

H̃ = −m − m′

4
σz ⊗ sz −

(
m + m′

4
+ μ0B0 − ω1

2

)
σ0 ⊗ sz

− μ0B1

2
σ0 ⊗ sx − � − ω

2
σz ⊗ s0 − γ σy ⊗ s0. (B6)

In arriving at the above expression, we have discarded the
high-frequency (with angular frequencies 2ω and 2ω1) terms,
in the spirit of the rotating-wave approximation (RWA) [36].
The RWA, which is valid if μ0B1 (γ ) is much smaller than
ω1 (ω) [66], is a reasonable approximation for our present
system. For rectangular-wave pulses, both during the action
of the pulses and when the pulses are turned off, H̃ is time
independent. The dynamical evolution of the system is thus
simplified. Notice that, the above transformation from the
laboratory frame to the rotating frame is formally equivalent
to the transformation from the Schrödinger picture to the
interaction picture. The major difference being that the present
H0 is not a part of the original model but rather motivated to
remove the time dependence of the model.

Now, consider the evolution of an arbitrary state in the
Hilbert space of the four in-gap defect states, from t1 to t2.
Formally, we define the evolution operator as

|χ (t2)〉 = U (t2, t1)|χ (t1)〉, (B7)

in the laboratory frame, and

|ϕ(t2)〉 = U0(t2, t1)|ϕ(t1)〉, (B8)

in the rotating frame. Taking advantage of the definition of
Eq. (B4), we can relate the two evolution operators as

|χ (t2)〉 = e−iH0t2U0(t2, t1)eiH0t1 |χ (t1)〉 = U (t2, t1)|χ (t1)〉,
(B9)

Because H̃ is time-independent, we have

U0(t2, t1) = e−iH̃ (t2−t1 ). (B10)

The full evolution operator in the laboratory frame is thus

U (t2, t1) = e−iH0t2 e−iH̃ (t2−t1 )eiH0t1 . (B11)

The initial time of the quantum operation is arbitrary. How-
ever, the difference between |χ (t1)〉 and |ϕ(t1)〉 is irrelevant
to the dynamics. We will therefore set t1 = 0, so that at the
beginning of the evolution the two wave functions are the
same, and the evolution operator depends only on the total
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time of operation t [67]

U (t, 0) = e−iH0t e−iH̃t . (B12)

It is necessary to point out that, not all the terms in
H are always present in an arbitrary time or time period.
For example, in the half-filled system, we have m = m′ = 0.
Besides, there is no real transition between two states of
opposite spin and same parity, because the two states are either
both occupied or both empty. Therefore, in discussing general
quantum operations applied on the half-filled system, we can
set B0 = B1 = ω1 = 0. On the other hand, the ac magnetic
field may also be oriented along a general direction in the
xy plane. This extra complication, while more general, is not
necessary in the present framework, and therefore we will
restrict to the model defined above. With the above point in
mind, any quantum operation (i.e., quantum gate) that can be
realized in our system is represented as an evolution operator
defined by Eq. (B12).

For the system with one electron less than half filling
per carbon dimer, only one electron occupies the four in-gap
defect states. The Hilbert space is four-dimensional, and we
denote the four basis as | j〉 ( j = 1, . . . , 4). The basis | j〉
( j = 1, . . . , 4) represents that the Ej state is occupied by the
electron and all the other three defect states are empty. Starting
from the ground state, |1〉, we can in principle prepare an
initial state of the form

|χ (0)〉 = c1|1〉 + c2|2〉 + c3|3〉 + c4|4〉, (B13)

with c j ( j = 1, . . . , 4) general complex numbers that normal-
ize |χ (0)〉. This can be achieved by exerting a proper sequence
of ac magnetic fields and laser pulses. Then, the final state
after an evolution (quantum operation) of time t is

|χ (t )〉 = U (t, 0)|χ (0)〉 = c1U (t, 0)|1〉 + c2U (t, 0)|2〉
+ c3U (t, 0)|3〉 + c4U (t, 0)|4〉. (B14)

For the stoichiometric half-filled system, two electrons occupy
the four in-gap defect states. In the ground state, which we
denote as |a〉, E1 and E2 are both occupied whereas E3 and E4

are both empty. A resonant laser pulse can connect the ground
state to another state |b〉, in which E1 and E2 are both empty,
whereas E3 and E4 are both occupied. The ac magnetic field,
which couples E1 to E2 and E3 to E4, cannot lead to new states
other than |a〉 and |b〉. Therefore the Hilbert space of the half-
filled system is two-dimensional and have |a〉 and |b〉 as the
two basis vectors. In this case, we will turn off the ineffective
magnetic fields and manipulate the defect states with the laser
pulses. Starting from the ground state |a〉, we can prepare, by
applying a proper laser pulse, an initial state of the form

|χ ′(0)〉 = c′
1|a〉 + c′

2|b〉, (B15)

where c′
1 and c′

2 are general complex numbers that normalize
|χ ′(0)〉. The final state after an evolution of time t is obtained
by applying U (t, 0) on the above state

|χ ′(t )〉 = U (t, 0)|χ ′(0)〉 = c′
1U (t, 0)|a〉 + c′

2U (t, 0)|b〉.
(B16)

Now, we analyze several general aspects of the evaluation
of the evolution operator U (t, 0). Because the two terms of H0

commute, we have

eiH0t = e−i ωt
2 σz⊗s0 e−i ω1t

2 σ0⊗sz

=
(

cos
ωt

2
σ0 ⊗ s0 − i sin

ωt

2
σz ⊗ s0

)

×
(

cos
ω1t

2
σ0 ⊗ s0 − i sin

ω1t

2
σ0 ⊗ sz

)
. (B17)

When there is no ac magnetic field (optical field), we set ω1 =
0 (ω = 0), the evolution operator then reduces to a rotation
operator about the z axis (we will call it Z rotation in what
follows) in the parity (spin) subspace [37].

The μ0B1 and γ terms of H̃ are not commutative to the
remaining part of H̃ . We therefore do not have a similar simple
expansion for exp(iH̃t ) as that for exp(iH0t ). In this case,
instead of directly expanding the exponential into its Taylor
series, we first diagonalize H̃ with a unitary transformation

V †H̃V = H̃d , (B18)

where V is the desired unitary matrix, which diagonalizes H̃ ,
and H̃d is the diagonal matrix with the eigenvalues of H̃ as the
diagonal elements. Then we have

eiH̃t = eiV H̃dV †t = VeiH̃d tV †, (B19)

which is easily evaluated after having V and H̃d in hand.
The solution of V and H̃d for the most general H̃ is

cumbersome. On the other hand, if only one of μ0B1 and γ

is nonzero, that is if we apply the ac magnetic field and laser
pulse separately and not simultaneously, then H̃ reduces to
the direct sum of two decoupled 2 × 2 subsystems and the
corresponding V and H̃d are easily solvable. We will in what
follows focus on this special class of quantum operations and
will see that they are sufficient to realize universal quantum
computation in the present system. To facilitate the direct-sum
decomposition to H̃ , we introduce the following projection
operators in the spin and parity subspaces:

Ps
± = s0 ± sz

2
, Pσ

± = σ0 ± σz

2
. (B20)

The backward transformations are

s0 = Ps
+ + Ps

−, sz = Ps
+ − Ps

−;
(B21)

σ0 = Pσ
+ + Pσ

−, σz = Pσ
+ − Pσ

− .

The projection operators have the following important
properties

Ps
+Ps

+ = Ps
+, Ps

−Ps
− = Ps

−, Ps
+Ps

− = Ps
−Ps

+ = 0;

Pσ
+Pσ

+ = Pσ
+, Pσ

−Pσ
− = Pσ

−, Pσ
+Pσ

− = Pσ
−Pσ

+ = 0. (B22)

We carry out the direct-sum decompositions to H̃ for the
above special cases. First, if neither the ac magnetic field nor
the laser pulse is applied, we set ω1 = B1 = ω = γ = 0. The
remaining terms of H̃ (ω1 = B1 = ω = γ = 0) ≡ H̃1 = HC2

are all mutually commutative, and there is no need to make
the direct-sum decomposition. Second, if we apply only the
optical field (i.e., laser pulse), we set ω1 = B1 = 0. B0 is
tunable and may be zero. We decompose H̃ (ω1 = B1 = 0) ≡
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H̃2 as

H̃2 = H̃ s
+ + H̃ s

− −
(

m + m′

4
+ μ0B0

)
σ0 ⊗ sz, (B23)

where the last term is singled out because it commutes with
the remaining part of the model, and

H̃ s
+ = −m − m′

4
σz ⊗ Ps

+ − � − ω

2
σz ⊗ Ps

+ − γ σy ⊗ Ps
+

=
[(

−m − m′

4
− � − ω

2

)
σz − γ σy

]
⊗ Ps

+, (B24)

H̃ s
− = m − m′

4
σz ⊗ Ps

− − � − ω

2
σz ⊗ Ps

− − γ σy ⊗ Ps
−

=
[(

m − m′

4
− � − ω

2

)
σz − γ σy

]
⊗ Ps

−. (B25)

Third, if we apply only the ac magnetic field, we set ω = γ =
0. We decompose H̃ (ω = γ = 0) ≡ H̃3 as

H̃3 = H̃σ
+ + H̃σ

− − �

2
σz ⊗ s0, (B26)

where the last term is singled out because it commutes with
the remaining part of the model, and

H̃σ
+ = Pσ

+ ⊗
[(

−m

2
− μ0B0 + ω1

2

)
sz − μ0B1

2
sx

]
, (B27)

H̃σ
− = Pσ

− ⊗
[(

−m′

2
− μ0B0 + ω1

2

)
sz − μ0B1

2
sx

]
. (B28)

Because of the properties of the projection operators listed in
Eq. (B22), the three terms of H̃2 all commute with each other,
as does the three terms of H̃3. The exponentials exp(iH̃2,3t )
thus reduce to the product of three commutative exponentials
that are easy to evaluate.

For the above cases of interest to us, the evolution ma-
trix for the quantum gates can be obtained by applying the
following formula:

Rn̂(θ ) = e−iθ n̂·�σ/2 = cos
θ

2
σ0 − i sin

θ

2
(n̂ · �σ ), (B29)

where n̂ = (n1, n2, n3) is a real unit vector, σ0 is the 2 × 2
unit matrix, �σ = (σx, σy, σz ) with σα (α = x, y, z) the Pauli
matrices, and the vector inner product n̂ · �σ = n1σx + n2σy +
n3σz. Rn̂(θ ) represents a θ angle rotation of the σ spin around
the axis along n̂, and will be called N rotation (e.g., X, Y, Z
rotations) in what follows [37]. Notice that, in applying the
above formula to the evolution operator expressed in terms
of the projection operators, there is a term corresponding to
the complementary subspace. As an example, considering the
evolution driven by H̃σ

+ , we have

e−iH̃σ
+ t = Pσ

+ ⊗ [cos(�t )s0 + i sin(�t )n̂ ·�s] + Pσ
− ⊗ s0,

(B30)

where the frequency

� =
√(

ω1 − m

2
− μ0B0

)2

+
(

μ0B1

2

)2

(B31)

and the unit vector along the rotation axis

n̂ = (n1, n2, n3) = 1

�

(
μ0B1

2
, 0,

m − ω1

2
+ μ0B0

)
. (B32)

The last term, Pσ
− ⊗ s0, which is a unit operator in the

complementary subspace, should be included in the expan-
sion to arrive at the correct final result. When ω1 = m +
2μ0B0, the H̃σ

+ subspace is at resonance. Assuming B1 >

0, we have � = μ0B1/2 and n̂ = (1, 0, 0). When the sys-
tem is evolved by a time t = ( π

2 )/� = π/(μ0B1), the two
basis states of the H̃σ

+ subspace (i.e., |1〉 and |2〉) are ex-
changed (the Rabi flopping [36,37]). On the other hand,
when the complementary subspace associated with H̃σ

− is
at resonance, we have ω1 = m′ + 2μ0B0. The H̃σ

+ subspace
is now off resonance, with � =

√
(m − m′)2 + (μ0B1)2/2

and n̂ = (n1, n2, n3) = (μ0B1, 0, m − m′)/(2�). Usually, we
have |m − m′| � |μ0B1|. So we have |n3| � |n1|, and the
hybridization between |1〉 and |2〉 is negligible for arbitrary
evolution time.

2. One-qubit gates on the parity qubit of the half-filled system

We first consider the quantum operations that can be
applied to the half-filled system. From the main text, we
have m = m′ = 0 in this case. The four in-gap defect states
gather into two twofold degenerate groups. In the presence
of a static magnetic field B0, the twofold spin degeneracies
of the two groups are broken to the same extent. If the
Zeeman interaction from B0 does not change the occupancy
of the system, the ac magnetic field cannot trigger a real
transition, because the two relevant states are always either
both occupied or both empty. Therefore, in the half-filled
system, the spin degrees of freedom is inert and can be ignored
from a practical point of view. We thus set ω1 = B1 = B0 = 0
for the half-filled system. The system is now effectively a
parity qubit, which is tunable by the optical field through the
electric dipole transition.

The model reduces to

H0 = −ω

2
σz ⊗ s0 (B33)

and

H̃ = −� − ω

2
σz ⊗ s0 − γ σy ⊗ s0. (B34)

At resonance, ω = �, and the first term of H̃ vanishes. An
evolution of duration t is thus

U (t, 0) = e−iH0t e−iH̃t = ei �t
2 σz⊗s0 eiγ tσy⊗s0

= Rσ
z (−�t )Rσ

y (−2γ t ), (B35)

which is formally a composite gate of the Y and Z rota-
tions in the parity subspace [37]. By tuning the evolution
time t , the strength of the optical field γ , and by exerting
a sequential multipulse operation, we can achieve arbitrary
unitary transformations (i.e., quantum gates) on the parity
qubit. What follows we construct the Hadamard gate (H), the
phase gate (S), and the π/8 gate (T). It is well known that
these three gates can be compounded to approximate arbitrary
single-qubit gates [37].
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In the parity subspace, and suppressing the inactive spin
degrees of freedom, the three gates can be represented in terms
of the Y and Z rotations as

S =
(

1 0
0 i

)
= ei π

4 Rz

(π

2

)
,

T =
(

1 0
0 ei π

4

)
= ei π

8 Rz

(π

4

)
, (B36)

H = 1√
2

(
1 1
1 −1

)
= ei π

2 Ry

(π

2

)
Rz(π ).

The global phase factors in front of the final expressions
have no observable effects and can be ignored. The phase (S)
and π/8 (T) gates are thus realized by turning off the laser
pulse (i.e., γ = 0) and freely evolve the system by a time of
7π/(2�) and 15π/(4�), respectively. Note that, up to the
2π phase ambiguity, we have −π/4 ≡ 7π/4 and −π/8 ≡
15π/8.

For the Hadamard (H) gate, we firstly freely evolve the
system by a time of 3π/� to get Rz(π ). Then we apply the
laser pulse. If we can continuously tune γ , we can choose γ

and the time duration t , such that �t = 4Nπ and 4γ t = 7π

are satisfied at the same time, and get Ry( π
2 ). Here N is a

large positive integer since � � γ applies. If γ is not easily
tunable, we can still apply the laser pulse for a time of 4γ t =
7π and then we freely evolve the system for an additional time
of t ′, such that �(t + t ′) = 4Nπ with N a positive integer.

3. One-qubit gates on the spin qubit of the system with one
electron less than half filling per carbon dimer

In the system with one electron less than half filling, we
can have different ways of encoding a single qubit. One is to
combine |1〉 and |2〉 with a resonant ac magnetic field, another
is by combining |1〉 and |3〉 with a resonant laser pulse. Here,
we focus on the first approach, because it utilizes the two low-
est energy levels and is the most natural encoding of a qubit in
this system. The second approach can be realized in a similar
manner, which is formally equivalent to the discussions in
the previous section, if we restrict to the subspace of |1〉 and
|3〉 and ignore the evolution of the subspace consisting of |2〉
and |4〉.

The full model for the quantum gates is H̃3, together with
the model for the rotating frame

H0 = −ω1

2
σ0 ⊗ sz = −ω1

2
(Pσ

+ + Pσ
− ) ⊗ sz. (B37)

The considered spin qubit is described by H̃σ
+ in the rotating

frame. The subsystem described by H̃σ
− in the rotating frame

is decoupled from the above spin qubit. We consider them
together in this section to get a complete picture about the
evolution of the system consisting of all the four defect states,
which is relevant to the two-qubit gates to be discussed in the
next section.

The quantum evolution operator for a duration of t is

U (t, 0) = e−iH0t e−iH̃3t = U σ
+ (t, 0)U σ

− (t, 0), (B38)

where

U σ
+ (t, 0) = ei 1

2 ω1tPσ
+⊗sz e−iH̃σ

+ t ei 1
2 �tPσ

+⊗s0 , (B39)

U σ
− (t, 0) = ei 1

2 ω1tPσ
−⊗sz e−iH̃σ

− t e−i 1
2 �tPσ

−⊗s0 . (B40)

Since the H̃σ
+ subsystem is taken to encode the qubit, we set it

to be at resonance by setting ω1 = m + 2μ0B0 ≡ m̃. We thus
have

U σ
+ (t, 0) = ei 1

2 m̃tPσ
+⊗sz ei 1

2 μ0B1tPσ
+⊗sx ei 1

2 �tPσ
+⊗s0 , (B41)

U σ
− (t, 0) = ei 1

2 m̃tPσ
−⊗sz e−i 1

2 (m−m′ )tPσ
−⊗sz+i 1

2 μ0B1tPσ
−⊗sx ·

(B42)
·e−i 1

2 �tPσ
−⊗s0 = ei 1

2 m̃tPσ
−⊗sz ei�tPσ

−⊗n̂·�se−i 1
2 �tPσ

−⊗s0 ,

where we have defined the frequency � and unit vector n̂ as

� =
√(

m − m′

2

)2

+
(

μ0B1

2

)2

(B43)

and

n̂ = (n1, n2, n3) =
(

μ0B1

2�
, 0,

m′ − m

2�

)
. (B44)

In the subspace of H̃σ
+ , by tuning the evolution time t , the

strength of the ac magnetic field B1 and the static magnetic
field B0, and by exerting a sequential multipulse operation, we
can achieve arbitrary unitary transformations (i.e., quantum
gates) on the spin qubit. The last factor of H̃σ

+ , which con-
tributes a global phase factor to the evolution operator, can be
neglected if we restrict to this subspace. We will consider the
phase (S) gate, the π/8 (T) gate, and the Hadamard (H) gate
in the subspace associated with H̃σ

+ , and see whether we can
leave the subspace associated with H̃σ

− completely unaltered
at the same time.

For the S and T gates on the H̃σ
+ subspace, we set B1 = 0

and freely evolve the spin qubit by

U σ
+ (t, 0) = ei 1

2 m̃tPσ
+⊗sz ei 1

2 �tPσ
+⊗s0 . (B45)

The corresponding evolution in the subspace of H̃σ
− is

driven by

U σ
− (t, 0) = ei 1

2 m̃′tPσ
−⊗sz e−i 1

2 �tPσ
−⊗s0 , (B46)

where m̃′ = m′ + 2μ0B0 = m̃ + (m′ − m).
To realize an S gate on the H̃σ

+ subspace by a free evolution
of time t1, and at the same time keep the H̃σ

− subspace
completely inert, we require

m̃t1
2

= 2N1π + 7π

4
,

m̃′t1
2

= 2N2π, �t1 = 2N3π, (B47)

where N1, N2, and N3 are arbitrary positive integers. The
three equalities should be fulfilled at the same time. This
constraint can be satisfied by the following procedure. Firstly,
we tune the magnitude of B0 (which is the only tunable model
parameter) so that

(m̃′/2)

�
= N4

N5
, (B48)

where N4 and N5 are positive integers that are mutually prime
and as small as possible. Then we define ω0 as a common
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divisor of m̃′/2 and �

ω0 = m̃′

2N4
= �

N5
. (B49)

Then, we search for two positive integers N1 and N6, such that
we can approximately have

2m̃

ω0
= 8N1 + 7

2N6
, (B50)

up to a certain preseted precision. Finally, we determine t1 by
requiring

m̃

2
t1 = 2N1π + 7π

4
= (8N1 + 7)π

4
. (B51)

For this t1, we have

ω0t1 = 2N6π. (B52)

Therefore

m̃′

2
t1 = N4ω0t1 = 2N4N6π ≡ 2N2π,

�t1 = N5ω0t1 = 2N5N6π ≡ 2N3π. (B53)

In this manner, by tuning B0 and t1, we can realize a pure phase
(S) gate on the chosen spin qubit and leave the complementary
subspace completely unaltered. The accuracy of this gate
is determined by the preseted precision for determining N1

and N6.
A pure T gate in the subspace of H̃σ

+ can be constructed
in the same manner. Suppose the T gate is realized by a free
evolution of time t2. To keep the H̃σ

− subspace completely
inert, we require

m̃t2
2

= 2N ′
1π + 15π

8
,

m̃′t2
2

= 2N ′
2π, �t2 = 2N ′

3π, (B54)

where N ′
1, N ′

2, and N ′
3 are positive integers to be determined.

We follow the same procedure for the S gate to fulfill the
above requirements. In the first step, we tune the magnitude
of B0 to make

(m̃′/2)

�
= N ′

4

N ′
5

. (B55)

Since this is the same condition as the above one, we take
N ′

4 = N4 and N ′
5 = N5, and define ω0 in terms of Eq. (B49).

Then, we search for two positive integers N ′
1 and N ′

6, such that
we can approximately have

4m̃

ω0
= 16N ′

1 + 15

2N ′
6

, (B56)

up to a preseted precision. Finally, we determine t2 by requir-
ing

m̃

2
t2 = 2N ′

1π + 15π

8
= (16N ′

1 + 15)π

8
. (B57)

For this t2, we have

ω0t2 = 2N ′
6π. (B58)

Therefore

m̃′

2
t2 = N4ω0t1 = 2N4N ′

6π ≡ 2N ′
2π,

(B59)
�t2 = N5ω0t2 = 2N5N ′

6π ≡ 2N ′
3π.

Therefore we can realize a pure π/8 (T) gate on the chosen
spin qubit and leave the complementary subspace completely
unaltered. The accuracy of this gate is determined by the
preseted precision for determining N ′

1 and N ′
6.

We next construct the Hadamard (H) gate on the subspace
of H̃σ

+ . Again, we want to keep the H̃σ
− subspace completely

inert at the end of this operation. In terms of the X and Z
rotations in the space of the target spin qubit, the H gate can
be realized through

H = ei π
2 Rz

(π

2

)
Rx

(π

2

)
Rz

(π

2

)
. (B60)

This realization of the H gate is related to that in the previous
section through the identity

Ry(θ ) = Rz

(π

2

)
Rx(θ )Rz

(
−π

2

)
. (B61)

The H gate is therefore realized through three consecutive op-
erations. The analysis is simplified by noticing from Eq. (B36)
that Rz( π

2 ) is equivalent to the phase (S) gate up to a global
phase factor, and we can rewrite

H = ei π
2 Rz

(π

2

)
Rx

(π

2

)
Rz

(π

2

)
= SRx

(π

2

)
S. (B62)

By applying the two phase (S) gates in the same manner as
that defined above, the construction of the H gate reduces
to the design of a quantum gate realizing Rx( π

2 ). Referring
to the evolution operators defined by Eqs. (B41) and (B42),
the desired Rx( π

2 ) gate in the subspace of H̃σ
+ is realized by

imposing the following constraints:

μ0B1t3
2

= 2N ′′
1 π + 7π

4
,

m̃t3
2

= 2N ′′
2 π,

�t3 = 2N ′′
3 π, �t3 = 2N ′′

4 π, (B63)

where N ′′
i (i = 1, . . . , 4) are a set of positive integers. By the

following procedure, we can find the parameters that fulfill the
above conditions. Firstly, tuning the magnitudes of B0 and B1

to make the three relevant frequencies in integral proportions

(m̃/2) : � : � = N ′′
5 : N ′′

6 : N ′′
7 , (B64)

where N ′′
5 , N ′′

6 , and N ′′
7 are integers that are as small as

possible. In particular, the three integers have no common
divisor larger than 1. Now define the common divisor ω′′

0 of
the three frequencies as

ω′′
0 = m̃

2N ′′
5

= �

N ′′
6

= �

N ′′
7

. (B65)

Next, we search for two positive integers N ′′
1 and N ′′

8 , that are
small enough and can satisfy the following condition

2μ0B1

ω′′
0

= 8N ′′
1 + 7

2N ′′
8

, (B66)

within a certain precision. Finally, we determine the time t3 by
requiring

μ0B1t3
2

= 2N ′′
1 π + 7π

4
= 8N ′′

1 + 7

4
π. (B67)

For this t3, we have

ω′′
0t3 = 2N ′′

8 π. (B68)
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The last three conditions in Eq. (B63) are thus fulfilled as

m̃t3
2

= N ′′
5 ω′′

0t3 = 2N ′′
5 N ′′

8 π ≡ 2N ′′
2 π,

�t3 = N ′′
6 ω′′

0t3 = 2N ′′
6 N ′′

8 π ≡ 2N ′′
3 π, (B69)

�t3 = N ′′
7 ω′′

0t3 = 2N ′′
7 N ′′

8 π ≡ 2N ′′
4 π.

By adopting the above parameters, we can realize the Rx( π
2 )

gate in the subspace of H̃σ
+ , and at the same time keep the sub-

space of H̃σ
− completely unaltered. Compounding this gate in

between two S gates defined above, we can realize the desired
H gate in the subspace of H̃σ

+ , and at the same time keep the
subspace of H̃σ

− completely unaltered. We note by passing
that, in searching for the parameters fulfilling the four con-
straints in Eq. (B63), we have three free parameters (B0, B1,
t3). This is to be compared to the cases for the S and T gates,
where we have two free parameters to meet the requirements
imposed by three equalities.

4. Two-qubit gates in the system with one electron less
than half filling per carbon dimer

A single nontrivial two-qubit gate, together with arbitrary
one-qubit gates, are known to be able to represent any non-
trivial two-qubit gates [37–41]. We thus focus on one typical
two-qubit gate, the controlled-NOT (CNOT) gate.

As was pointed out in the main text, a two-qubit system
can in principle be encoded in arbitrary four states, once they
can be manipulated in a nontrivial manner at the two-qubit
level [37,42–44]. One type of manipulations are realized by
applying appropriate external stimuli, such as the laser pulses
and the ac magnetic fields considered in the present work.
A simplest encoding of the two-qubit system in the present
system, without invoking the inter-dimer coupling, is in terms
of the four in-gap energy levels associated with a single
carbon dimer defect with one electron less than half filling.

There can be two different encodings of the two-qubit
system. In the first encoding, we take the two spins as the
target qubit and the two parities as the control qubit. In the
second encoding, we take the two parities as the target qubit
and the two spins as the control qubit. We will focus on
the first encoding. In this encoding, we have the following
designations:

|1〉 ≡ |00〉, |2〉 ≡ |01〉, |3〉 ≡ |10〉, |4〉 ≡ |11〉, (B70)

where in the conventional expression of the two-qubit state,
|mn〉, the first qubit is in the mth (m = 0, 1) state and the
second qubit is in the nth (n = 0, 1) state. The above corre-
spondence can be made more exact by referring to a model of
two spin-1/2 qubits coupled through the Ising spin coupling

Hspin = −AZ1 − BZ2 + JZ1Z2. (B71)

In the convention that 0 represents spin up (Z = +1) and
1 represents spin down (Z = −1), the eigen-spectrum of
Hspin is

E00 = −A − B + J, E01 = −A + B − J,

E10 = A − B − J, E11 = A + B + J. (B72)

In the absence of any external fields (i.e., B0 = B1 = γ =
0), the in-gap defect states associated with a single isolated

carbon dimer are governed by HC2, which has an eigen-
spectrum

E1 = −�

2
− m

2
, E2 = −�

2
+ m

2
,

E3 = �

2
− m′

2
, E4 = �

2
+ m′

2
. (B73)

The two spectra are equivalent if we make the following
identities:

A = �

2
, B = m + m′

4
, J = m′ − m

4
. (B74)

This formal equivalence is even clearer, if we recall the
expression of HC2 in the basis of φ†,

HC2 = −�

2
σz ⊗ s0 − m + m′

4
σ0 ⊗ sz + m′ − m

4
σz ⊗ sz.

(B75)

In the basis φ†, the CNOT gate is represented as

CNOT =

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎠ = Pσ

+ ⊗ s0 + Pσ
− ⊗ sx. (B76)

To realize the NOT gate in the subspace associated with
H̃σ

− , we have to set this subsystem at resonance and so that
the subsystem associated with H̃σ

+ is off resonance. In this
sense, the present situation is complementary to the Rx(π/2)
gate considered in the previous section. At resonance, we
have ω1 = m̃′ = m′ + 2μ0B0 = m̃ + (m′ − m). The evolution
operators in the two independent subspaces are now

U σ
+ (t, 0) = ei 1

2 m̃′tPσ
+⊗sz ei 1

2 (m−m′ )tPσ
+⊗sz+i 1

2 μ0B1tPσ
+⊗sx ·

(B77)
·ei 1

2 �tPσ
+⊗s0 = ei 1

2 m̃′tPσ
+⊗sz ei�tPσ

+⊗n̂·�sei 1
2 �tPσ

+⊗s0 ,

U σ
− (t, 0) = ei 1

2 m̃′tPσ
−⊗sz ei 1

2 μ0B1tPσ
−⊗sx e−i 1

2 �tPσ
−⊗s0 , (B78)

where the frequency and the unit vector are defined as

� =
√(

m − m′

2

)2

+
(

μ0B1

2

)2

, (B79)

n̂ = (n1, n2, n3) =
(

μ0B0

2�
, 0,

m − m′

2�

)
. (B80)

To realize the desired CNOT gate, we should realize a NOT
gate on the odd-parity subspace with U σ

− (t, 0) and at the same
time keep the even-parity subspace unaltered. We free the time
labels and integral number labels used in the previous section.
The above purpose can be realized by a single evolution of a
finite time duration t in the presence of the ac magnetic field
(ω = γ = 0), if the following conditions are simultaneously
fulfilled

μ0B1t

2
= 2N1π + π

2
,

m̃′t
2

= 2N2π,

�t = 2N3π, �t = 2N4π. (B81)
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By a procedure closely parallel to that adopted in the
previous section to construct the H gate, we can find the para-
meters that satisfy the above conditions. Firstly, tune the
magnitudes of B0 and B1 so that the three relevant frequencies
are in integral proportions

(m̃′/2) : � : � = N5 : N6 : N7, (B82)

where N5, N6, and N7 are positive integers that are as small
as possible. In particular, the three integers have no common
divisor larger than 1. Now define the common divisor ω0 of
the three frequencies as

ω0 = m̃′

2N5
= �

N6
= �

N7
. (B83)

Next, we search for two positive integers N1 and N8, that are
small enough and can satisfy the following condition

μ0B1

ω0
= 4N1 + 1

2N8
, (B84)

within a preseted precision. Finally, we determine the time t
by requiring

μ0B1t

2
= 2N1π + π

2
= 4N1 + 1

2
π. (B85)

For this t , we have

ω0t = 2N8π. (B86)

The last three conditions in Eq. (B81) are thus fulfilled as

m̃′t
2

= N5ω0t = 2N5N8π ≡ 2N2π,

�t = N6ω0t = 2N6N8π ≡ 2N3π, (B87)

�t = N7ω0t = 2N7N8π ≡ 2N4π.

In the above manner, we can realize the CNOT gate on the
two-qubit system encoded in the four nondegenerate in-gap
defect states associated with a single carbon dimer with one
electron less than stoichiometry.
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