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Raman spectroscopy is a widely used, powerful, and nondestructive tool for studying the vibrational properties
of bulk and low-dimensional materials. Raman spectra can be simulated using first-principles methods but due to
the high computational cost calculations are usually limited only to fairly small unit cells, which makes it difficult
to carry out simulations for alloys and defects. Here, we develop an efficient method for simulating Raman
spectra of alloys, benchmark it against full density-functional theory calculations, and apply it to several alloys
of two-dimensional (2D) transition metal dichalcogenides. In this method, the Raman tensor for the supercell
mode is constructed by summing up the Raman tensors of the pristine system weighted by the projections of
the supercell vibrational modes to those of the pristine system. This approach is not limited to 2D materials and
should be applicable to any crystalline solid with defects and impurities. To efficiently evaluate vibrational modes
of very large supercells, we adopt mass approximation, although it is limited to chemically and structurally
similar atomic substitutions. To benchmark our method, we first apply it to the MoxW(1−x)S2 monolayer in the
H phase where several experimental reports are available for comparison. Second, we consider MoxW(1−x)Te2

in the T′ phase, which has been proposed to be a 2D topological insulator but where experimental results for the
monolayer alloy are still missing. We show that the projection scheme also provides a powerful tool for analyzing
the origin of the alloy Raman-active modes in terms of the parent system eigenmodes. Finally, we examine the
trends in characteristic Raman signatures for dilute concentrations of impurities in MoS2.
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I. INTRODUCTION

Two-dimensional (2D) materials have been extensively
studied for applications in optoelectronics, thermoelectrics,
sensing, catalysis, etc. Although the catalog of available 2D
materials is vast [1–3], it may be difficult to find a material
that perfectly suits the desired specifications. In such cases,
alloying can be used to further tune the material properties.
Taking the transition metal dichalcogenide (TMD) family of
2D materials as an example, alloying the prototypical member
MoS2 with WS2 or MoSe2 leads to straightforward modifi-
cation of electrical conductivity [4,5], band gap, band edges
[6–11], and spin-orbit splitting [12]. More interestingly, al-
loying can even provide properties that were not present in the
constituent phases. For instance, alloying can lead to dramatic
reduction of the thermal conductivity [13,14] or passivation
of defect levels [15,16]. The beneficial role of alloying has
already been demonstrated in few applications: the response
characteristics of (Mo,W)S2-based photodetector [16] and the
catalytic activities of Mo(S,Se)2 alloys [17,18] were found to
be better than in their parents.

Among TMD alloys, a particularly curious case is
(Mo,W)Te2 alloy since MoTe2 is more stable in the H phase
and WTe2 is more stable in the T′ phase, although the energy
differences between the two phases are small for both parent
materials and, in fact, MoTe2 can also be grown in the T′
phase. The phase tunability is particularly interesting for these
materials as they have drastically different electronic proper-
ties in different phases. In the H phase, these materials are
semiconductors, whereas in the T′ phase, they are semimetals

or topological insulators depending on the number of layers
[19–22]. Due to similar energies, coexistence of H/T phase
regions has been predicted in Ref. [23], and it was also
proposed that the H/T′ transition in (Mo,W)Te2 could be
promoted by gating [24]. Moreover, 2D ferroelectricity was
recently demonstrated in T′-WTe2 even in the monolayer limit
[25].

Raman spectroscopy is an important and versatile tool for
characterizing the composition of 2D alloys and assessing
their overall crystal quality, but it is not always straight-
forward to assign new peaks (as compared to the spectrum
of the parent systems) to the structural features from which
they originate from. Several TMD alloys have already been
extensively studied in the literature by Raman spectroscopy
providing datasets covering a full composition range in many
alloy systems, such as (Mo,W)S2 [26–28] (Mo,W)Se2 [29,30]
Mo(S,Se)2 [9,10,31,32] Re(S,Se)2 [33]. For bulk alloys, sim-
ilar studies are also performed [34] and for T′-(Mo,W)Te2

we are only aware of bulk alloy studies [35,36] but not of
monolayer alloys.

There also exists a lot of computational studies for the
Raman spectra for pristine, constituent phases [37–39], and
even few reports for defective MoS2 [40,41]. Despite the
importance of Raman spectroscopy in understanding the alloy
composition and the structural order, computational studies
for alloys are missing. The reason is that, within the conven-
tional computational approach, these calculations are com-
putationally significantly more challenging due to the larger
supercells (SCs) involved and the dramatic scaling of the
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computational cost with the supercell size. When the maxi-
mum computationally feasible supercells sizes are often 3 × 3
or at maximum 6 × 6 primitive cells (PCs) it is clear that:
(i) the impurity/defect concentration is necessarily high, and
(ii) the defects are ordered, and thus the simulated spectra
for a given alloy are unlikely to correctly mimic that of the
randomly distributed system. These issues need to be tackled
before computational Raman spectra for alloys can be calcu-
lated in a way that can be reliably compared to experiments
and even holds predictive power.

In this paper, we propose a computational method to
simulate Raman spectra of alloys using large supercells. The
method relies on the projection of the vibrational eigenvectors
of the supercell to those of the primitive cell, which are then
used to weight the Raman tensors of the pristine system.
When the lattice constants and the bonding chemistry in the
two components are similar as is the case in the systems
considered here, the supercell eigenvectors can be efficiently
solved using the mass approximation (MA). We benchmark
our method both towards the full density functional theory
(DFT) approach in small supercells as well as experimental
results. We first apply our method with the (Mo,W)S2 al-
loy, for which extensive experimental results are available.
We analyze the modes and, in particular, try to distinguish
between the one-mode and two-mode behaviors, and visu-
alize the eigenmodes that contribute to the most prominent
Raman peaks. Next, we consider T′-phase (Mo,W)Te2, which
is much more involved due to the lower symmetry, larger
supercell, and (semi-)metallic electronic structure, whereas a
mass approximation is expected to hold equally well. Finally,
we consider dilute concentrations of impurities in MoS2,
both in the Mo site and in the chalcogen site, and look for
characteristic Raman signatures.

II. METHODS

A. Theoretical framework

As mentioned in the Introduction, first-principles Raman
calculations for large unit cells are computationally chal-
lenging. They involve two steps: (i) determination of the
vibrational modes of the system and (ii) calculation of the
Raman activity for each mode.

In step (i), the vibrational modes (eigenmodes) are solu-
tions to

Mkω
2v(k0) =

∑

k′,l

�(k′l, k0)v(k′l ) (1)

=
∑

k′,l

�(k′l, k0) exp(−iq · Rl )v(k′0), (2)

where v(kl ) are the eigenvectors for the displacement of atom
k with mass Mk located in cell l specified by the lattice vector
Rl . The elements of force constant (FC) matrix � are defined
by the change in potential-energy U with respect to the atomic
displacements,

�αβ (k′l, k0) = ∂2U

∂uα (k′l )∂uβ (k0)
.

Above, uα (kl ) denotes the displacement of the kth atom in
the lth unit cell in the Cartesian direction α. Constructing the

force constant matrix in the case of alloys, without any sym-
metry, essentially requires performing 3N DFT total energy
calculations in which each of the N atoms is displaced in each
of the three Cartesian directions.

In step (ii), the Raman intensity can be written as
I ∼ |es · R · ei|2, (3)

where ei and es denote the polarization vectors of the incident
and scattered light and R is the Raman tensor. In the case of
nonresonant first-order Raman scattering, it is obtained from
the change in polarizability χ with respect to the phonon
eigenvectors v, and in first-principles calculations it can be
evaluated by using the macroscopic dielectric constant εmac as

R ∼ ∂χ

∂v
= ∂εmac

∂v
. (4)

This derivative needs to be evaluated at both the positive and
the negative displacements for each of the 3N eigenvectors v,
yielding a total of 6N calculations. Moreover, despite different
approaches, evaluating εmac is generally significantly more
time consuming than DFT total energy calculations.

Although step (ii) takes more time, already step (i) be-
comes challenging in large low-symmetry systems. In the case
of MoS2, the limitations are currently at around a 10 × 10
supercell for step (i) and a 6 × 6 supercell for step (ii). In
order to properly account for the random distribution of atoms
and the resulting broadening of the spectra, large supercells
or averaging over several configurations is required. Herein,
we adopt two approximations to tackle each of these issues: a
mass approximation for step (i) and projection to the primitive
cell Raman-active eigenmodes for step (ii).

In the MA, only masses are changed in Eq. (1), whereas the
force-constant matrix remains untouched [42,43]. Naturally,
this can only be applied in cases where the nature of the
bonding and the atomic structure remain very similar, such
as, for instance, AlxGa1−xAs [42].

Due to the small momentum of photons commonly used
in Raman spectroscopy and especially in nonresonant Raman
where the photon energy needs to be less than the band gap,
first-order Raman scattering can only involve a single phonon
near q = 0. For pristine materials, the q = 0 phonons are
trivially obtained as the 	-point solutions of Eq. (1) in the PC.
If we consider a SC of pristine material, the 	-point contains
several modes from the folding of the phonon bands. In an
explicit calculation of Raman intensities using Eq. (4), the
intensities of the folded modes will be zero, and thus the
Raman spectra remains the same. Alternatively, the folded
modes in the supercell 	 point could be unfolded back to the
primitive cell Brillouin zone (BZ) through projection to plane
waves g(q) = exp(iq · R), where q corresponds to one of the
PC q points that fold into the 	 point of the SC. Adopting the
notation where vSC(kl ) refers to the lth primitive cell within
the supercell and k indexes the atoms in the unit cell, the
projection is written out as

〈g(q)|vSC〉α,k =
∑

l

exp(−iq · Rl )v
SC
α (kl ). (5)

Although we could use this equation to unfold to any q, we
are here primarily interested in the 	 point, which fortuitously
also yields a particularly simple expression since the exponent
in Eq. (5) is always unity, and thus one ends up with a
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straightforward sum over the eigenvectors. The total 	-point
weight can be obtained by taking the square of the projections
and summing up over k and α. Finally, we sum up over all
the SC states i with frequency ωi to obtain 	-point weighted
density of states,

n(ω) =
∑

i

∑

α,k

|〈g(q)|vSC,i〉α,k|2δ(ω − ωi ) (6)

which we here denote as GDOS. Since each mode in pristine
supercell has nonzero weight in only a single q point in the
PC BZ, the true q = 0 modes can easily be found. In alloys or
defective systems where the translational symmetry is broken,
the unfolding/projection procedure still works but leads to
each SC mode having contributions from q points throughout
the PC BZ with different weights. This type of unfolding
procedure has already been used in the past to analyze both the
electronic and the phonon band structures of alloys [44–47].

Baroni et al. found that the GDOS of the primitive cell
can be used to closely approximate the Raman spectra [42]
in alloys. The modes which were inactive due to momentum-
conservation law can gain weight at q = 0 and start to show
up in the Raman spectra and, vice versa, the modes that were
originally purely q = 0 modes can leak weight to other q
points and thereby lose Raman intensity. Such an analysis
is straightforward when the frequencies of Raman-active and
Raman-inactive modes are clearly separated. If they are close,
it is no longer clear which part of the GDOS would be Raman
active. To solve this issue, we here propose to project the SC
modes not to plane waves but to PC eigenmodes at the 	 point.
That is, adopting the same notation for vSC(kl ) as above,

wi j = 〈vPC,i|vSC, j〉 =
∑

α,k,l

vPC,i
α (k0)vSC, j

α (kl ). (7)

Here, due to the mass approximation, the atoms are in the
same positions both in the alloy and in the pristine cells.
However, it appears to work well also with the DFT relaxed
structures. Since the projection is to PC modes at the 	

point, we simultaneously obtain the 	-point projection (or
unfolding). We note that the summation of projections w2

i j
over all k and α yields the same GDOS as via the plane-wave
projections [Eq. (6)] since both constitute a complete basis set.
The Raman tensor of the SC mode is obtained by multiplying
the PC mode projection by the respective Raman tensors from
the pristine system, i.e.,

RSC, j =
∑

i

wi jR
PC,i, (8)

where the sum goes over PC modes i and clearly only Raman-
active modes contribute. Finally, the Raman intensity of the
SC mode j is obtained using Eq. (3), which yields

ISC, j ∼ |es · RSC, j · ei|2 (9)

=
∑

i

w2
i j |es · RPC,i · ei|2

+
∑

i �=k

(es · wi jR
PC,i · ei )

∗(es · wk jR
PC,k · ei ) (10)

≈
∑

i

w2
i j I

PC,i. (11)

Squaring the sum over PC modes leads to i = k and i �= k
terms, which have been separated in the second step. These
cross terms can be important if the SC mode has appreciable
weight arising from several PC modes. In the last step, we
have assumed that they are negligible. Although, indeed, not
always a good assumption, the advantage is that we can now
sum over intensities rather than Raman tensors. This is useful
because we could then, e.g., use experimentally determined
intensities instead of the calculated ones. We denote the
total Raman intensity-weighted GDOS as RGDOS. When the
contributions from each mode to the total Raman spectra
are shown in the Results section, these correspond only to
the first term in Eq. (10). We note that in some previous
works the Raman tensor in alloy/defective supercells has been
decomposed using the Raman tensors of different symmetries
of the pristine host for the analysis purposes [48,49]. Here,
we essentially proceed in the opposite direction in order to
construct the final Raman tensor. Moreover, our approach
is, in principle, more general as it can distinguish between
different modes of the same symmetry.

To sum up, the main ingredients of the method lie in
the projection of the supercell vibrational eigenmodes to
the pristine system eigenmodes [Eq. (7)] and using those
projections as weights when summing up over the primitive
cell Raman tensors [Eq. (8)]. The general applicability of
our method is mostly limited by the eigenmode projection,
which essentially requires that there needs to be a reasonable
mapping between the atomic structures of the nonpristine and
pristine systems. Extension of the method to simulate second-
order nonresonant scattering should be fairly straightforward.
To simulate resonant Raman scattering, in principle, one can
just plug the resonant Raman tensors into Eq. (8). In practice,
the modifications of the electronic structure need to be also
carefully considered, the details of which strongly depend on
the system.

B. Computational details and benchmarking

All first-principles calculations are carried out with VASP

[50]. Exchange-correlation contributions are treated with the
PBEsol functional [51]. A plane-wave basis with a cutoff
energy of 550 eV is employed to represent the electronic
wave functions. The geometry optimization continues until
the energy differences and ionic forces are converged to less
than 10−6 eV and 1 meV/Å, respectively. The first Brillouin
zone of the primitive cell is sampled by a 12 × 12 mesh for
H-MoS2/WS2 and by a 12 × 24 mesh for T′-MoTe2/WTe2

and changing in proportion to the supercell size. The polariz-
ability tensors for Raman calculations are determined within
the framework of the finite displacement method [52]. The
phonon spectra are assessed using the PHONOPY code [53]
using a 6 × 6 supercell for MoS2/WS2 and a 4 × 4 supercell
for MoTe2/WTe2. The Raman intensity is calculated as an
average over the XX and XY configurations for the light
polarization (eies).

We start by benchmarking our computational scheme with
respect to the mass approximation. We show in Fig. 1(a)
the phonon dispersion curves of MoS2 and WS2 calculated
with DFT and the mass-approximated versions (i.e., using the
MoS2 FC matrix but substituting the mass of Mo by that of
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FIG. 1. (a) Phonon dispersion curves of pristine MoS2 (left)
and WS2 (right) calculated either self-consistently using DFT (solid
lines) or using the mass approximation (dashed lines). Dots denote
experimental values obtained from Raman spectroscopy [38,54]. (b)
Schematic illustration showing the vibrations of Mo (green) and
S (yellow) atoms in different optical phonon modes. (c) GDOS
from 3 × 3 special quasirandom structures (SQSs) of Mo0.56W0.44S2,
either calculated fully with DFT or using the mass approximation.

W and vice versa). The dispersions of the bands are captured
very well with MA as are the acoustic mode frequencies.
There is a nearly constant downshift of the optical mode
frequencies of WS2 by about 10 cm−1 with respect to the self-
consistent WS2 calculation, and vice versa an upshift in MoS2

frequencies if using WS2 FC with the Mo mass, suggesting
that W-S bonds are slightly stronger than Mo-S bonds. In
the following of this paper, we have chosen to use the MoS2

force constants. With this choice, when comparing to the
experimental values for the two Raman-active modes, E ′ and
A′

1, our calculated frequencies are slightly overestimated for
MoS2 and slightly underestimated for WS2 when compared
to full DFT calculation.

The effect of MA is further illustrated in Fig. 1(c) in the
case of the (Mo,W)S2 alloy supercell. The structural models
used in the alloy calculations are constructed using the SQS
method [55]. As seen in Fig. 1(c) for 3 × 3 Mo0.56W0.44S2

SQS, the MA frequencies are downshifted throughout the
spectrum, similar to the pristine systems. To allow for a better
comparison with the DFT results, we also show a spectrum
shifted up by 4.5 cm−1 (from the alloy composition times
10 cm−1), after which the main peaks (E ′, A′

1) and the high-
frequency part of the E ′ feature (from 350 to 400 cm−1) agree
very well. The low-frequency part of the E ′′ features has still
a too low frequency, which is due to the fact that these modes
are localized to W atoms as will be seen later.

Next, we inspect the importance of statistical sampling.
We use the supercell comprising 12 × 12 primitive cells
and 20 different random configurations (not SQS) for each
composition. Figure 2(a) shows the spectra from all the 20
configurations and the averaged spectra. The large variation in
the single spectra indicates that 12 × 12 supercell is still not
quite large enough to correctly describe the alloy with a single
supercell. As shown in the inset, averaging over just four
configurations yields a spectrum that is already quite similar
to that from 20 configurations. In addition, we compare the
averaged spectrum to that of a SQS model created within the
12 × 12 supercell. We consider pairs up to 8 Å [three effective
cluster interaction (ECI) parameters] and three-body clusters
up to 4 Å (two ECI). The SQS performs better than the dif-
ferent random configurations but fails to correctly capture the
smooth broadening of the main peaks, instead yielding more
spiked features. This originates from the coarseness of the
mesh of k points that folds into the 	 point in small supercell
calculations. Note, that the A′

1 mode is, in practice, completely
unaffected by the mixing as it only involves movement of the
chalcogen atoms and the metal atoms are fixed [see Fig. 1(b)].

Finally, we benchmark the eigenmode-projection scheme.
First, we illustrate in Fig. 2(b) the eigenmode contributions
in the case of 12 × 12 SQS. In the H-(Mo,W)S2 alloy, the
modes remain fairly separated in frequency, and thus, the
resulting Raman spectra could be fairly safely evaluated from
just the GDOS. On the other hand, the projection scheme
provides further insight into the origin of the spectral features.
For instance, the bump at around 400 cm−1 originates from
the E ′ mode and not from the A′

1 mode. Also, at large W
concentration, the A′′

2 features start to overlap with the E ′/A′
1

features as will be seen in the Results section. Moreover, we
need to compare how well the approximated Raman spectra
match to explicit Raman calculations. For this, we need to
adopt a smaller system, and since this is only for benchmark-
ing purposes, we can take a 3 × 3 supercell, again created
using the SQS scheme. The RGDOS captures surprisingly
well all the features of the full Raman calculation as shown in
Fig. 2(c). Especially, the peak shapes/structures are correctly
reproduced, even if some intensities differ with the most
significant discrepancy occuring near 385 cm−1. From the
comparison of the spectra in Figs. 2(b) and 2(c), it is again
obvious that 3 × 3 SQS cannot describe properly the Raman
spectrum of the random alloy.

We have demonstrated that large supercells are needed
to properly describe the phonon spectra of random alloys

023806-4



EFFICIENT METHOD FOR CALCULATING RAMAN … PHYSICAL REVIEW MATERIALS 3, 023806 (2019)

FIG. 2. (a) GDOS from 20 random atomic configurations for
Mo0.56W0.44S2 (gray lines) together with their average (blue, solid
line). GDOS for the 12 × 12 SQS supercell is also shown for
comparison. The inset: Comparison of results when the averaging
is performed over 4, 10, or 20 configurations. (b) Primitive cell
eigenmode projected GDOS for the SQS cell [the same as in panel
(a)]. (c) Raman spectra from full DFT calculation for the 3 × 3
SQS supercell of Mo0.56W0.44S2 compared to its RGDOS and the
contributions to it from the two primitive cell eigenmodes.

and that RGDOS can be used to give a good estimate of
the Raman spectrum. Although the mass approximation may
produce some inaccuracies with the peak positions, we feel
that this is acceptable trade-off for the ability to correctly

describe the random alloy. In the following, the results for the
alloys are obtained by averaging over 20 configurations of the
12 × 12 supercell and using the eigenmode projection. In a
few cases, the analysis of the results is performed using the
SQS structure, which results in great simplification.

III. RESULTS

A. H-(Mo,W)S2

The simulated Raman spectra for the H-(Mo,W)S2 mono-
layer as a function of the composition are shown in Fig. 3(a),
and which can be compared to experimental Raman spectra
shown in Fig. 3(b) (from Ref. [26]). The calculated A′′

2 mode,
although not Raman active, is also shown, since it is infrared
active and shows large changes with the composition. To
make it visible in the simulated spectra we use the same
Raman tensor as for A′

1. The experimental and calculated peak
positions are collected in Fig. 3(c). The A′

1 mode consists
of only the chalcogen movement, and thus, in our mass-
approximation approach this mode remains strictly constant.
Also E ′′ is unaffected by the MA and, thus, not shown in the
calculated spectra, although its activation due to disorder is
visible in the experimental spectra.

Overall a good agreement with the experiment is observed
for the number of peaks as well as their positions: (i) For the
E ′ mode, we confirm pronounced two-mode behavior with
the separate MoS2- and WS2-derived peaks. (ii) There is a
clear downshift of the E ′(MoS2) peak, whereas the E ′(WS2)
peak remains nearly constant in energy. In experiment, at
the large W concentration, the MoS2-derived peak broadens
and possibly mixes with the d feature (marked d as it was
denoted the “disorder-related mode” in Ref. [26]). (iii) There
are two additional features around the WS2 peak: one at about
345 cm−1 (marked #) and one at about 360 cm−1 (unmarked)
in calculations. The latter is difficult to observe in Fig. 3(b)
but evident in the line shape fits in Ref. [26]. (iv) Both in
experiment and theory, at small W concentrations, the W-
derived features form a broad plateau below the E ′(MoS2)
peak with no particularly distinct peaks. (v) A small bump
develops between the E ′(MoS2) and A′

1 peaks, which orig-
inates fully from the E ′ mode. Whereas in calculations, it
prevails at intermediate concentrations, in experiments this is
only clearly visible at the W-rich side, and thus it is not clear
if their origin is the same.

In order to understand the atomic origin of these peaks,
we illustrate the eigenvectors from selected cases in Fig. 3(d)
where the sizes of the circles at the position of atom k
correspond to the eigenvector weighted by the 	-point projec-
tion |v(k0)|2 · w2 summed over all modes within the selected
range of frequencies marked in Fig. 3(a). As expected, the
modes corresponding to MoS2- and WS2-derived peaks are
localized around Mo and W atoms, respectively. The broader
feature between E ′ and A′

1 appears to be localized at the
edges of the Mo regions [panel (iii)]. The disorder-related
mode is not very visible at x = 0.5, but at x = 0.875, our
analysis clearly shows that it is localized to isolated Mo atoms
[panel (iv)].

The smaller peaks around it, on the other hand, are lo-
calized to Mo clusters (not shown), whose density at W-
rich samples is naturally small. Eigenmodes for the peaks
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FIG. 3. (a) RGDOS for the Mo1−xWxS2 alloy x ranges from 0 to 1. The total RGDOS is shown with the solid black line. The contributions
from E ′, A′

1, and A′′
2 modes are shown by yellow, blue, and gray shaded areas, repectively. (b) Experiments, adapted from Ref. [26]. (c) The

calculated compositional dependence of the Raman peaks frequencies vs the experimental counterparts. (d) Illustration of selected eigenmodes
(i–iv) from (a). The blue, red, and yellow symbols correspond to Mo, W, and S atoms, respectively, and the magnitude of symbols is proportional
to the amplitude of vibrations.

denoted by # appear visually very similar to the main WS2-
derived modes, and thus, we think that this shoulder just
originates from asymmetrical broadening of the WS2 peak.
On the other hand, this peak was assigned to a combination

of two longitudinal acoustic modes [2LA(M)] in Ref. [26].
Our calculated LA(M) frequency for WS2 is 177 cm−1, yield-
ing 2LA(M) at 354 cm−1 and, thus, lies slightly above the
E ′(WS2) peak in our calculations but could also be slightly
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FIG. 4. Phonon dispersion curves of pristine MoTe2 (left) and
WTe2 (right) calculated either self-consistently using DFT (solid
lines) or using mass approximation (dashed lines).

below the E ′(WS2) peak in experiments. Since we here only
simulate the first-order Raman scattering, we know that the
shoulder in calculations contains no 2LA(M) contribution, but
naturally we cannot exclude such additional contributions in
the experimental spectra.

B. T′-(Mo,W)Te2

We next study T′-(Mo,W)Te2 alloy, which is computa-
tionally a significantly more challenging case since (i) the
unit cell is larger and has lower symmetry than the H phase,
thus leading to larger number of displacements in pristine
system, and (ii) it is (semi-)metallic, necessitating the use of
large k-point meshes. The latter also means that the Raman
spectra will necessarily be resonant, but the evaluation of
the Raman tensor from the change of macroscopic dielectric
constant assumes nonresonant conditions. Resonant Raman
tensors can be used just as well in our approach for simu-
lated Raman spectra [Eq. (9)], but their evaluation from first
principles is again step up in computational complexity and,
moreover, makes the tensors frequency dependent. To avoid
these problems, we here use the nonresonant Raman tensors,
which are moreover normalized in order to better highlight
all the Raman-active features, although this means that the
relative intensities of the peaks are not correctly captured.
The classification of the 	-point vibrations 	Ci = 9Ag + 9Au

shows that half (Ag) of the modes are Raman active. These
modes can be arranged in two groups: modes vibrating along
the direction of the zigzag Mo/W chain, denoted by Az

g, and
modes vibrating perpendicular to the zigzag chain, denoted
by Aa

g.
Phonon dispersion curves calculated by DFT and by mass

approximation are shown in Fig. 4. We again observe that
frequencies from MA are shifted down by about 10 cm−1

in WTe2, but the order and dispersion of the bands are cap-
tured well. The only clear deviation occurs for WTe2 around
220 cm−1 at the 	 point, where the quasidegenerate Raman
active modes from the DFT calculation breaks into two modes
at 200 and 212 cm−1 from the MA calculation, echoing the
splitting observed in MoTe2 at 250 and 280 cm−1. This feature

is observed in experiment for bulk (Mo,W)Te2 [56]. It is worth
noting that the lattice constants of MoTe2 (3.37 and 7.15 Å)
and WTe2 (3.42 and 7.12 Å) are not quite as close as those of
the parent compounds in H-(Mo,W)S2.

The calculated RGDOS for the monolayer T′-(Mo,W)Te2

alloy as a function of composition are shown in Fig. 5(a)
and the peak positions are collected in Fig. 5(b). We recall,
that although in H-(Mo,W)S2 the alloy modes could be easily
assigned to the pristine modes from which they originated
thanks to the large separation in frequency, here due to the
large number of modes, the mixing is more complicated and
thus the eigenmode projection is necessary to distinguish
between the Raman-active and Raman-inactive features. The
projection scheme allows us to distinguish the origins of each
peak in terms of the primitive cell eigenmodes, revealing
that the ordering of the modes is retained in the same order
throughout the alloys. The eigenvectors of these modes in
the parent phases have been illustrated in several previous
works [57–64] and are not repeated here. Nevertheless, they
show that the six lowest frequency modes are mostly localized
to Te atoms, and the three high-frequency modes to Mo/W
atoms. Consequently, the six lowest-frequency modes exhibit
single-mode behavior, and the three high-frequency modes
two-mode behavior, reflecting the fact that alloying is carried
out in the metal sublattice. Among the six lowest-frequency
modes that exhibit the single-mode behavior, the third one is
silent in the metal sublattice, and the fifth one nearly silent
[58], and thus they show very little changes upon alloying.
There are also clear differences in the degree of the alloying-
induced broadening of the other four peaks with the first one
showing the least broadening, the second one showing the
strongest broadening, and the fourth and sixth modes falling in
between. Figure 5(c) illustrates the second and fourth modes
of the x = 0.75 alloy. The fourth mode [panel (ii)] is localized
very clearly only on the Te atoms and mostly on the rows with
long metal-metal distance, whereas the second mode has also
weight on the metal atoms and is mostly localized on the rows
with short metal-metal distance.

The last three modes in Fig. 5(a) show a very clear two-
mode behavior with splitting into MoTe2- and WTe2-like
modes at intermediate alloy concentrations. The eigenvectors
in Fig. 5(c) show that these modes are localized almost
completely on the metal atoms and the two-mode behavior
reflects the localization around Mo and W atoms. The eigen-
mode projections illustrated in Fig. 5(c) are found to provide
additional insight into the peak origins. For instance, there is
a mode at 200 cm−1 in both the MoTe2 and the WTe2 phases,
but the projections reveal that they correspond to different
modes. Somewhat similarly, the 160 cm−1 peak in WTe2 is
seen to contain two modes, which in the MoTe2 region are
located at 160 cm−1 and 200 cm−1.

Comparison to experimental results is hindered by the
fact, that to the best of our knowledge, all the experimen-
tal T′-Mo(1−x)WxTe2 alloy results are from bulk samples
[4,35,36,65]. Monolayer data are only available for pure
MoTe2 and WTe2 [57–59]. Naturally, there exists also a large
body of data for pure bulk or few-layer phases [56,60–64,66].
Although the bulk and monolayer frequencies are generally
fairly close, to facilitate a proper comparison, in Fig. 5(b)
we only show the available monolayer results for MoTe2 and
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FIG. 5. (a) RGDOS for T ′-(Mo,W)Te2. The total RGDOS is shown with a solid black line. The shaded areas show contributions from the
projection to eigenmodes of the pristine T′-MoTe2. The modes are colored sequentially (and loops once). (b) Evolution of the peak maxima
positions for Mo1−xWxTe2 alloys. Experimental data (red open circles) are taken from Refs. [57,58]. (c) Illustration of selected SC eigenmodes
from the x = 0.75 case, as indicated in (a). The SC eigenmodes within the frequency range are weighted by the projection to the dominant PC
eigenmode. The blue, red, and yellow symbols correspond to Mo, W, and Te atoms, respectively.

WTe2. For the low-frequency modes in MoTe2 and WTe2,
calculated and experimental frequencies agree very well. The
agreement deteriorates for high-frequency modes, but the
experimental and calculated peaks can still be mapped. Also,
the ordering of the Aa

g and Az
g modes is correctly reproduced.

When comparing to the bulk alloy results, our calculations
indicate that the reported disorder-activated modes around
180 and 202 cm−1 [35] can be a mix of the last three high-
frequency modes and can be tuned by varying composition.
Our calculations produce a large number of small peaks
at these frequencies with contributions from all three high-
frequency modes, but we do not obtain one or two prominent
peaks. This might be caused by normalization of Raman ten-
sors in our simulated spectra. The peak at 130 cm−1 in MoTe2

was found to split into two peaks separated by about 3 cm−1

upon increasing the W concentration [35,36] and was assigned
to mixing in Ref. [35] and to a phase change from monoclinic
to orthorhombic lattice in Refs. [36,61]. Since this peak is
silent in the metal sublattice, it shows no alloying-induced
splitting nor even any broadening in our calculations, and thus
our calculations do not support the assignment to mixing.
For the highest-frequency mode, our calculations correctly
capture the broadening toward higher frequencies on both the
MoTe2 and the WTe2 regions [35].

C. Impurities in H-MoS2

The Raman signatures can be used to identify impurities
at small concentrations (small with respect to alloying, i.e.,
within few percent). In some instances, as seen also in the
previous sections, impurities can produce very distinct new
peaks, broaden existing peaks, or result in very broad features.
In this section, we insert a small number of impurity atoms
into the lattice and examine the trends in the changes in the
Raman spectra. The mass approximation limits our study to
cases where chemical bonding upon substitution is expected
to remain fairly similar. To this end, we either replace the
Mo atom by another transition metal element or the S atom
by an atom from the nitrogen, oxygen, or fluorine groups.
Clearly, this is expected to work best for the elements in the
same column in the periodic table and worsen the further
away from it. The small impurity concentration helps to avoid
problems with the large strain. For the calculations, we here
adopt a slightly simplified procedure where we simply take
the 5 × 5 supercell with a single impurity. This is sufficiently
large to describe the localized modes, and although the peak
broadenings would not be correctly described, there are very
little changes in the position and broadening of the main peaks
in these dilute cases.
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FIG. 6. (a)–(c) RGDOS for impurities in the Mo site in MoS2, grouped by the rows in the periodic table. (d) Positions of the peak maxima
extracted from panels (a)–(c). (e) Selected eigenmodes from the Cr case. The blue, red, and yellow symbols correspond to Mo, Cr, and S atoms,
respectively.

The RGDOS for the Mo-site impurities are shown in
Figs. 6(a)–6(c). One impurity in 25 lattice sites corresponds
to the 4% impurity concentration. The behavior is clearly
different for 3d, 4d , and 5d transitional metal impurities. Fol-
lowing the impurity masses, the additional impurity induced
peaks are at highest frequencies for the 3d elements and at
lowest frequencies for 5d elements, whereas the 4d impurities
show very little new features. In case of the 3d elements,
there is a pronounced splitting between the E ′ and the A′′

2
modes and an additional, mostly E ′-derived, mode between
the two. We note again that the A′′

2 mode is not Raman active
and only shown here for reference. Selected eigenmodes from
the Cr case are shown in Fig. 6(e). Not surprisingly, the main
peak is localized in the MoS2 regions [panel (i)]. The second
E ′ feature is localized around the impurity [panel (ii)], and
the last one is localized strictly at the impurity [panel (iii)].
This last E ′ peak should have appreciable Raman intensity
and frequency that sensitively depends on the transition metal

impurity and thus seems to provide the most effective impurity
signature. For the two A′′

2-derived peaks, the lower-frequency
mode is localized in the MoS2 regions [panel (iv), the Cr atom
shows large weight due to its small mass, but all Mo atoms are
also active] and the higher frequency one around the impurity
[panel (v)].

Very little happens with the 4d impurities, only a small
shift of the main E ′ mode together with slight broadening,
stemming from the small (relative) change in the mass. All
the 5d impurities show features similar to the (Mo,W)S2

alloy considered previously: a broad set of weak features at
300–400 cm−1 and one peak between E ′ and A′

1 peaks. For
the two eigenmodes shown in Fig. 3(d) [panels (v) and (vi)],
despite having clearly different frequencies, they have fairly
similar eigenvectors. Since the MoS2 E ′′, A1, and A′′

2 modes
at the K and M points largely fall at frequencies between
350 and 400 cm−1, we think these impurity modes have large
contributions from the off-	 k points and only a small 	 point
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FIG. 7. (a) RGDOS for impurities in the S site in MoS2. The
LA(M) frequency from pristine MoS2 and the gap in the phonon
structure are also indicated. (b) Selected eigenmodes for the O and
Se impurity systems. The blue, red, and yellow symbols correspond
to Mo, O/Se, and S atoms, respectively.

Raman-active contribution. In essence, these impurities lead
to mixing of the vibrational modes at different q points of the
primitive cell BZ. No pronounced features are observed at low
frequencies, and there are no gap states.

Overall, it appears that it should be possible to resolve the
presence of even fairly dilute concentration of 3d transition
metal impurities in MoS2 from the splitting of the E ′ peak,
possibly even with the elemental precision, although the ab-
solute values given here may suffer from the limitations of the
mass approximation. Dilute concentration of 4d impurities are
expected to be largely invisible in the Raman spectra, whereas
5d impurities might show up in the Raman spectra, but their
identification can be difficult.

The RGDOS for the S-site impurities in MoS2 are shown
in Fig. 7(a). One impurity in 50 lattice sites corresponds to
2 % impurity concentration. Again, lighter impurities lead to

additional peaks at higher frequencies and heavier impurities
at lower frequencies, but the features that are most likely to be
observed in experiments are those falling above the A′′

2 mode
or inside the gap between the E ′′ mode and the LA(M) edge.
In fact, such features have been reported in the literature for
MoS2 with light Se alloying at about 270 cm−1 [9,10,31,67]
and with light Te alloying at about 243 cm−1 [68], agreeing
well with our calculations.

O and Se impurities in MoS2 are chosen as representative
examples to be discussed in more detail. Selected eigenvectors
of these impurity systems are presented in Fig. 7(b). In the
case of the O impurity, the feature (ii) just above A′′

2 is mainly
derived from E ′ with a small E ′′ contribution, and it should
thus be visible in Raman measurements. The high-frequency
feature (iii) is mostly of A′′

2 type, but it contains also an
appreciable A′

1 contribution and thus could also be visible. In
the case of the Se impurity, there are two features in the gap
with the lower one (iv) derived mostly out of E ′′ with some
E ′, and the higher one (v) derived mostly from the pristine
A′

1 mode with some A′′
2 character. Finally, we mention the

features (i) and (vi), which are localized mostly at the S atom
on the opposite side of the layer from the impurity atom, and
thus they also have the same frequency, independent of the
impurity element. Although this feature is barely visible in
the simulated spectrum, it is derived mostly from the pristine
A′

1 mode and thus could be observable.

IV. CONCLUSIONS

We have devised an efficient computational method to
simulate Raman spectra of large systems, being especially
applicable to alloys and systems with small numbers of
defects. The method is based on the projection of vibra-
tional eigenvectors of the supercell to the eigenvectors from
the primitive cell and using them as weights in summing
over the Raman tensors calculated at the primitive cell. We
moreover used mass approximation to rapidly evaluate the
vibrational modes in the supercell. We applied the method
to two different transition metal dichalcogenide monolayer
alloys H-(Mo,W)S2 and T′-(Mo,W)Te2 and to impurities in
H-MoS2. The accuracy of the method was validated in the
case of the H-(Mo,W)S2 alloy through comparison to the
available experimental reports. T′-(Mo,W)Te2 and impurity
cases are used to: (i) demonstrate the wider applicability of
the method and (ii) provide predictions in few technologically
relevant systems. We note that, in addition to yielding the
simulated Raman spectra, the projection scheme also provides
a powerful tool for analyzing the origin of the Raman-active
features. The method presented here is not limited to 2D
materials and is applicable to various other bulk and low-
dimensional systems.
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