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An active learning procedure called deep potential generator (DP-GEN) is proposed for the construction of
accurate and transferable machine learning-based models of the potential energy surface (PES) for the molecular
modeling of materials. This procedure consists of three main components: exploration, generation of accurate
reference data, and training. Application to the sample systems of Al, Mg, and Al-Mg alloys demonstrates that
DP-GEN can produce uniformly accurate PES models with a minimal number of reference data.
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I. INTRODUCTION

The interatomic potential energy surface (PES) plays a
central role in the molecular modeling of materials. Obtaining
an accurate and efficient representation of the PES is a cen-
tral issue in molecular simulation. In this context, one faces
the dilemma that ab initio methods are accurate but highly
inefficient, while empirical force fields (FFs) are efficient, but
there is a limited guarantee for their accuracy. Thus there is
a great demand for an efficient and uniformly accurate PES
model that can be used to compute a broad range of atomistic
properties for most material compounds of practical interest.

Developing empirical FFs has been challenging due to the
high dimensionality and many-body character of the PES.
Usually, empirical FFs parametrize the PES by assuming
an analytical functional form in terms of relatively simple
functions based on physical/chemical intuition, and by fitting
the model parameters against a bundle of experimental proper-
ties and/or microscopic quantities from ab initio calculations.
Some popular examples are the Lennard-Jones potential [1],
the Stillinger-Weber potential [2], the embedded-atom method
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(EAM) potential [3], the CHARMM [4]/AMBER [5] FFs, the
reactive FFs [6], etc. Representability and transferability are
two main issues faced by empirical FFs. By representabil-
ity, we mean the ability of the assumed functional form to
reproduce accurately the target properties. By transferability,
we mean the ability of a PES model to describe properties
that do not belong to the set of fitting targets. Due to the
physical/chemical knowledge encoded in the functional form,
we expect the empirical FFs to be qualitatively transferable to
a moderate range of thermodynamic conditions beyond those
adopted for the fitting. However, as a consequence of assum-
ing relatively simple functional forms, empirical FFs usually
face a severe representability problem. Moreover, a substantial
human effort in tuning the model parameters is often required
to achieve the best balance in fitting the target properties.

Recent progress with machine learning (ML) methods
is changing the outlook [7–19]. ML models, being capable
of learning complex and highly nonlinear functional depen-
dence, are excellent in their representability. It is now pos-
sible, using modern ML approaches, to parametrize the PES
using data from ab initio calculations to obtain models that
have ab initio accuracy and are, at the same time, compet-
itive regarding efficiency against empirical FFs. In spite of
the remarkable success of these ML methods, there is no
guarantee for the quality of ML models when they are used
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to predict the properties of a configuration that is far from the
training data set [20]. In addition, since the training data is
usually generated with expensive first-principle calculations,
one would like to obtain good ML models without having to
rely on very large ab initio data sets. These questions arise not
only for PES modeling, but in many other contexts when ML
methods are applied to problems involving physical models.

To address this issue, we get inspiration from active learn-
ing [21,22], an area of supervised learning whose aim is
to learn general purpose models with a minimal number of
training data. A training data point involves an input and an
output. For example, in an image recognition task whose goal
is to judge whether a cat is in an image or not, the input is
an array of digits that represents the image, and the output
is a boolean proposition. Usually the output is called a label
and the term labeling is used to denote the creation of a
label. In the context of active learning, one typically faces a
situation in which unlabeled data are abundant, but labeling is
expensive. Therefore, an interactive algorithm is required to
efficiently explore unlabeled data, collect feedbacks on the fly,
and actively query the teacher for labels on data points with
negative feedbacks. Along this line of thinking, at an abstract
level, one can formulate an active learning procedure for PES
modeling that involves three steps: exploration, labeling, and
training.

(1) Exploration requires an efficient sampler and an infor-
mative indicator. The sampler uses the current PES model
to quickly explore the configuration space. The indicator
monitors on the fly the configurations explored by the sampler,
selects those with low prediction accuracy, and sends them to
the labeling step.

(2) Labeling means generating reference ab initio energies
and forces for the selected configurations. Labeling can be
done by a code that implements high-level quantum chem-
istry, quantum Monte Carlo, or density functional theory
(DFT) methods. The labeled configurations are then added to
the existing data set and used in the new iteration for training.

(3) Training requires a good model, or PES representation,
which can fit the ever-increasing data set with satisfactory
accuracy. Such a representation should be efficient and should
satisfy certain physical constraints like the extensive and
symmetry-preserving properties of the PES.

The whole scheme falls into a closed loop: one starts with
a relatively poor approximation of the PES and uses it to
explore different configurations. Then a selected set of new
configurations is labeled, and a new approximation of the
PES is obtained by training. These three steps are repeated
until convergence is achieved, i.e., the configuration space has
been explored sufficiently, and a minimal set of data points
have been accurately labeled. At the end of this procedure, a
uniformly accurate PES model is generated.

In this work, our first goal is to translate the general
proposal described above into a practical scheme for modeling
the PES. In this scheme, for the PES representation, we use
an advanced version of the deep potential (DP) model [19],
which has shown great promise in learning the PES of a broad
range of systems, such as insulators, molecular crystals, and
a five-component high entropy alloy, etc. See, e.g., Fig. 1 of
Ref. [19]. For the sampler, we use molecular dynamics (MD)
based on the DP model. Thereafter, DP based MD will be

referred to as DPMD. At the same time, we introduce an
indicator that we call the model deviation. This is done as fol-
lows. We train an ensemble of DP models using the same data
set but different initialization of the DP parameters. For each
new configuration that is explored by DPMD, these models
generate an ensemble of predictions. For each configuration,
the model deviation is defined as the maximum standard devi-
ation of the predicted atomic forces. A high model deviation
indicates low quality in the model prediction and is proposed
for labeling. In this work, we use in the labeling stage DFT
within the generalized gradient approximation [23–26], which
works well in the chosen testing examples. We will see that
sampling is much cheaper than labeling, and only a very small
fraction of the explored configurations is selected for labeling.
We call the methodology introduced here the deep potential
generator, abbreviated DP-GEN.

Our second goal is to demonstrate the uniform accuracy of
a PES model obtained in this way. To this end, we consider
the example of Al, Mg, as well as Al-Mg alloys. Using DP-
GEN, we construct a model that can accurately describe these
systems at different compositions and thermodynamic condi-
tions. The resulting PES model is evaluated from the point of
view of a material scientist. We calculate several statical, dy-
namical, and mechanical properties, such as radial distribution
functions (RDF), phonon spectra, elastic constants, etc. Some
of these properties are compared with DFT results. We also
compare DP calculated properties directly with experimental
results when these are available. To further test the quality of
the PES model, we introduce an automatic procedure based on
the Materials Project (MP) database [27]. In this procedure,
one searches the database by entering a material composition,
such as Al-Mg in the present case. The database will then
return a large number of locally stable structures, including
many structures of potential practical interest. Based on these
structures, we evaluate several equilibrium properties and
compare the DFT predictions with those of the PES model.
In addition, for each one of these structures, we automatically
generate unrelaxed vacancy and interstitial defects as well as
the set of surfaces corresponding to a range of Miller indices
[28]. We then compare the relaxed formation energies of the
defects and the unrelaxed formation energies of the surfaces
predicted by DFT and by the PES model. We stress that
these structures, i.e., crystals, defects, and surfaces, were not
explicitly included in the training data. We find that our PES
model can achieve uniform accuracy in the prediction of all of
these structural properties.

We notice that there is a difference between active learning
in conventional ML problems and the active learning we
pursue here. This difference lies in exploration or sampling.
Conventional active learning problems in ML typically deal
with an existing unlabeled data set. Here our data set is
generated on the fly via sampling. This means that we need
to have an efficient sampling method.

We should mention that related work can be found in the
literature [29–33]. In particular, Smith et al. [30] utilized
an active learning scheme to model the PES of organic
molecules based on an existing large database [34]. More-
over, Bartok et al. [35] constructed a kernel based general
purpose PES model for pure silicon, wherein they exhaus-
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tively enumerated possible structures for labeling. Finally, the
principle of active learning was also used in the reinforced
dynamics scheme [36] for enhanced sampling and free energy
calculation.

II. METHODOLOGY

In this section, we introduce the three essential components
of the DP-GENscheme: the model, the sampler, and the
indicator. Figure 1 shows a schematics of DP-GEN. To ini-
tialize the procedure, we label a small set of initial structures
introduced in Fig. 1(a) and train an ensemble of preliminary
DP models. See the Supplemental Material (SM) [37].

Model. The DPscheme assumes that the potential energy
E can be written as a sum of atomic energies, i.e., E =∑

i E i. Each atomic energy Ei is a function of Ri, the local
environment of atom i in terms of the relative coordinates of
its neighbors within a cutoff radius rc. The dependence of Ei

on Ri embodies the nonlinear and many-body character of the
interatomic interactions. Therefore, we use a deep neural net-
work function (DNN) to parametrize it, i.e., Ei = Ewwwαi (Ri ).
Here αi indicates the chemical species of the ith atom; wwwαi

denotes the parameters of the DNN we call network param-
eters, that are determined by the training procedure. A vital
component of the DPmodel is a general procedure that en-
codes Ri into the so-called feature matrix Di. This procedure
guarantees the conservation of the translational, rotational,
and permutational symmetries of the system, without losing
coordinate information in the local environment. Derivatives
of the energy with respect to the atomic positions give the
forces. During the training process, the network parameters
evolve in order to minimize the loss function, a measure of the
error in the energies and the forces predicted by DP relative to
the labels, i.e., the corresponding DFT predictions [39]. Upon
convergence, the model can match the labels within a small
error tolerance. The details of the architecture of the DPmodel
and the training process are given in Ref. [19].

Sampler. The goal of the sampler is to explore the con-
figuration space in a range of thermodynamic variables, say
temperature and pressure. Ideally one should develop an au-
tomatic/adaptive procedure for this purpose. However, since
exploration is relatively cheap compared to labeling, we adopt
a more heuristic approach in which the exploration is done
through (1) carefully selecting the initial configurations and
(2) exploring the volume-temperature space. We use a variety
of crystal structures as our initial configuration, as in the
procedure illustrated in Fig. 1(a). To explore the volume-
temperature phase space, we adopt a temperature increasing
scheme, in which the temperature of the DPMD simulations
is increased systematically with the iteration index in the
range 50–2000 K. We notice that many structures constructed
in this way are far from equilibrium structures so that the
subsequent DPMD simulations in the 50–2000 K temperature
range produce a large sample of configurations that may differ
substantially from the initial structure. More details on the
initial structures and the thermodynamic conditions in each
iteration are summarized in Tables S1–S4.

Indicator. It is well known that neural network models
are highly nonlinear functions of the network parameters wwwαi .
The loss function, as a function of wwwαi , is highly nonconvex,

FIG. 1. Schematic plot of one iteration of the DP-GEN scheme,
taking the Al-Mg system as an example. (a) Exploration with DPMD.
(a.1) Preparation of initial structures. (I) For bulk structures: start
from stable crystalline structures of pure Al and Mg. In this work,
we use face-centered-cubic (fcc), hexagonal-closed-packed (hcp),
simple cubic (sc), and diamond structures. (II) Compress and dilate
the stable structures uniformly to allow for a larger range of number
densities. We use α to denote the scale factor of the compression
and dilation operations. Here α ranges in the interval 0.96–1.04. (III)
Randomly perturb the atomic positions and cell vectors of all the
initial crystalline structures. The magnitude of perturbations on the
atomic coordinates is σa = 0.01 Å. The magnitude of perturbation
on each cell vector is σc = 0.03 times the length of the cell vector.
(IV) Generate random alloy structures: starting from all the structures
prepared for pure systems, randomly place Al or Mg at different sites.
(V) Generate structures with rigid displacement: starting from stable
fcc and hcp structures, rigidly displace two crystalline halves along
specific crystallographic directions. We only use (100), (110), (111),
and (0001), (101̄0), (112̄0), respectively, for fcc and hcp, as the dis-
placement directions. The magnitudes d of the displacements range
in the interval 0.2–10.0 Å. Based on all the displaced structures,
perform dilation α and perturbation σa and σc, and generate random
alloy structures. (a.2) Canonical simulation at a given temperature.
The temperature increases with the iteration index within the range
50–2000 K. (b) Labeling with electronic structure calculations. (c)
Training with the DP model.

i.e., several local minima exist in the landscape of the loss
function. In the current work, we initialize the wwwαi randomly
according to the standard normal distribution. As a result,
different initializations often lead to different minimizers of
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the loss function. These minimizers fit well the training data,
so in the configurational region belonging to the neighborhood
of the training data, they generate equally accurate energies
and forces and show small deviations in their predictions.
However, for snapshots “far” from the training data, these
minimizers usually predict inaccurate values that show sig-
nificantly larger deviation. This property of neural network
models motivates us to define the indicator as the deviation
of the predictions generated by an ensemble of DPmodels
trained with the same data set but with different parameter
initializations. In practice, we define the model deviation,
denoted as E , as the maximum standard deviation of the
predictions for the atomic forces, i.e.,

E = max
i

√
〈‖ f i − f̄ i‖2〉, f̄ i = 〈 f i〉, (1)

where i runs through the atomic indices in a configuration
and the ensemble average 〈· · · 〉 is taken over the ensemble of
models. We find that using the predicted forces to evaluate the
model deviation is generally better than using the predicted
energies. The force is an atomic property and is sensitive to a
failure in local predictions, while the energy is a global quan-
tity and does not seem to provide sufficient resolution in this
regard. Moreover, we find that a failure in local predictions
can be better signaled by using the maximum over i in Eq. (1),
instead of the average over i ( 1

N

∑
i).

III. RESULTS

As examples, we report the results of the DP-GENscheme
for Al, Mg, and their alloys. At the end of the DP-
GENscheme, we collect a set of labeled data and obtain a
DPmodel for the Al-Mg system. As shown in Table S4, about
650 million configurations were explored by DPMD, but only
0.0044% of them were selected for labeling. To get an idea of
the usefulness of the resulting DPmodel for materials science
applications, we compare the accuracy of the DP model in
predicting important material properties with a state-of-the-
art empirical FF like the modified embedded atom method
(MEAM) [40]. MEAM adopts a more general definition of
embedding than EAM in order to improve the description of
directional bonding and of alloy systems. In this work, we
compare our method with a very recent version of the Al-Mg
MEAM potential that is available in the literature [41]. We
used DeePMD-kit [42] in the training step, LAMMPS [43] in
the exploration step, and VASP [24,25] in the labeling step.

A. Pure Al and Mg

The equilibrium properties of pure Al are presented in
Table I, including the atomization energy and equilibrium
volume per atom, defect formation energies, elastic constants
and moduli, stacking fault energies, melting point, enthalpy
of fusion, and diffusion coefficient. The defect formation en-
ergy is defined as Edf = Ed(Nd) − NdE0, d = v(i), indicating
vacancy (interstitial) defects. Ed denotes the relaxed energy of
a defective structure with Nd atoms and E0 denotes the energy
per atom of the corresponding ideal crystal at T = 0 K. To
compute the defect formation energies, we use a supercell
in which we replicate 7 × 7 × 7 times the primitive fcc cell.
We estimate the melting temperature (Tm) by simulating with

TABLE I. Equilibrium properties of Al: atomization energy Eam,
equilibrium volume per atom V0, vacancy formation energy Evf, and
interstitial formation energies Eif for octahedral interstitial (oh) and
tetrahedral interstitial (th). Independent elastic constants C11, C12,
and C44, Bulk modulus BV (Voigt), shear modulus GV (Voigt),
stacking fault energy γsf, twin stacking fault energy γtsf, melting
point Tm, enthalpy of fusion �Hf , and diffusion coefficient D at
T = 1000 K.

Al Expt. DFTa DP MEAM

Eam (eV/atom) −3.49b −3.655 −3.654 −3.353

V0 (Å
3
/atom)c 16.50d 16.48 16.51 16.61

Evf (eV) 0.66e 0.67f 0.79 0.67
Eif (oh) (eV) 2.91f 2.45 2.77
Eif (th) (eV) 3.23f 3.12 3.32
C11 (GPa) 114.3g 111.2 120.9 111.4
C12 (GPa) 61.9g 61.4 59.6 61.4
C44 (GPa) 31.6g 36.8 40.4 29.7
BV (GPa) 79.4g 78.0 80.1 78.1
GV (GPa) 29.4g 32.1 36.5 27.0
γsf (J/m2) 0.11–0.21h 0.142i 0.132 0.143
γtsf (J/m2) 0.135i 0.130 0.144
Tm (K) 935j 950(± 50)k 918(±5) 898(±5)
�Hf (kJ/mol) 10.7(±0.2)l 10.2 4.4
D (10−9 m2/s) 7.2–7.9m 7.1 0.4

aThe DFT results, unless specified with a reference, are computed by

the authors. We notice that a K-mesh spacing equal to 0.06 Å
−1

was
used to obtain more converged DFT results in this table. However, in

the labeling stage, we used a K-mesh spacing equal to 0.08 Å
−1

,
which gives converged values for most of the properties except
for elastic constants and moduli. Using K-mesh spacing equal to

0.08 Å
−1

gives C11 = 129.3 GPa, C12 = 52.8 GPa, C44 = 37.4 GPa,
BV = 78.3 GPa, and GV = 37.7 GPa.
bReference [44].
cExperiment values obtained at T = 298 K; DFT, DP, and MEAM
results obtained at T = 0 K.
dReference [45].
eReferences [46,47].
fReference [48].
gReference [49].
hReferences [50–53].
iReference [54].
jReference [55].
kReference [56].
lReference [57].
mReference [58], D = 7.2 × 10−9 m2/s at 980 K and 7.9 ×
10−9 m2/s at 1020 K.

DPMD coexisting crystal and liquid phases in a supercell con-
taining 8000 atoms within the isothermal-isobaric ensemble at
standard pressure. To estimate the liquid diffusion coefficient
(D), we perform DPMD simulations on large supercells (6912
atoms) for which finite size effects are negligible. For all the
properties in Table I, the DP predictions are in satisfactory
agreement with DFT and/or experiment. Notice that MEAM
reproduces quite accurately the solid state properties in Ta-
ble I, particularly when compared to experiment, which is not
surprising since the basic experimental solid state properties
have been used to tune the parameters of this FF. However,
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FIG. 2. Phonon dispersion relations of Al at T = 80 K and P =
1 bar. Here q denotes the wave number and ν the frequency. The
experimental data is taken from [59].

the vibrational properties at short wavelength, particularly the
zone boundary phonons, are not reproduced well by MEAM
in contrast to DP, as shown in Fig. 2. MEAM fails even
more dramatically in predicting the properties of the liquid:
the MEAM liquid is largely overstructured (see Fig. 3). Its
diffusion coefficient is one order of magnitude smaller than
in experiment or DP, and its enthalpy of fusion is also signifi-
cantly smaller than in experiment or DP (see Table I).

DFT, DP, and MEAM predictions for the equation of state
(EOS) of Al are reported in Fig. 4. DP reproduces well the
DFT results for all the crystalline structures considered here,
i.e., fcc, hcp, double-hexagonal-closed-packed (dhcp), body-
centered-cubic (bcc), sc, and diamond. Interestingly, the range
of DP accuracy extends well beyond the volume interval that
was included in the training data, which is indicated by the
yellow shaded area in the figure. As shown in the inset of
Fig. 4, the energy difference between fcc and dhcp, and the
one between dhcp and hcp is small, only 12 meV/atom and
19 meV/atom, respectively, yet DP reproduces accurately the
relative stabilities. The MEAM potential performs well for
fcc, hcp, dhcp, and sc, but shows significant deviations from
DFT for diamond and bcc. DP and MEAM predictions for the
phonon dispersion relations are compared with experimental
results in Fig. 2. DP results agree very well with experiment.

The promise of ML potential models is to retain the accu-
racy of ab initio molecular dynamics (AIMD) at the cost of
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FF simulations. Therefore, ML potential models can be used
to simulate much larger systems for much longer times than
possible with AIMD. This is illustrated by our calculations for
the diffusion coefficient and the radial distribution function
(RDF) of the liquid, which were performed on large cells
with 4000 atoms with very modest computational resources
when using DP. Thus the DP model opens opportunities for
extending the power of ab initio methods.

The DP method gives similarly good results for the corre-
sponding properties of pure Mg, which are reported in the SM
and compared with additional references therein [61–66].

Finally, we examine the surface formation energy
Esf((lmn)), which describes the energy needed to create a
surface with Miller indices (lmn) for a given crystal, and is de-
fined by Esf((lmn)) = 1

2A (Es((lmn)) − NsE0). Here Es((lmn))
and Ns denote the energy and number of atoms of the relaxed
surface structure with Miller indices (lmn). A denotes the
surface area. We enumerate all the nonequivalent surfaces
corresponding to Miller index values smaller than 4 for Al,
and smaller than 3 for Mg. As shown in Fig. 5, the surfaces’
formation energies predicted by DP are close to DFT [67], and
those predicted by MEAM are worse in all cases. We report in
detail the values of surface formation energies for Al and Mg
in Tables S6 and S7, respectively.

B. Mg-Al alloys

For alloy systems, we adopted the testing scheme in-
troduced in Sec. I, finding 28 crystalline (ordered) Mg-Al
alloy structures in the MP database [27], corresponding to
relative Mg concentrations (cMg) ranging from 25% to 94%.
Most of these structures were found initially from experiment
and were recorded in the inorganic crystal structure database
(ICSD) [68]. When recorded in the MP database they were
further relaxed with DFT. In Figs. 6(a)–6(f), we compare
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predictions of DFT, DP, and MEAM for the 28 alloy struc-
tures. The six panels in Fig. 6 report (a) the formation en-
ergies, (b) the equilibrium volumes per atom, (c) the elastic
constants, (d) the relaxed vacancy formation energies, (e) the
total energies per atom along interstitial relaxation pathways,
and (f) the unrelaxed surface formation energies. Notice that
only the elastic constants from DP are compared with DFT

in Fig. 6(c). The corresponding MEAM elastic constants are
compared with DFT in Fig. S3.

The formation energy of an Mg-Al alloy system is defined
as

Eaf = E0(cMg) − cMgE0
Mg − (1 − cMg)E0

Al,

where E0(cMg) denotes the equilibrium energy (0 K) per atom
of the Mg-Al alloy structure with Mg concentration equal
to cMg, and E0

Mg and E0
Al denote the equilibrium energies

per atom of the corresponding stable crystals of pure Mg
and Al at 0 K. The precise values of the formation energies
and equilibrium volumes per atom are reported in Table S9.
To generate the vacancy and interstitial structures, we used
supercells that are periodic copies of the MP structures. The
size of the supercell for each MP structure is reported in
Table S5. We further notice that the interstitial structures are
automatically generated based on 12 MP structures1 that are
the most stable ones at the corresponding concentrations.
Since most of the interstitial structures are energetically
highly unstable, their relaxation likely ends up with structures
that do not represent locally relaxed interstitial point defects,
as shown in Fig. S4. In this case, the end structures depend

1These structures are mp-1038916, mp-1094116, mp-568106,
mp-17659, mp-12766, mp-1039141, mp-1094685, mp-2151, mp-
1094700, mp-1094970, mp-1016271, and mp-1023506.
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FIG. 6. Comparisons of Al-Mg alloy properties predicted by DFT, DP, and MEAM, based on 28 structures in the MP database. (a) 28
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very sensitively on the details of the relaxation. Therefore,
instead of performing independent relaxations within DFT,
DP, and MEAM, we compare the predictions of these
models for configurations along the DFT relaxation pathways
(excluding the initial high energy configurations).

In almost all tested cases, we observe an overall satisfac-
tory agreement between DP predictions and DFT reference
results. The accuracy of DP is significantly better than that
of MEAM. We stress that the DP-GEN procedure is blind to
the alloy structures used to compute the properties reported in
Fig. 6, because these structures were not explicitly included
in the training data. The number of atoms in the unit cell of
six MP structures is larger than 32, which was the maximum
number of atoms in the unit cell of the structures belonging
to the training data set. This suggests that in the case of
Mg-Al alloys the DP model trained with relatively small
periodic structures can, to some extent, be used to predict the
properties of larger structures. Some structures tested have
little in common with the initial training data. Yet the DP
model produced satisfactory results, suggesting that it could
work for a broader range of materials.

IV. SUMMARY AND OUTLOOK

The DP-GEN scheme is general, practical, and fairly auto-
matic. To generate the DP model for the Al-Mg system, we did
not use any existing DFT database (the MP database was only
used for testing), nor did we use an exhaustive list of possible
structures based on physical and chemical considerations.
Instead, we explored the space of configurations using com-
putationally efficient DPMD simulations. DFT calculations
were only performed on a small subset of the configurations
that showed large model deviation. This made it possible to
progressively improve the DP model.

The DP-GEN scheme is quite flexible. The three compo-
nents, training, exploration, and labeling, are highly modular-
ized and can be implemented separately and then recombined.
This makes it easy to incorporate additional functionalities.
For example, enhanced sampling techniques [32] or genetic
algorithms [69] can be incorporated with minimal effort in
the exploration module. We expect that the modular structure
of DP-GEN should make it possible to use this method to
generate models for a variety of important problems, such
as finding transition pathways for structural transformations
and chemical reactions. The outcome of DP-GEN includes
the model and the accumulated data, which could be used
for further applications. For example, if a rare-earth species is
added to the Al-Mg system, one does not need to start the DP-
GEN scheme from scratch. Instead, one could restart the DP-
GEN scheme with the current model and data, and continue
with the exploration of the configuration space involving the
new species.

Besides alloys dominated by metallic bonding, it would
be interesting to use the DP-GEN scheme to study other
materials, such as ceramics, polymers, etc., which include
different types of bond interactions. This should be possible
because the applicability of DP-GEN relies on three main
points: the representability of the model, the validity of the
indicator, and the capability of the sampler. Several investiga-
tions suggest that the first two issues should be relatively inde-

pendent of the details of the microscopic interactions. Indeed,
our earlier studies [18,19] indicate that the DP model can
represent equally well the PES of systems that differ signif-
icantly in their bonding character, such as organic molecules,
molecular crystals, hydrogen bonded systems, semiconduc-
tors, and semimetals. In addition, extensive observations by
our group show that the DP-GEN indicator, which derives
from the variance of the predictions within an ensemble of
DNN models, works equally well for different applications
[36,70]. These observations are further supported by recent
work by other groups who used closely related indicators
in applications to a variety of different systems [30,33]. We
are left with the sampler, which may require case specific
strategies. We are currently investigating this issue in a range
of materials, finding that in all cases the search for optimal
sampling strategies is facilitated by the modular structure
of DP-GEN. We will present specific examples in future
work.

Last but not least, one should be aware that the DP-
GEN scheme may fail in some circumstances. We think that
this should occur most likely when the sampler and/or the
indicator fail. For example, the sampler could fail when the
configuration space has high dimensionality and large free
energy barriers prevent exploring important configurations. In
these situations, specifically designed good reaction coordi-
nates might be necessary. Additional difficulties may be due to
the indicator. To the best of the authors’ knowledge, a rigorous
mathematical theory of the indicator is missing. A large value
of the proposed indicator is only a sufficient, not a necessary,
condition for poor performance of a DP model. There may
be situations in which the physics is poorly described by a
model, yet the corresponding ensemble of predictions has
small variance. We did not face these difficulties in the present
investigation but the reader should be aware that systematic
validation tests should always be performed before using a
DP model to explore new physics.
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