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Phase behavior of two-dimensional Brownian systems of corner-rounded hexagons
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Investigations into the phase behavior of Brownian systems of nonspherical colloids have received consid-
erable attention because these systems can exhibit very rich self-assembled structures, some of which have
potential for applications. In this work, we explore the phase behavior of corner-rounded hexagons in two di-
mensions, both through experiments and Monte Carlo (MC) simulations. Our experiments, using lithographically
shape-designed hexagons, which have corner-rounded vertices and nearly hard in-plane interactions, reveal three
different solid phases for increasing particle area fraction φA: hexagonal rotator crystal (RX), hexagonal crystal
(HX), and frustrated hexagonal crystal (FHX). In the RX phase, hexagons form a hexagonal lattice, but they
are randomly oriented and their rotations are ergodic. In the HX phase, hexagons orient uniformly on average,
but their rotations are still ergodic via slower hopping motion. In the FHX phase, all hexagons are uniformly
oriented, but their rotations are highly bound and nonergodic. MC simulation results on matching rounded
hexagons confirm this experimentally observed sequence of phases. Using simulations, we increase the corner
roundness and show that the molecular-orientational order decreases at fixed φA. Our results provide insights
into controlling the large-scale self-assembly of spatially and orientationally ordered two-dimensional arrays of
colloids through particle shape design and crowding conditions.
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I. INTRODUCTION

Colloidal self-assembly is being studied extensively due to
its broad applications in fabricating new functional soft ma-
terials [1–4]. Self-assembled structures of Brownian colloidal
systems are controlled by the phase behavior of constituent
colloids, which depends on many factors, such as shapes
[4,5], charges [6], magnetic properties [7], or roughness [8,9]
of particles that can influence interparticle interactions [10].
Two-dimensional (2D) colloidal systems with hard particle in-
teractions have attracted particular attention since their phase
behavior is determined solely by the shapes of constituent
colloids and the entropy of these systems.

When slowly crowded, Brownian systems of simple dis-
cotic colloids form an intermediate liquid crystalline ‘hexatic’
(H) phase, which has short-range positional order and quasi-
long-range bond-orientational order, before crystallizing into
a solid. Recent simulations of hard disks have concluded that
the 2D melting transition of the hard disk system is a two-step
process via a H phase, and the solid-hexatic phase transition is
continuous while the hexatic-liquid phase transition is weakly
first order [11,12], unlike the first-order liquid-to-crystal tran-
sition of hard spheres in 3D [10]. This is different from
the well-known Kosterlitz-Thouless-Halperin-Nelson-Young
(KTHNY) theory that has predicted a similar two-step melting
scenario in 2D via a hexatic phase, but with both continuous
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solid-hexatic and continuous hexatic-liquid transitions [13–
15].

Compared with disks, anisotropic colloids in 2D such
as rods, triangles, squares, pentagons, and rhombs exhibit
much richer phase behavior [1]. For example, depending
on their aspect ratios, 2D hard rods can display either an
isotropic-nematic-solid phase sequence or an isotropic-solid
phase sequence as the particle area fraction φA increases
[16]. Brownian 2D systems of anisotropic colloids have been
the focus of much work, including both experiments and
simulations [16–33]. Experimental research on colloids was
initially limited to few available anisotropic shapes, such as
tobacco mosaic virus [34], but huge progress has been made
in the last two decades on new fabrication techniques for
shape-designed colloids [35]. In particular, photolithographic
techniques have been applied to fabricate colloidal platelets
with a wide range of complex 2D shapes that are small enough
for entropic Brownian excitations to dominate [36–38]. Using
this technique, many anisotropic platelets such as triangles,
squares, pentagons, rhombs, and concave-shaped square cross
colloids have been made and their phase behavior in 2D
have been studied [26–29,31]. For instance, the Brownian
triangle system has been shown to form a new ‘triatic’ liquid
crystal phase, rather than crystallize, when slowly crowded
[28]. By contrast, two crystal phases, a hexagonal rotator
crystal (RX) and rhombic crystal (RB), have been observed
in a crowded system of Brownian squares [27]. Although the
fivefold symmetry of regular pentagons is incommensurate
with common 2D crystal symmetries, as φA is progressively
increased, the pentagon system first goes through a liquid-RX
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phase transition yielding a sixfold crystal, and then a transition
from RX to a frustrated hexagonal rotator crystal (FRX), in
which the rotation of pentagons is frozen, has been observed.
At even higher φA, pentagons form a frustrated rotator glass
state, and the degree of spatial order in the system decreases
[26]. Thus, symmetries of phases resulting from entropy
maximization do not necessarily reflect the symmetries of the
shapes of constituent particles.

Computer simulations by Monte Carlo (MC) and molecu-
lar dynamics (MD) methods are powerful tools that have been
widely used to study the 2D phase behavior of anisotropic
colloids [16–25] due to their relatively easier implementa-
tion and precise control over parameters such as aspect ra-
tios, compared with experimental studies. Recently, Ander-
son et al. [24] have performed detailed MC simulations of
monodisperse regular n polygons (for n ranging from 3 to
14), and found that when n � 7, regular polygons show a
similar disklike phase behavior; whereas for regular hexagons,
squares, and triangles, these systems follow KTHNY theory
and melt through two-step continuous transitions from solids
to liquids via hexatic or tetratic phases. When n = 5, the
pentagon system exhibits a first-order melting transition. Both
experimental [26–28] and simulation [24] results clearly show
that the melting transition of 2D systems of regular polygons
depends upon both particle shape and symmetry.

Among regular polygons, triangles, squares, and hexagons
are the only shapes that can fully tile the plane. A regular
hexagon, in particular, also has a sixfold symmetry which
matches the symmetry of hexagonally close-packed struc-
tures. So, Brownian systems of regular hexagons present a
special case that also deserves careful experimental attention.
Simulations of a hexagon system display isotropic-hexatic-
solid phase transitions as φA increases [24], but there has
been no experimental report yet on either the phase dia-
gram of hexagons or characterizing the solid phase in detail.
Moreover, the phase behavior of anisotropic colloids can be
extremely sensitive to smaller details of the colloidal shapes.
For example, in a hard square system, MC simulation re-
sults show a liquid-tetratic-square crystal transition sequence
[20], whereas experiments show a different sequence: liquid-
hexagonal rotator crystal-rhombic crystal [27]. As suggested
in the experimental work as a possible explanation for this
difference, the observed difference is largely due to the cor-
ner rounding of squares used in experiments; this has later
been confirmed by a detailed MC simulation [23]. Thus, a
similar question arises for hexagonal platelets that have only
hard interactions: how does the degree of corner rounding
of vertices affect their phase behavior when crowded in the
presence of Brownian excitations? To answer this, we first
lithographically fabricate hexagonal platelets with edge length
L = 1.7 ± 0.1 μm and thickness 1.4 ± 0.1 μm. Due to the
limited minimum feature size of the stepper photolithography
used, which is primarily a result of optical diffraction of
patterned UV light, the fabricated hexagons have rounded
corners with a roundness ζ = 0.3 [Figs. 1(a) and 1(b)]. We
define the corner roundness parameter as ζ = R0/Rmax, where
R0 is the radius of circle [green dashed circle in Fig. 1(a)]
that is best superimposed on a rounded corner and the center
of this circle lies on the line connecting that rounded corner
and the center of the hexagon [red dashed line in Fig. 1(a)].

FIG. 1. Illustration of the definition of corner roundess ζ and
micrographs of hexagons and their self-assembled structures. (a) ζ is
defined as ζ = R0/Rmax, where R0 is the radius of the circle (green
dashed circle) that is best superimposed on a rounded corner and the
center of this circle lies on the line connecting that rounded corner
and the center of the hexagon (red dashed line). Rmax = √

3L/2 is
the radius of the inscribed circle (blue dashed circle) of the hexagon.
Here, L is the edge length of the ideal unrounded hexagon. (b) A
scanning electron microscopy (SEM) image of a hexagon with color
lines superimposed to illustrate the measurement of ζ . The lower
left inset shows the bare SEM image. Scale bar is 1 μm. (c)–(f)
Transmission optical micrographs of a 2D Brownian system of litho-
graphically fabricated hexagons at different particle area fractions
φA: (c) 0.49, isotropic (I); (d) 0.64, hexagonal rotator crystal (RX);
(e) 0.69, hexagonal crystal (HX); and (f) 0.72, frustrated hexagonal
crystal (FHX), in which the rotation of particles is dynamically
frozen. Lower-left insets: fast Fourier transform (FFT) intensities
calculated from real-space images (scale bar is 0.2 μm−1). FFTs
have been rendered in pseudocolor to emphasize peak features. Black
scale bar in (c) is 10 μm.

Here, Rmax = √
3L/2 is the radius of the inscribed circle

[blue dashed circle in Fig. 1(a)] of the hexagon. We then
experimentally study the phase behavior of slowly crowded
2D Brownian systems of these hexagons. We find three crystal
phases in the solid region and characterize these phases in
detail. Then, to understand the effect that corner rounding has
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on the phase behavior of hexagons more broadly, we perform
MC simulations on a series of hexagons with different corner
roundness from ζ = 0 up to ζ = 0.99. After taking into
account edge roughness and rescaling our simulation φA, we
show that the sequence of phase transitions in simulations is
consistent with our experimental observations at the same ζ .

II. EXPERIMENTAL AND SIMULATION METHODS

A. Preparation of samples

Equilateral hexagons with edge length L = 1.7 ± 0.1 μm
and thickness 1.4 ± 0.1 μm are fabricated from SU-8 poly-
mer by 5x reduction stepper UV photolithography using a
photomask containing many replicates of larger unrounded
hexagons. Due to the stepper’s limited feature size (≈300
nm), the corners of the hexagons are slightly rounded with
roundness ζ ∼ 0.3. The size polydispersity of obtained
hexagons is ∼6%. Following the same method as in Ref. [27],
we have prepared a two-dimensional monolayer of hexagons
in a rectangular optical cuvette (0.2 × 4.0 × 20 mm) using
roughness-controlled depletion attractions (depletion agent:
sulfate-stabilized polystyrene spheres, diameter ∼0.02 μm,
concentration ∼0.5% w/v). Hexagons are then concentrated
by tilting the cuvette about its long axis at angles between
1° and 6°, and a slowly varying spatial gradient in φA is
developed. After waiting for a minimum of two months for
equilibration, images at specific φA along the cuvette are taken
under microscope. About 320 hexagons are observed in a
single microscopic field of view (64 × 64 μm) at high φA.

B. Image analysis and measurement of area fraction

For each image, the center position and six vertices of each
hexagon are determined by a customized software written in
Interactive Data Language. Then the orientation of a hexagon
is defined by the line from the center to one of its vertices.
Because the time interval between recorded frames is small,
i.e., about 0.071 s/frame, no very large rotations approaching
±π/6 between two consecutive frames of any hexagon were
observed at the tested φA. Thus, because our frame rate is high
compared to the rotational diffusion rate, our tracking pro-
gram effectively ensures that the same vertex of each hexagon,
and thus its orientation, is followed throughout the entire
movie. All values of φA are calculated using particle center
locations, and the average measured size of the hexagons
is determined by scanning electron microscopy. Because of
nanoscale edge roughness of the hexagon particles that is
not apparent in the optical micrographs, the effective area
fractions of particles may be slightly larger than our reported
values (i.e., values of φA may be up to about 6.8% larger as a
consequence of edge roughness).

C. MC simulation methods

MC simulations of corner-rounded Brownian hexagons
were performed using isothermal-isobaric NPT ensembles in
a square box with periodic boundary conditions: N = 3584
particles are used. Both compression and expansion runs are
performed. In each MC step, there are N particle trial moves
(each particle will have a trial move once) and four box trial

moves. In both particle and box trial moves, the acceptance
ratio is set to be 40%. The simulation is first run 4.5 × 106

steps to equilibrate, and then run 0.5 × 106 steps to determine
a statistical ensemble average. The Supplemental Material
[39] provides more details of the methods and additional
results.

III. RESULTS AND DISCUSSION

Optical micrographs of crowded Brownian hexagons after
slowly raising φA are shown in Figs. 1(c)–1(f). At φA =
0.49, the system is in an isotropic phase (I) [Fig. 1(c)]; the
positions and orientations of hexagons are disordered and
random. The Fourier transform (FT) of this image yields a
symmetric ringlike pattern, which is typical for an isotropic
disordered phase. For larger φA = 0.64 [Fig. 1(d)], the system
has solidified into a hexagonal rotator crystal phase (RX); the
positions of hexagons are ordered in an equilateral hexagonal
lattice (see inset), but the orientations of hexagons are still
random. The corresponding FT shows a hexagonal pattern
of sharp peaks. When φA is further increased to 0.69, the
positions of hexagons form an ordered equilateral hexagonal
lattice [see Fig. 1(e) and inset], but also their orientations
become uniform (i.e., all edges of hexagons become strongly
aligned with one of three axes in the plane), so the system is
in a distinguishably different hexagonal crystal phase (HX).
At an even higher φA = 0.72 [Fig. 1(f)], hexagons are packed
so tightly that rotational tip-tip passage between neighboring
hexagons is rarely observed over very long timescales (e.g.,
days). So at this area fraction, the system is in a frustrated
hexagonal crystal phase (FHX). Compared with the HX
phase, the FHX phase is structurally the same but dynamically
different. Because the symmetry of the hexagonal platelets
matches that of the self-organized lattice structure, at even
larger φA we do not observe an increase in disorder. This
is different than observations for similar systems of regular
pentagons that showed an increasing defect density when very
strongly crowded [26] because such pentagons have a fivefold
symmetric particle shape that is mismatched with the sixfold
symmetry of the self-organized lattice.

To characterize the phase behavior of the experimental
hexagon system quantitatively, we calculate relevant
order parameters and correlation functions. The sixfold
bond-orientational order Ψ6, positional-order S�, and
molecular-orientational order Φ6 parameters are Ψ6e

iω =
N−1 ∑N

j=1 ϕ6(�rj ), S� = N−1|∑N
j=1 ξ6(�rj )|, and Φ6 =

N−1|∑N
j=1 ei6θj |, respectively [27,40]. Here, ω represents

a global phase; N is the total number of particles; ϕ6(�rj ) =
N−1

j

∑Nj

k=1 ei6γjk is the local sixfold bond-orientational order
parameter for particle j ; �rj is the center position vector of
particle j in lab frame, and γjk is the angle between an
arbitrary fixed axis and the line connecting the centers of
particles j and k.Nj is the number of nearest neighbors of
particle j , obtained by a Voronoi construction using center
positions of particles; ξ6(�rj ) = ei �G6·�rj is the positional order
parameter for each particle j , �G6 is the reciprocal lattice
vector of the equilateral hexagonal lattice; and θj is the angle
of “molecular” orientation of particle j . Correspondingly,
the sixfold bond-orientational correlation function g6(r ),
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FIG. 2. Order parameters as a function of φA obtained from
(a) experimental measurements and (b) Monte Carlo simulations
with the same ζ as experimental hexagons (ζ = 0.3). Red cir-
cles: molecular-orientational order Φ6; blue squares: sixfold bond-
orientational order Ψ6; green diamonds: positional order S�. The
positional order S� in (a) at low area fractions has been corrected
by subtracting using an average of the first two points determined at
low φA to offset the nonzero value of calculated S� in the isotropic
phase (necessary given the employed numerical method). The dashed
lines indicate the estimated boundary of the phases.

the spatial correlation function relating to positional order
g6

s (r ), and the sixfold molecular-orientational correlation
function g6

mo(r ), are defined as g6(r ) = Re〈ϕ∗
6 (0)ϕ6(r )〉,

gs
6(r ) = Re〈ξ ∗

6 (0)ξ6(r )〉, and gmo
6 (r ) = 〈cos[6θ (r ) − 6θ (0)]〉,

respectively.
In Figs. 2 and 3, we show and compare the results of these

calculations for the experiment and for the corresponding MC
simulation. From Fig. 2(a), for φA < 0.6, we find that Ψ6, S�,
and Φ6 are all small, and the system is isotropic (I). The cor-
relation functions in the I phase all decay quickly, indicating
only short-range order (see Fig. 3). When φA � 0.6 , Ψ6 and
S� both exhibit an abrupt and highly correlated increase. By
contrast, Φ6 does not increase to a high value (e.g. >0.5) until
φA reaches ∼0.68. So for 0.6 � φA � 0.68, the system is in a
RX phase. As an example, at φA = 0.64, g6(r ) shows a strong
correlation with no apparent decay within the measured range
of r , and g6

s (r ) shows an algebraic decay at large r with
an exponent larger than −1/3, indicating that this phase is
stable against a dislocation-mediated KTHNY transition [40].
However, g6

mo(r ) decays very quickly at φA = 0.64. These
results show that the RX phase has (quasi-)long-range bond-

FIG. 3. Measured experimental correlation functions at different
φA. (a) Sixfold bond-orientational correlation function g6(r ). Dashed
line is ∝r−1/4, which is the KTHNY prediction for g6(r ) at the
H-I transition point. (b) Spatial correlation function gs

6(r ). Dashed
line is ∝r−1/3, which is the KTHNY prediction for gs

6(r ) at the
crystal-hexatic transition point. (c) Sixfold molecular-orientational
correlation function gmo

6 (r ). φA = 0.49 (red circles), 0.64 (blue
squares), 0.69 (green diamonds) and 0.72 (black crosses). D = 2L

is the diameter of circumscribed circle of a regular hexagon. The
large fluctuations of correlation functions in the crystal phase are a
consequence of the crystalline order.
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FIG. 4. Dynamics of hexagons at different φA. Time- and ensemble-averaged (a) MSD, (b) MSAD. (c) Examples of rotational trajectory
of individual hexagons as a function of time t . Trajectories have been shifted upward for clarity. (d) Probability density of hexagon orientation
at a particular θ . Symbols: φA = 0.60 (red circles), 0.68 (blue squares), 0.69 (black diamonds), 0.71 (green crosses), and 0.72 (pink plusses).

orientational order and quasi-long-range positional order, but
only short-range molecular-orientational order. When φA >

0.68, Ψ6 and S� are close to 1, and Φ6 continues to increase
and approaches to a saturation value ∼0.6 as φA is increased
to the maximum value obtained in the experiment. So for
φA > 0.68, the system is in a HX phase, in which not only the
positions of hexagons but also the orientations of hexagons are
ordered. In the HX phase, both g6(r ) and g6

s (r ) show strong
correlations without detectable decays in the observed range
of r (see examples at φA = 0.69 and 0.72 in Fig. 3). Although
plots of g6

mo(r ) at φA = 0.69 and 0.72 have lower magnitudes
compared to unity, these functions do not show an apparent
decay at large r . The absence of decays at large r indicate that
in the HX phase bond-orientational order, positional order and
molecular-orientational order are all (quasi-)long-range.

Structurally, there is no difference between HX and FHX
phases, at least in terms of order parameters and correlation
functions (see Supplemental Material, Fig. S1 [39]). To distin-
guish between the HX and FHX phases, movies showing the
equilibrium fluctuating dynamics of the crowded hexagons are
required. We reveal this distinction through our experiments
by tracking the motion of hexagons and measuring time-
and ensemble-averaged mean-square displacement (MSD)
〈�r2(t )〉 and mean-square angular displacement (MSAD)
〈�θ2(t )〉 of hexagons, where t represents the time interval
(Fig. 4). The ensemble size used for averaging is ∼266–316
hexagons, and the time duration is about 5 min. In the RX
phase (curves of φA = 0.60 and 0.68 in Fig. 4), the transla-

tional motion of hexagons is confined near lattice points, as
indicated by the plateau in MSD curves at long times. The
magnitude of the plateau reflects the degree of confinement
resulting from crowding by neighboring hexagons. MSAD
curves in the RX phase, however, show no restriction and
increase with t , indicating that hexagon rotation in the RX
phase is not confined and particles can explore all angles. We
show two examples of rotational trajectories, represented by
circle and square symbols, in Fig. 4(c); given the sixfold sym-
metry of a hexagon particle, if the orientation of a hexagon
can explore at least an angle range of π /3, then this particle
is effectively considered to be able to explore all angles. Con-
sequently, the histogram p(θ ) in the RX phase shows a broad
distribution over the entire angle range [Fig. 4(d)]. In the HX
phase (curves of φA = 0.69 in Fig. 4), hexagons become more
restricted in translational motion as evidenced by the lower
magnitude of the plateau in the MSD curve. Interestingly,
for rotational motion, the MSAD curve shows a plateau at
short times, but increases again at long times. This indicates a
cagelike rotational behavior of hexagons, in which orientation
of a hexagon fluctuates about a first value initially, then
tip-tip passage occurs and the hexagon fluctuates a second
different value (i.e., a rotational hopping occurs). An example
of a rotational hopping trajectory is shown in Fig. 4(c) (see
diamond symbols). p(θ ) in the HX phase exhibits a narrow
distribution with a single peak due to the uniform orientation
of hexagons. To improve the statistics, p(θ ) is measured in
the angle range of [0, π /3) using θ mod π /3 due to sixfold

015601-5



ZHANGLIN HOU, KUN ZHAO, YIWU ZONG, AND THOMAS G. MASON PHYSICAL REVIEW MATERIALS 3, 015601 (2019)

symmetry of hexagons. So, in this case, rotational hopping
of hexagons (i.e., tip-tip passage events) does not contribute
much to p(θ ), and did not show a second peak as observed
in p(θ ) of pentagons where the full range of θ is used. At
even higher area fractions φA = 0.71 and 0.72 (Fig. 4), both
MSD and MSAD curves show plateaus with small magnitudes
at long times, indicating that hexagons are tightly confined
both in translation and in rotation, and rotational hopping is
no longer observable over a readily accessible experimental
timescale. At such high particle densities, such a rotational
hopping event would require a collective motion of many
particles (i.e., substantial local density fluctuation) in order to
make enough room for one particle to hop rotationally. Such
collective motion becomes extremely rare at high φA [see
two examples of rotational trajectories represented by cross
and plus symbols in Fig. 4(c)]. Therefore, we conclude based
on experimental observations of dynamics that the system is
in the FHX phase. Correspondingly, the single peak in p(θ )
becomes more pronounced with an increased magnitude and a
narrower width, indicating the reduced variability in hexagon
orientation in the more tightly packed FHX phase. The HX-
FHX rotational ergodic-nonergodic transition is continuous
and the transition point will be likely shifted with the particle
shape.

Our experimental observations reveal a richer crystal phase
behavior compared with prior simulation results [24]. Specif-
ically, our experimental system exhibits a hexagonal rotator
crystal first and then a hexagonal crystal as φA increases.
This indicates that the bond-orientational order is developed
before the molecular-orientational order in our experimental
system. This observation is different than simulation results
which found that the molecular-orientational order and the
bond-orientational order are closely correlated in solid phases,
even in the highest density pure isotropic fluid phase [24]. Our
observations also reveal the FHX phase at very high densities,
which is distinguishable from the HX phase through analysis
of hexagon dynamics, not structure. Anderson et al.’s reported
phase behavior of a system consisting of perfect hexagons by
MC simulations [24] includes a continuous two-step KTHNY
melting: a continuous solid-to-hexatic phase transition and
then a continuous hexatic-to-isotropic phase transition. How-
ever, given experimental limitations and the very narrow range
in φA associated with the predicted existence of the hexatic
phase, a definitive experimental identification of a hexatic
phase of hexagons and its associated phase transitions can-
not be conclusively made using our observations of rounded
hexagons alone. Additional refinements to the experiments are
needed in order to test with certainty regarding the possible
existence of the hexatic phase, and this will be done in the
future.

To go beyond the simulation work done by Anderson
et al. [24] on perfect hexagons and investigate the effect
of corner roundness on the phase behavior of hexagons, we
have performed MC simulations of regular hexagons having
different corner roundness ζ in isothermal-isobaric NPT en-
sembles (containing N = 3584 particles) in a square box with
periodic boundary conditions. First, as a control study, we
apply this simulation method to a system of perfect hexagons,
and the results we obtained agree with those of Anderson
et al. [24] (see more details in the Supplemental Material

[39]). We then apply our MC simulation to rounded hexagons
with ζ = 0.3, and the results are shown in Fig. 2(b). We can
see both RX and HX phases observed in experiments are
recovered in MC simulations. However, the H-RX transition
point obtained from the simulation is at φA = 0.713, whereas
in the experiment the I-RX transition point is at φA = 0.6.
There are several factors that could contribute to the difference
between the simulated and experimentally observed area frac-
tions associated with these transitions. One is the size poly-
dispersity of hexagons used in experiments (∼6%). Another
factor is the inherent nanoscale surface roughness on the edges
of lithographic-fabricated hexagons, which could result in a
bigger effective area (upper bound is estimated to be 6.8%
more than the bare surface area). These two factors together
give an effective area fraction φA,eff ∼ 0.64 ± 0.08 at I-RX
transition measured in the experiment, which can account for
the discrepancy between experiments and simulations. From
the simulation aspect, the system size effect is a factor that
needs to be considered. For our MC simulations, we have also
used a smaller system consisting of 1840 particles, and the
results show the area fraction at the H-RX transition is 0.711
for this smaller system, which is very close to the value 0.713
obtained for a system of 3584 particles (see Supplemental
Material, Fig. S2 [39]). We can evaluate the system size effect
by comparing φA at the H-RX transition for two systems: one
is a system consisting of 3584 perfect hexagons used in this
work and the other is a much bigger system consisting of
5122 perfect hexagons employed by Anderson et al. [24]. The
results show φA at the H-RX transition is 0.702 for the system
of 3584 particles and 0.710 for the system of 5122 hexagons
[24], and thus the uncertainty in the area fraction due to the
system size effect in simulations is estimated to be less than
1.5%.

We also find a hexatic phase for hexagons with ζ = 0.3
in our MC simulations, although over a very small range
of φA. Since in the experiments a tilted sample was used,
in which there is a density gradient of particles along the
tilting direction, the resulting limited spatial dynamic range
of our experimental observations (particularly at intermediate
densities) may mask the possible hexatic phase which is only
stable over a very narrow range of φA between 0.695 and
0.713.

In the solid-crystal phase region, the simulation results
show that Ψ6 is already large when the system reaches the
solid phase, and Ψ6 approaches 1 steadily as φA increases.
A similar trend is also found for S�, although the saturation
value of S� is below 1 due to defects in the crystals. By
contrast, Φ6 starts from a much lower value of ∼0.25 when
the simulation system first reaches the solid phase, and then
increases with φA in an approximately linear way. So to clarify
our boundary of the solid phase obtained in simulations,
we set a threshold value of Φ6 to be 0.5, which roughly
corresponds to the value of Φ6 at the RX-HX transition point
obtained in experiments, and then for 0.713 < φA < 0.786,
Φ6 < 0.5 and the system is in the RX phase, while for φA >

0.786, Φ6 > 0.5 and the system is in the HX phase. If we
rescale the MC simulation results by matching the H-RX tran-
sition point (φA = 0.713) obtained from the simulation to the
I-RX transition point (φA = 0.6) measured in the experiment,
then the rescaled φA,rescaled = 0.66 at RX-HX transition in the
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FIG. 5. Phase diagram of corner-rounded hexagons in the φA-ζ
plane obtained by MC simulations of 3584 particles from expansion
runs. ζ = 0 corresponds to a perfect hexagon shape with ideally
sharp vertices, and ζ = 0.99 corresponds to a nearly disklike shape.

simulation also agrees with the one obtained in the experiment
(i.e., 0.68). In both RX and HX phases of the simulation,
g6(r ) barely shows an algebraic decay at large r , and g6

s (r )
shows a slow algebraic decay at large r with an exponent
larger than −1/3. In contrast, g6

mo(r ) at large r remains at
a low value in the RX phase and it gradually increases to a
relatively large value in the HX phase (see Supplemental Ma-
terial, Fig. S3 [39] for more details on order parameters and
correlation functions). Overall, our rescaled simulation results
agree reasonably well with our experimental observations for
ζ = 0.3. The slow increase of Φ6 with φA also indicates that
the RX-HX transition is continuous.

To develop a more complete understanding of the effect
of corner roundness ζ on the phase behavior of rounded
hexagons, we have systematically studied the phase behavior
of corner-rounded hexagons by MC simulations. The obtained
phase diagram of rounded hexagons is shown in Fig. 5 (see
Supplemental Material and Supplemental Figs. S4–S11 for
more details [39]). We can see that in all tested rounded
hexagons, the hexatic phase is observed but at varied ranges
of φA. The starting φA at which the hexatic phase appears is
shifted upward as ζ increases (i.e., closer to a disklike shape).
This agrees with the results shown by Anderson et al. that the
starting φA of the hexatic phase of regular n-gons increases
with n [24].

The effect of corner roundness on the molecular orientation
of particles is shown in Fig. 6. We can see that under the same
φA in the range of [0.68, 0.9], which mainly covers the RX
and HX/FHX regions, Φ6 decreases as ζ increases. In other
words, the rounded hexagon particles have a greater capacity
to become misaligned as ζ increases. This is understandable
since hexagons with large ζ will behave more like a disk,
and thus a more crowded packing is required in order for the
allowed orientations of a given particle to be more strongly
constrained by its neighbors. For a similar reason, the RX-
HX phase transition shifts progressively to higher φA as ζ

increases (shown in Fig. 5). In the limiting case of a disk
shape, since there is no particular orientation that can be
identified, Φ6 essentially fluctuates around the noise level.

Among the regular n-gons, the observed phase behavior
of crowded Brownian systems of polygons with n � 5 are all

FIG. 6. Molecular-orientational order Φ6 at different φA for
hexagons with different corner-roundness ζ .

unique, as shown in prior experiments by Zhao and Mason
[1,26–28]. This has also been seen by Anderson et al. in
simulations which extended n up to 14 [24]. Experimentally,
for systems of triangles, squares, and pentagons, none of
these systems develops a spatially ordered phase with the
same symmetry as the shape the constituent particle has when
slowly crowded [26–28]. Systems of hard regular triangles do
show a liquid-crystal “triatic” phase that exhibits fluctuating
local chiral symmetry breaking, but this does not have long-
range spatial order. A crowded system of hard Brownian
hexagons, on the other hand, shows RX and HX phases which
have the same sixfold symmetry as the hexagon shape. Ro-
tational behavior (including hopping behavior) of regular n-
gons in dense Brownian systems depends on n as well as on ζ .

To generalize the onset of nonergodicity in the rotations of
n-gons, we develop a relatively simple geometrical model. We
consider a freely rotating regular n-gon pinned at its center.
Such a freely rotating n-gon will sweep out an area corre-
sponding to the circle circumscribing the n-gon [Fig. 7(a)].
We calculate the area fraction φA

CD,hcp at which the corre-
sponding disk enclosed by the circumscribing circle of the
n-gon reaches 2D hexagonal close packing [see an example
for hexagons in Fig. 7(b)]. Then we can plot both φA

CD,hcp

and the lowest area fraction φA
R (reported experimentally) at

which n-gon rotation becomes nonergodic as a function of
n [Fig. 7(c)]. For example, for triangles, φA

CD,hcp = 0.375,
while the lowest area fraction, φA

R is 0.55, at which the
triangle system exhibits a triatic phase and the rotation of
triangles is restricted and becomes nonergodic [28]. Similarly,
for squares, particle rotation becomes nonergodic at φA

R =
0.66 in a RB phase [27], while for pentagons and hexagons,
the rotational ergodic-nonergodic transition happens roughly
at φA

R = 0.75 and 0.71, respectively. These area fractions
correspond to the FRX phase in the pentagon system [26], and
the FHX phase in the hexagon system. We can see that in order
to restrict the rotation of polygons, a higher φA

R than φA
CD,hcp

is needed so that tip-tip passages will be hindered. In addition,
Fig. 7(c) also shows that as n of a regular n-gon increases (i.e.,
approaches a disk), the difference between φA

R and φA
CD,hcp

is reduced. We should note that this simple geometrical model
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FIG. 7. (a) Illustration of the circumscribed circle touching the
vertices of a regular hexagon. (b) Schematic showing one example of
hexagons when their circumscribed circles are close packed. (c) The
area fractions φA

CD,hcp and φA
R as a function of n for regular n-gons.

φA
CD,hcp is the area fraction of n-gons when their circumscribed

circles are at closest packing, which is obtained by φA
CD,hcp =

n

2π
sin( 2π

n
) × π

2
√

3
, where the first factor is the area ratio of n-gon

and its circumscribed circle, and the second factor is the closest
packing density of disks; φA

R is the observed area fraction at which
n-gon rotation in a dense Brownian system becomes nonergodic. For
triangles (n = 3), φA

R = 0.55 and the triangle system is in a triatic
phase [28]; for squares (n = 4), φA

R = 0.66 and the square system is
in a rhombic crystal phase [27]; for pentagons (n = 5), φA

R = 0.75
and the pentagon system is in a FRX phase [26]; while for hexagons
(n = 6), φA

R = 0.71 and the hexagon system is in a FHX phase. The
error bars indicate the upper bound of the expected possible increase
in the effective φA of each regular polygon due to edge roughness.

does not capture fluctuations of positions and orientations of
surrounding polygons that are no doubt present in the real
experimental system. These fluctuations would lead to a range
of possible angles of center polygons, and even dynamical
heterogeneity in rotations, especially for area fractions near

the rotational ergodic-nonergodic transition point. Interest-
ingly, the fact that rotational ergodic-nonergodic transitions
happen in phases with different translational order for differ-
ent n-gons indicates a different coupling between translational
and rotational motion of particles in those systems, which
would be worth studying in future work.

IV. CONCLUSIONS

In this work, we have studied the phase behavior of
rounded hexagons both by experiments and by MC simula-
tions. Compared to earlier simulation work, our experimental
results reveal a much richer phase behavior in the solid-crystal
region. We find that in the crystal region, RX is formed
first at low φA, and then HX is observed as the orientation
of hexagons becomes uniform at high φA. At even higher
φA, the crowding of particles greatly restricts the rotation of
hexagons, and results in a structurally similar but dynamically
different phase FHX. All those crystal phases have the same
sixfold symmetry as the regular hexagon shape has. This is
different from earlier experimental observations on regular
triangles, squares, and pentagons, whose assembled ordered
structures in the surface fraction range explored experimen-
tally did not show the rotational symmetries of the shapes
of constitutent particles. Our MC simulations on rounded
hexagons confirm the RX-HX transition and reveal that the
molecular-orientational order in the crystal phase gradually
decreases with increasing corner roundness, indicating that
the coupling between particles rotation and particles trans-
lation is reduced as particles become more rounded. It will
be also interesting for a future work to apply a simulation
method in which the dynamics can be revealed to see the HX-
FHX transition that we have identified through experiments.
The findings in this study provide insights in controlling
self-assembly of colloids through appropriate particle shape-
design.
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