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Mimicking surface polaritons for unpolarized light with high-permittivity materials
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Tailoring near-field optical phenomena often requires excitation of surface plasmon polaritons (SPPs) or
surface phonon polaritons (SPhPs), surface waves at the interface between media with electric permittivities
of opposite sign. Despite their unprecedented field confinement, surface polaritons are limited by polarization:
only transverse magnetic fields enable their excitation, leaving transverse electric fields unexploited. By contrast,
guided modes in positive permittivity materials occur for both linear polarizations, however, they typically cannot
compete with SPPs and SPhPs in terms of confinement. Here we show that omnipolarization guided modes in
materials with high-permittivity resonances can reach confinement factors similar to SPPs and SPhPs, while
surpassing them in terms of propagation distance. We explore the cases of silicon carbide and transition-metal
dichalcogenides near their permittivity resonances, and compare with SPhPs in silicon carbide and SPPs in silver,

at infrared and visible frequencies, respectively.

DOI: 10.1103/PhysRevMaterials.3.015202

I. INTRODUCTION

Electromagnetic surface waves and their interaction with
matter provide a path for tailoring near-field optical phe-
nomena. The rise of plasmonics has generated excitement
in a broad range of applications, for example, in medical
technology [1], chemistry [2], lasers [3-5], optical circuitry
[6-8], luminescence [9,10], and thermal management [11,12].
Surface plasmons are evanescent electromagnetic waves that
propagate on a metallic surface [13] and exponentially decay
in the lateral direction, as shown in Fig. 1(a). Their properties
originate from the dispersion characteristics of Drude metals
[black curve in Fig. 1(b)], and their uniqueness lies in their
large mode confinement. In particular, the frequency disper-
sion of a surface plasmon polariton (SPP) exhibits a charac-
teristic asymptotically increasing in-plane wavenumber kspp,
which is unbound in the lossless limit [see Eq. (1) for e (w) =
—e1]. Therefore, the wavelength of a SPP (Aspp = 27/ kspp)
can be up to ten times reduced compared to free-space wave-
lengths for noble metals [16], while this confinement factor
can reach hundreds in graphene [17]. The asymptotic behavior
of the SPP dispersion curve also yields a large density of
optical states, a property desirable for engineering strong
light-matter interactions with applications in luminescence,
emission, and thermal control [11,18]. The prerequisite for
excitation of SPPs is an interface between media with electric
permittivities (¢) of opposite sign [19].

Aside from plasmonic metals with a broadband € < 0
below their plasma frequency, negative electric permittivity
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is also found at the Reststrahlen band of polar dielectrics
[red curve in Fig. 1(b)]. In particular, the permittivity of
polar dielectric materials exhibits Lorentz-shaped resonances
at mid- to far-infrared (IR) frequencies, as a consequence
of lattice vibrations, cf. phonons, in their crystal structure.
The Reststrahlen band’s € < 0 allows for excitation of sur-
face phonon polaritons (SPhPs), which, similar to SPPs, are
evanescent waves. In contrast to SPPs that originate from free
charge carriers in metals, SPhPs occur due to bound charge
oscillations in dielectrics [14,20,21].

Despite the unique electromagnetic features of SPPs and
SPhPs, their excitation requires an out-of-plane electric field,
which renders them relevant only for transverse magnetic
(TM) fields, while they do not couple to transverse electric
(TE) fields. Nevertheless, unpolarized light contains equal
contributions of TE and TM components, therefore, the po-
larization dependence of surface (plasmon or phonon) po-
laritons constrains their relevance and limits the potential
of plasmonic-based future technologies. To fully exploit the
remarkable properties of SPPs and SPhPs as mechanisms
for manipulating light in the nanoscale, for example, in har-
nessing solar energy [22,23], recycling heat [11,12,14], and
controlling emission [3,9,10], it is valuable to explore means
for overcoming this polarization bottleneck.

Here, we aim to alleviate the polarization dependence of
SPPs and SPhPs by searching for material requirements for
simultaneously accommodating TM and TE polarized surface
waves. A naturally occurring TE equivalent to a surface
polariton requires a material with p < 0, however, natural
magnetism typically vanishes at IR and visible frequencies
[19,24-27]. By contrast, guided modes in slabs of materials
that exhibit a positive electric permittivity [see Fig. 1(c)]
occur for both linear polarizations and have played a promi-
nent role in integrated optical devices in the past decades
[28,29]. Such guiding schemes can be very small by consid-
ering thin dielectric films of high-refractive index for com-
pact optical circuitry [30-32]. The effective wavelength, or
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FIG. 1. Guided waves in € < 0 and € > 0 material systems. (a) At the interface between media with electric permittivities of opposite
sign, surface plasmon polaritons (SPPs) and surface phonon polaritons (SPhPs) are supported. (b) Drude (black) and Lorentz (red) dielectric
response, supporting SPPs and SPhPs, respectively, when € < O (red shaded region). (c) Guided waves are supported in slabs with high-¢,
when embedded between lower-e¢ media. (d) Monolayer case of (c). (e) Electric permittivity of a polar dielectric material (red), where wro
and w o correspond to the transverse and longitudinal optical phonon energies, respectively [14] [see Eq. (2)], and electric permittivity of an
excitonic material (cyan), for example, transition-metal dichalcogenides (TMDs) [15]. For omnipolarization surface-confined propagation, we
focus on the high-¢ regime (green shaded region). Solid lines, real parts; dashed lines, imaginary parts. y4 stands for the phonon and exciton

lifetimes [see Eq. (2)].

confinement, of a guided mode scales with the refractive
index as Aef ~ Ao/n, Where n = /€ and 1, is the free-space
wavelength. Hence, a large positive electric permittivity is key
for exciting guided modes with strong interface confinement,
for both linear polarizations, contrary to SPPs and SPhPs.

Such high-permittivity regimes are found, for example, on
the red side of the Reststrahlen band of polar dielectric media,
near their phonon resonances, in the IR range [see red curve
in Fig. 1(e)]. Furthermore, large and positive permittivity res-
onances occur near the exciton transition energies of semicon-
ductors [33] that lie at visible frequencies and typically exhibit
Lorentz-shaped frequency dispersion, as shown with the cyan
curve in Fig. 1(e). A set of polar dielectric materials and
semiconductors with high-permittivity resonances is shown
in Fig. 2, where the displayed wavelengths refer to the peak
of their electric permittivity [frequency wro in Fig. 1(e)].
An emerging class of semiconductors with particular interest
to our study are transition-metal dichalcogenides (TMDs),
namely, WS,, MoS,, WSe,, and MoSe,, that exhibit promi-
nent features in their electric permittivity, both in their bulk
and monolayer form, as recently discussed in [15].

In this work, we demonstrate that materials with pro-
nounced permittivity resonances [green shaded regime in
Fig. 1(e)] support omnipolarization guided modes [Figs. 1(c)

and 1(d)] that can mimic the propagation characteristics of
SPPs and SPhPs. As an example system in the IR range we
investigate a slab of SiC, a polar dielectric material previously
widely explored for SPhP propagation at its Reststrahlen band
[11,14,20,21,34,35]. In contrast, here we focus on the high
permittivity regime of SiC and compare with the SPhP band.
At visible frequencies, we investigate TMDs near their exci-
tonic resonances [15] and compare with SPPs on silver, since
Ag is a state-of-the-art material for visible light plasmonics.
For the selected materials, we show that omnipolarization
surface-confined propagation is possible, with confinement
similar to surface polaritons, and with propagation distance
that surpasses them. We extend our findings to the monolayer
case of TMDs [see Fig. 1(d)], where the high-¢ modes have
been previously termed exciton polaritons [36,37]. We start
by demonstrating that the key material property enabling this
response is a sharp and low-loss permittivity resonance, which
we refer to as a high-quality factor (Q) in what follows.

II. HOW GUIDED MODES CAN COMPETE
WITH SURFACE POLARITONS

At the interface between two media with electric permittiv-
ities €; > 0 and €(w) < 0, a TM-polarized surface excitation
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FIG. 2. Materials with Lorentz-type permittivity resonances at visible and IR frequencies. Polar dielectric materials at IR frequencies
and excitonic materials (semiconductors) at visible frequencies exhibit high-e Lorentz-type permittivity resonances (details for the selected
materials can be found, for example, in [11,14,15]). wto stands for the central frequency of the resonance [see Fig. 1(e)], near which surface-

confined modes are computed in Figs. 4-6.

exists [Fig. 1(a)]. The frequency dispersion of its in-plane
wavenumber is [13]

€Elw)e
kseesonp = ,/E(a())%ko, (1)
1

where k, = w/c is the free-space wavenumber. As €(w)
approaches —ey, kspp/sphp diverges, enabling extreme mode
confinement. For metals, €(w) is taken as the Drude model,

e(w)y=1-— ﬁ where w, is the plasma frequency and
¥m 18 the inverse momentum-relaxation time of electrons. The
SPP dispersion is shown with the black curve in Fig. 3 for a
finite amount of loss y,. A similar dispersion characterizes
SPhPs at the Reststrahlen band of polar dielectric materials
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FIG. 3. SPPs and SPhPs compared to high-¢ guided modes. The
black curve denotes dispersion for SPPs [e(w) <0, €, = 1; see
Fig. 1(a) and Eq. (1)], for TM polarization. In this case, Wy =
wp/ﬁ, where w, is the plasma frequency of Ag [38] and we
take ¥ = 0.1ym e A similar dispersion characterizes SPhPs at IR
frequencies. The grey shaded region denotes the dispersion regime of
Si photonics: wavenumber values pertain to a typical Si waveguide
on a SiO, substrate [¢; = 1, €(w) = €4, €3 = €si0,; see Fig. 1(c)].
Cyan and red curves denote dispersion for guided modes in high-€¢
slabs [Fig. 1(c)], with €;3 = 1, €(w) = €L [Eq. (2)], for low and
high-Q [Eq. (4)], respectively. We take wchyy = wro1 = wron and
yir = 0.1y = 7.267 x 10'3 rad/s [Eq. (2)], which is within the range
of y4 for most polar dielectric materials [11,14,21]. Inset: imaginary
part of the in-plane wavenumber &/, .

that can be described with the Lorentz model
2

2 .
Wig — 0 — IYqw
eLor(w) = 6oo,d( B ) N s (2)
Wi — W? —iwyy

where wp o and wtp correspond to the longitudinal and trans-
verse phonon energies, respectively, and yq4 is the inverse
phonon lifetime. The back-bending of the SPP/SPhP disper-
sion curve in Fig. 3 arises from material loss, in other words,
from the nonzero values of y;, or y4 in Drude metals and
polar dielectric materials, respectively [13,16,39]. This back-
bending determines the maximum wavenumber kspp/spnp that
corresponds to the highest degree of confinement and is
bounded by material loss. A nonzero imaginary component of
the wavenumber, Im(kspp/spnp ), also arises from material loss,
and its frequency dispersion is shown with the black curve in
the inset of Fig. 3.

Next, we consider a slab of thickness d of an arbitrary
material with positive permittivity €(w), sandwiched between
two semi-infinite spaces with permittivities €, [Fig. 1(c)],
where we set €(w) > €1,. By selecting appropriately the
thickness d of the slab, one can engineer the TE guided
modes to overlap in frequency (w) and in-plane wavenumber
(k;;) with the TM ones, thereby leading to omnipolarization,
phase-matched propagation [see Figs. 4(a) and 5(a)-5(d)]. In
this configuration, k,, is bounded by the refractive indices of
the surrounding and guiding media, and its maximum value is

kmax = max{v E(('())}k0~ (3)

For example, a widespread waveguide system in silicon pho-
tonics is a Si slab sandwiched between air and a SiO, sub-
strate. At A, = 1.5 um, SiO, and Si exhibit negligible fre-
quency dispersion, and their refractive indices are 1.5 and 3.4,
respectively. Therefore, the in-plane wavenumber is bounded
by 1.5 < k;;/k, < 3.4. This regime is shown with the grey
shaded area in Fig. 3. By considering that the effective wave-
length of a guided mode is given by Aesr = 27/k/), it is easy
to see that silicon photonic guided modes cannot typically
compete with SPPs or SPhPs in terms of confinement.

Now let us consider a dispersive electric permittivity €(w)
for the slab [Fig. 1(c)], and particularly €(w) = € (w), and
let us focus in the high-¢ frequency range [green shaded area
in Fig. 1(e)], for o < wro. We define the material quality
factor Q, with respect to Eq. (2), as

wTO
0=—. “)
d
The quality factor Q expresses the sharpness of the permit-

tivity resonance [Fig. 1(e)]. In Fig. 3 we plot the maximum
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wavenumber kn.x [Eq. (3)] for two different values of Q
(cyan and red curves). It can be seen that, by increasing Q,
one obtains larger Re(k,,), and hence improved confinement,
while also achieving low propagation losses, since the pa-
rameter Im(k,,) decreases considerably near resonance, for
increasing Q. It is noteworthy that the dispersion curve for
high-Q material slabs (red curve in Fig. 3) resembles the
SPP/SPhP dispersion curve (black curve in Fig. 3). This
highlights that guided modes in high-Q materials can reach
surface confinement similar to SPPs and SPhPs. We note that
for the SPP dispersion in Fig. 3 we selected Qspp = wp/¥Ym =
1.88 x 10°, which is an overestimation of the quality factor
of most plasmonic metals (for reference, Qp, = 1.88 x 10?
[38]).

In Fig. 3 we demonstrated that, in principle, guided modes
in high-e material slabs can compete with surface polaritons
in terms of confinement. By defining the propagation dis-
tance of a mode as L = 1/2Im(k,,), we also see, from the
inset of Fig. 3, that such modes can propagate for longer
distances, compared to SPPs or SPhPs. We emphasize that
both TE and TM guided modes are supported in high-€
material slabs, thereby alleviating the polarization limitation
of surface polaritons. The key material parameter for highly
confined guided modes is large Q. In contrast to the maximum
value of kspp/spnp, Which is bounded by loss [Eq. (1)], the
maximum wavenumber of a guided mode is bounded by
max{e(w)} = €(wro) [Eq. (3)]. As Q increases, permittivity
resonances become sharper and €(wrp) increases. This also
leads to increased losses on resonance; however, this issue is
overcome by operating slightly off resonance, to the red side
of wTO-

In what follows we perform detailed surface wave calcu-
lations for selected high- Q materials and compare them with
surface polaritons in terms of confinement, mode volume, and
propagation distance. By modeling the electric permittivity
for the selected materials with the Lorentz model [Eq. (2)], we
derive a quality factor Q [Eq. (4)] for each one. In the search
for high-permittivity materials with pronounced resonances,
we resort to polar dielectrics and TMDs at IR and visible
frequencies, respectively. In the IR range, we select SiC due
to its very large Qsic = 166 [11] (we note that even higher
values of Qgic have been reported [14,21,34,35]). The high-
Q guided modes of SiC are compared to its SPhP in the
Reststrahlen band (Fig. 4). At visible frequencies, we compare
SPPs in silver with guided modes in thin films (Fig. 5)
and monolayers (Fig. 6) of WS,, MoS,, WSe,, and MoSe;.
These materials support prominent permittivity resonances
that span the whole visible spectrum (see Fig. 2), as reported
experimentally by Li et al. [15]. By fitting the data from
[15] with Eq. (2) we obtain, for bulk properties, Qws, = 37,
OMos, = 25, Qwse, = 18, and Omose, = 19, while slightly
higher quality factors describe monolayers.

In the dispersion curves that follow, in order to provide a
direct estimation of confinement and to facilitate comparison
between results pertaining to different frequency ranges, the
in-plane wavenumber k,, is normalized to k. Since k,,/ k, =
Mo/ Aefr, the horizontal axes of the dispersion curves that
follow display the number of modal wavelengths that fit in
the wavelength of excitation, A,. Furthermore, we define the

effective propagation length as
_ Re(k//) — 47 L
Im(k,,) Aeff

ff )
that expresses the number of modal wavelengths or cycles
that a wave propagates prior to decaying. The normalization
of the absolute propagation length L to Ay also facilitates
comparison between results at different frequency ranges.
Furthermore, we introduce the modal cross-section area [40],
which, in the one-dimensional case studied here, is given by

Ap  [[1dz)?/[ I*dz

Acfr = = , (6)
i Ao.1p ho/2

where I is the intensity profile of the mode [E?(z) or B%(z),
where z is the out-of-plane direction; see Fig. 1(a)]. We
normalize to Ao 1p = Ao/2, which is the diffraction-limited
spot in one dimension. The limits of integration in Eq. (6) are
taken to be on the order of tens of wavelengths away from the
area where the mode is confined.

The mode detection scheme used in the results that follow
is the reflection pole method [41]. Although this work focuses
on guided modes in single layers, our methodology applies
to any multilayer configuration of finite thickness, in contrast
to Bloch-based approaches for infinitely periodic superlattices
[42]. By additionally employing a parameter retrieval [43],
we introduce conditions for distinguishing between surface-
confined and leaky modes. For details see Appendix A.

III. RESULTS
A. High-e modes in SiC versus SPhPs

In the IR spectral range, polar dielectrics exhibit permit-
tivity resonances due to lattice vibrations or phonons. An
overview of the properties of a number of high-Q polar
dielectrics can be found in [14]. We select SiC due to its very
large quality factor Qsic = 166, which is a prerequisite for
guided modes with large confinement, as discussed in Sec. II.
The IR permittivity of SiC is most widely described with
Eq. (2), using €x.q = 6.7, wro = 1.49 x 10" rad/s, w0 =
1.83 x 10 rad/s, and y4 = 8.97 x 10' rad/s [11,12,44].

We start from a semi-infinite slab, where TE and TM
modes in the positive permittivity regime (v < wrp) are de-
generate. We gradually decrease the thickness of the slab d
until reaching the minimum thickness for which the TE and
TM dispersion curves of the guided modes remain degenerate.
This occurs at d = 8z c/(wro+/€sic(wro)) = 3 um. We con-
sider Si as the substrate material and set its refractive index to
nsi = 3.4 [45,46].

As can be seen from Fig. 4(a), in the Reststrahlen band (red
shaded area), there exists a TM-polarized SPhP, due to egic <
0. The SPhP is highly localized at the air-SiC interface, as is
shown with the field profile in the upper inset. Its effective
cross-section area falls in the range A.s sphp ~ [0.03, 0.09],
which is considerably smaller than the mode volume of SPhPs
in the majority of polar dielectric materials [11,14,21]. From
Fig. 4(b), it is also seen that the propagation length Lg of the
SPhP decreases for increasing frequency as one approaches
the maximum value of ksphp ~ 12k, [Fig. 4(a)].
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FIG. 4. Surface-confined modes in a thin film of SiC on Si as
compared to SPhPs. (a) Dispersion curves and (b) propagation length
[Eq. (5)] for surface-confined waves supported in a slab of SiC on
Si, in the IR frequency regime. The green shaded area emphasizes
the high-¢ regime, where simultaneous excitation of TE (blue)
and TM (red) surface-confined waves with overlapping dispersion
curves occurs (crossing point indicated with the cross mark), with
similar dispersion characteristics to the SiC SPhP, displayed in the
red shaded regime. The SPhP occurs at frequencies w > wro, for
which €g;c < 0 (Reststrahlen band [14]). Numerical results presented
as points in (a) correspond to values of the cross-section area of
the mode [Eq. (6)]. The dashed line in (a) corresponds to k. =

v €sic(@)k,.

In contrast to the Reststrahlen band, where the SPhP is re-
stricted to TM polarization, in the high-¢ regime shown in the
green shaded area in Fig. 4(a), simultaneously TE- and TM-
polarized guided modes exist with overlapping dispersions. In
Fig. 4 we display the guided modes that exhibit the largest
k;;; however, we note that lower-order (lower-k;,) modes
also occur but are not highly confined. We observe that the
maximum in-plane wavenumber, or parameter k.« in Eq. (3),
is very large, i.e., kmax ~ 18k,, which follows from the large

value of +/€(wro) ~ 20 in SiC. Therefore, we see that, despite
the fact that these guided modes cannot be strictly classified
as surface waves, they resemble them due to their high degree
of mode confinement. Furthermore, the effective cross-section
area A.g of the guided modes is comparable to the SiC SPhP
for the same k,,, namely, A ~ [0.03,0.06], and their field
profiles for both linear polarizations are shown in the lower
inset of Fig. 4(a). These modes exhibit increasing propagation
distance [green shaded area in Fig. 4(b)] as the frequency is
tuned off resonance (w < wrtp), which stems from the tradeoff
between confinement and propagation distance.

Other polar dielectrics with high-permittivity resonances
at IR frequencies can also support similar surface-confined
omnipolarization guided modes that can compete with their
respective SPhPs, for example, SiO, [35] and hBN [20,47]
[see Fig. 2].

B. High-¢ modes in TMDs versus SPPs in silver

In the visible part of the spectrum, excitonic resonances
in semiconducting materials yield frequency regimes of large
electric permittivity. For Si and Ge, for example, these res-
onances occur near A, = 400 nm [45,46] and A, = 600 nm
[46], respectively. Nevertheless, for most semiconductors, the
exciton lifetime [yd_l in Eq. (2)] is rather small, leading
to low-Q permittivity resonances that are not ideal for the
concept of highly confined guided waves outlined in Sec. II.

By contrast, excitons in TMDs induce sharp permittivity
features [15], therefore, TMDs can serve as material platforms
for highly confined guided waves. Each TMD investigated
here (WS,, MoS,, WSe,, and MoSe;) has a number of per-
mittivity resonances at visible frequencies, originating from
various electronic transition mechanisms. We focus on the
frequency regime near the highest-Q permittivity resonance
for each material. These span the whole visible spectral range
and are located at wro = 2.37 x 10" rad/s (A, ~ 795 nm)
for MoSe,, wro = 2.5 x 10" rad/s (A, 2~ 753 nm) for WSe;,
wro = 2.75 x 10° rad/s (A, =~ 685 nm) for MoS,, and
wro =3 x 10" rad/s (A, 22 630 nm) for WS,. The quality
factors associated with these resonances, as fitted via Eq. (2),
are Omose, = 19, Owse, = 18, Omos, = 25, and Qws, = 37,
respectively.

Similar to the case of SiC described above, we start by
considering bulk degenerate modes for TE and TM polariza-
tions, and gradually decrease the thickness of the TMD slab
until we reach the smallest thickness for which the highest
ks, TE and TM guided modes remain degenerate in both
frequency and wavenumber. This occurs approximately at
d = 6mc/(wro/€(wro)) for all considered TMDs, and the
dispersion of these guided modes is shown in the upper panels
of Figs. 5(a)-5(d). We display only the two largest k;, guided
modes for each polarization, similar to Sec. III A, however, we
note that lower-order (smaller-k,,) and less-confined guided
modes also occur but are outside the scope of this work. We
consider SiO, as a substrate material, and set its refractive
index to nsjo, = 1.5. The field profiles of the larger-k,, modes
for both linear polarizations are shown with the inset in
Fig. 5(d), lower panel, for WS,, and similar field profiles
correspond to modes in MoS, and WSe, and in MoSe,. For
the sake of comparison with a conventional plasmonic mode,
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FIG. 5. Surface-confined modes in thin films of TMDs on SiO, as compared to SPPs on Ag. Dispersion curve (upper panels) and
propagation length [Eq. (5)] (lower panels) for surface-confined waves supported on a slab of (a) MoSe,, (b) WSe,, (c) MoS,, and (d) WS,,
compared to (e) SPPs on semi-infinite Ag. Red corresponds to TM polarization while blue corresponds to TE polarization. Numerical results
presented as points in the upper panels correspond to values of the cross-section area of the mode [Eq. (6)]. Dashed lines in (a)—(d) (upper
panels) correspond to ky,x = v/ €(w)k,. Crossing points of TE and TM dispersion curves are indicated with the cross marks in the upper panels.

we display in Fig. 5(e) the dispersion of a SPP mode at the in-
terface between Ag and air. For Ag, we used the Drude model
with w, = 13.69 x 10" rad/s and ¥, = 0.7292 x 10'* rad/s
from [38]. The field profile of the SPP mode on Ag is shown
with the inset in Fig. 5(e), lower panel.

By considering the confinement factor k;, displayed on
the horizontal axes in the upper panels of Figs. 5(a)-5(e), we
infer that, in fact, guided modes in TMDs are more confined
compared to the SPP mode on Ag in the visible spectral range
[i.e., for w/w, < 0.34 in Fig. 5(e)]. This stems from the large
value of refractive index +/€(wro) in TMDs, which yields
large kmax [Eq. (3)]. It is noteworthy that the cross-section
area Acx [Eq. (6)] of these guided modes is an order of
magnitude smaller than that of the SPP mode on Ag in the
low-damping regime (for w/w, < 1). As the frequency of the
SPP mode approaches the surface plasmon frequency wy, =
wp/ ﬁ, the SPP confinement increases, as seen with the value
Aqsr.spp = 0.091 in Fig. 5(e); however, this frequency regime
corresponds to ultraviolet light.

Furthermore, the propagation distance of the TMD guided
modes [lower panels in Figs. 5(a)-5(d)] is greater than that
of a SPP mode on Ag [lower panel in Fig. 5(e)], which is
enabled by the large quality factors Q in TMDs that yield
small material loss even for frequencies very close to wro
[Fig. 1(e)]. By contrast, the large and broadband losses of
silver at optical frequencies lead to smaller L., which nearly
vanishes at wgp.

To conclude this section, we showed that large confinement
factors typically found in SPP modes on Ag can also occur in
guided modes in thin films of TMDs. These modes occur for
both linear polarizations contrary to SPPs, and it is important
to note that they can travel for larger propagation distances at
visible frequencies.

C. High-¢ modes in monolayer TMDs

In this section we assess the four TMDs discussed in
the previous section as guiding materials in their monolayer
form, as depicted in Fig. 1(d). Previous work in monolayer
TMDs [48] has discussed the existence of these modes in
MoS, and WSe, [36,49], and in WS, [37], however, most
previous reports have focused on the exciton dynamics
and not on the dispersion, confinement, and propagation
distance of the guided modes [50,51] associated with these
excitons. In Fig. 6 we carry out a systematic study of the
dispersion and propagation distance for the monolayer guided
modes associated with the most prominent permittivity
resonances in WS,, MoS,, WSe,, and MoSe,, as reported in
the experimental results by Li et al. [15].

The TMDs discussed here transition from indirect to
direct band gap in their monolayer form, for which
their quality factors slightly increase to QmoSe,.mono = 29,
QWSez,mono =32, QMOSz,mono =26, and QWSz,mono =177,
with respect to the values reported for bulk in Sec. III B.
Similar to Sec. III B, we remain in the wavelength range of
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(a) MoSe, (800 nm) (b) WSe, (750 nm) (c) MoS, (690 nm) (d) WS, (630 nm)
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FIG. 6. Surface-confined modes in monolayer TMDs. Dispersion curve (upper panels) and propagation length [Eq. (5)] (lower panels) for
TE-polarized surface-confined waves supported on a monolayer of (a) MoSe,, (b) WSe,, (¢c) MoS,, and (d) WS,. Numerical results presented
as points (upper panels) correspond to values of the cross-section area of the mode [Eq. (6)].

Ao 2 795 nm, Ay, =~ 753 nm, A, =~ 685 nm, and A, >~ 630 nm,
for MoSe,, WSe;, MoS,, and WS,, respectively.

In the monolayer case, the TM-polarized guided mode
discussed previously (Fig. 5) experiences a cutoff, and only
the TE polarization survives [36]. Figure 6 displays the dis-
persion relation near wyo (as given in Sec. III B). At wro
the TE guided mode reaches its maximum confinement (k,,),
however, the near-zero thickness of the monolayers largely
reduces the confinement factor compared to the TMD slabs
of finite thickness evaluated in the previous section. As a con-
sequence, the cross-section area increases, and the monolayer
TMD modes are confined to roughly a couple of micrometers,
which is in agreement with predictions in [36]. The decrease
in confinement is, nevertheless, accompanied by a consider-
able increase in propagation distance. As seen in the lower
panels in Figs. 6(a)-6(d), Les can be as large as hundreds
to thousands of modal wavelengths, which follows from the
indirect to direct band gap transition in the monolayer case
or, in other words, from the increase in quality factor, Q,
compared to bulk TMDs.

IV. CONCLUSIONS

In nanoscience, tailoring electromagnetic phenomena in
the near-field is enabled via evanescent waves. The excitation
of surface waves at the interface between different electro-
magnetic media requires opposite signs of electric permittiv-
ities or magnetic permeabilities for TM and TE polarization,
respectively. However, the lack of magnetic materials at high

frequencies leads to a natural asymmetry in surface wave
propagation, which is only accessible for TM polarization.
Here, we proposed a concept for circumventing this limitation
with guided modes in slabs of materials with positive and
large permittivity. Contrary to surface polaritons, these guided
modes can occur for both linear polarizations simultaneously.
We showed that the material requirement for omnipolariza-
tion surface wave propagation with high degree of surface
confinement and large propagation distance is a large material
quality factor. As example materials, we studied SiC at IR fre-
quencies and TMDs at visible frequencies, and demonstrated
that the omnipolarization guided modes in these systems can
compete with SPhPs in SiC and SPPs in Ag at IR and visible
frequencies, respectively, in terms of both confinement and
propagation distance.

We note that the large in-plane wavenumber of highly
confined modes and surface waves (k;, > ko) renders them
nonradiative, which introduces a phase mismatch with free-
space radiative modes (k;; < ko). Therefore, excitation and
detection in the far-field requires a grating [16,52-55], scat-
tering center, e.g., a slit [52], or a prism [30] or overlayer
[26]. A prism or an overlayer achieves coupling to free-space
by shifting the dispersion of photons to larger wavenumbers
(kprism = nw/c > k,, where n is the refractive index of the
prism or overlayer). A grating with periodicity A, ascribes
an additional wavenumber component to the scattered field,
kg = 2m /A, therefore, coupling to any wavenumber and
corresponding frequency can be achieved by controlling A,,
as has been previously shown for SPPs [53-55]. The grating
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configuration is particularly relevant to the modes pro-
posed here, because the dispersion overlap in frequency and
wavenumber between the two polarizations (Figs. 4-6) ren-
ders them phase matched, i.e., k/ ;g = k;/rm. Therefore, a
single grating may be used for excitation and detection of
both polarizations at a single frequency. Alternative excitation
schemes include injection of an electron beam [54], or cou-
pling to a dipole moment in the near-field, for example, via
scanning near-field optical microscopy [47—49].

Our results convey that the polarization bottleneck of plas-
monics may be alleviated with high-Q positive permittivity
polar dielectrics and semiconductors. These systems can sup-
port omnipolarization phase-matched surface-confined guided
modes with large propagation distances.
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APPENDIX A: SURFACE WAVES DETERMINATION
VIA HOMOGENIZATION

The boundary condition problem of a guided or sur-
face mode at a single interface may be analytically treated
[13,39,56], however, larger systems such as single slabs and
multilayers require a numerical solver [41,57-65]. Here, we
present our methodology for computing the modes discussed
in Figs. 4-6. Our approach is general and applies to any
planar heterostructure of finite thickness, while also being
able to distinguish between eigenmodes that constitute surface
waves, i.e., modes that exponentially decay away from the
interface of interest, and leaky modes, that oscillate in the
out-of-plane (z) direction [see Fig. 7(b)].

A schematic of the general structure we investigate is
displayed in Fig. 7(a). We consider a layered arrangement
consisting of an arbitrary number of layers of nonmagnetic
materials in an arbitrary sequence, with layer thicknesses
that may be in the subwavelength limit (d; < X,) or thicker.
Using the transfer matrix formalism for layered media [66],
we obtain the matrix M elements my(k;;, w) and my (k//, @)
for varying in-plane wavenumber k,, = k, and frequency w.
The transmission and reflection complex coefficients are then
given by t = 1/m; and r = my;/m, respectively. We seek
surface waves and guided modes by first determining the full
set of eigenmodes of the heterostructure, for which ¢+ — oo,
r — oo [66]. Alternatively, the eigenmodes are zeros of the
matrix element m;(k;;, w). We employ the reflection pole
method (RPM) [41], which is based on the residue theorem
of complex analysis, for detecting these zeros in the complex
plane. Zeros of the complex function m; yield phase shifts
of Arg(mi;) = m in the lossless limit, which are detected
by seeking peaks of its derivative, dArg(m;,)/dk;;, per
frequency and wavenumber [Fig. 7(c)]. As a result, we obtain

pairs of (w, k;;) that correspond to eigenmodes. We note
that, in the presence of loss, the peaks of dArg(m,)/dk;,
broaden both in @ and k;,. For more details regarding the
RPM, see [41]. This approach can be generalized to account
for anisotropic materials by replacing the traditional 2 x 2
transfer matrix [66] with a 4 x 4 formalism (see, for example,
[67-69]).

Not all eigenmodes of a heterostructure constitute surface
waves. For a wave (or mode) to be surface-confined, it is
required to be in the optical band gap of both bounding media
[70]. In the general case of Fig. 7(a), these are air and the
arbitrary layered heterostructure. A surface-confined wave
requires an out-of-plane wavenumber k, that has a nonzero
imaginary part, ensuring decay away from the interface z = 0.
However, for more than one layer, the parameter k, is not
a well-defined quantity. For an A-B-A---- binary photonic
crystal, wave propagation in the z direction is usually ex-
pressed in terms of the Bloch wavenumber

mip +mn

COS(kBIOChAChaI) = T’

where Acpar 1S the period_of the photonic crystal and m 1, ma
are the transfer matrix M diagonal elements. The condition
for a photonic band is then given by [66]

(AD)

|COS(kBlochAchar)| < L. (A2)

A mode belonging in a band is allowed to propagate sinu-
soidally into the structure, with Re(kgjoch) > Im(kpocn). We
refer to these modes as photonic or leaky modes in contrast
to surface-confined modes that mainly reside at the interface
between air and the heterostructure, and decay in the lateral
direction.

The condition in Eq. (A1) is limited to infinite and purely
periodic binary systems. Here, we generalize this condition
to any random finite arrangement, for example, aperiodic,
chirped, noncentrosymmetric layered structures, and finite
number of layers. Our approach originates from, but is not
limited to, metamaterials’ homogenization.

Most homogenization schemes are based on S-parameter
retrieval approaches [43,71-73], based on which, an arbitrary
composite system of finite thickness d and known scattering
properties ¢ and r is represented by an effective impedance
and an effective out-of-plane wavenumber, Z.; and ke,
respectively. These functions are analytical expressions of
the transmission and reflection coefficients. The expression
for the effective wavenumber k. at oblique incidence was
derived by Menzel et al. [72]:

2 2

costherd) = ks(1 —r%) + kc(t/A) .
(t/A)ks(1 —r) + ke(1 +71)]

For TE polarization, A = 1, k. = k;, and ks = k, s, whereas
for TM polarization A = \/€;/€c, ke =k, /€., and ks =
7, s/€s, where the subscripts ¢ and s represent the cladding
and substrate, with permittivities €. and €, respectively. Typ-
ically, based on the subwavelength thickness of the layers,
the parameters Z.; and k. are translated to constitutive
effective parameters, namely, permittivity and permeability,
through ket = /Ecfiflert > and Zegr = % The conditions
under which the assignment of effective parameters €.¢ and

(A3)
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(@) k=k, Transfer matrix for layered media [66]
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(&,,d,) |

= ,d T o
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2.8

FIG. 7. Surface waves computations. (a) Schematic of an arbitrary layered system (left) and flow chart of the method (right). (b) Definition
of a photonic or leaky mode (left) and a surface-confined mode (right), for which |cos(kest(w, k;/)d)| < 1 and [cos(ker (@, k/))d)| > 1,
respectively. (c) Combination of RPM [41] with our generalized band structure condition [Eq. (A4)] for the distinction between photonic
(leaky) and surface-confined eigenmodes: At the eigenmode’s in-plane wavenumber ki, 71, vanishes (black solid curve), Arg(m,;) drops
by 7 (black dashed curve), and its derivative dArg(m,)/dk,, resonates (green curve). The highlighted region corresponds to a band gap
(|cos(kegrd)| > 1). For frequency w,, the mode is photonic, as it resides inside the band, whereas for w, the mode is located at the band edge.
For ws, the mode is surface confined, propagating at the air-heterostructure interface.

Wegr 18 valid are complex [74,75] and remain an area of active
literature discussion [25,76].

By contrast, the description of a system in terms of
an effective impedance and a wavenumber, Z.s and ke,
respectively, remains valid at any scale. Since kg is directly
associated with the scattering coefficients ¢ and r [Eq. (A3)]
[71-73], it can be used for describing an arbitrary heterostruc-
ture at any scale, not necessarily in the metamaterial subwave-
length limit, as long as ¢t and » may be computed. As a sanity
check, it is straightforward to notice that the Bloch wavenum-
ber kpiocn in Eq. (A1) is a special case of ke in Eq. (A3)
for binary, purely periodic systems, when the cladding and
substrate are composed of the same material (¢; = €.). This
may be seen by expressing ¢ and r in Eq. (A3) in terms
of transfer matrix elements, using the identity det(M) = 1,
and the fact that m,; = mj, for purely dielectric materials
(where my; and m, are purely imaginary), and my; = —m;
for dispersive materials [66].

To summarize, for an excitation to be considered as a
surface wave, three conditions must be satisfied: first, it has
to be an eigenmode of the structure, which we evaluate with
the RPM; second, it has to be in the optical band gap of
the surrounding medium (k,; > k,); and third, it has to be
in the band gap of the heterostructure. This third condition
is implemented by introducing the notion of a generalized
band structure, applicable to any planar configuration, based
on Eq. (A3) and k. A band is a set of (w, k/,) for which

|cos(kerd)| < 1. (A4)

Surface waves exist at the exterior of a band or at its edge
(lcos(ketrd)| = 1).

We demonstrate this methodology: in Fig. 7(c) we study
an eigenmode of a planar structure. At the eigenmode’s in-
plane wavenumber ki, the matrix element m; vanishes
(black curve); therefore, its phase Arg(m ;) drops by m (black
dashed curve). Taking the derivative of m; with respect to
k;/, we obtain a peak, as shown with the green curve. Its
half-width-half-maximum corresponds to the in-plane decay
length through L = 1/2Im(k/eig). In order to determine the
nature of the mode (photonic or surface-confined), we em-
ploy our generalized band edge condition [Eq. (A4)]. The
quantity |cos(kesrd)| is shown for three different frequencies
w1, wr, and w3 (right vertical axis). For w;, |cos(ked)| <
1 at k;/eig, and this mode belongs to a photonic band, re-
sulting in propagation inside the heterostructure; in other
words, it is a photonic or leaky mode. For w,, the parameter
|cos(kegrd)| crosses unity at k;.i; and this mode is located
exactly at the band edge. Finally, for frequency ws;, the
mode is inside the band gap, highlighted in Fig. 7(c) with
the upper orange shaded area, and the mode is forbidden
from propagating inside the structure; in other words, it is
surface-confined. By retrieving kg, we are also able to esti-
mate the degree of confinement through the penetration depth
t = 1/2Im(kegr ).

APPENDIX B: OPTICAL PROPERTIES

Here, we append the optical properties for the materials
used in this work. For the electric permittivity of silver we
used the Drude model [38], with w, = 13.69 x 10" rad/s
and yy, = 0.7292 x 10" rad/s from [38]. We modeled SiC,
WS,, MoS,, WSe,, and MoSe, with the Lorentz permittivity
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TABLE 1. Lorentz parameters [Eq. (2)] for the materials consid-
ered in Figs. 4-6. wro, w0, and yy are presented in units of rad/s.

€co,d wto Lo Yd
SiC 6.7 1.49 x 10 1.83 x 10" 8.97 x 10!
WS, 18 2.995 x 10" 3.021 x 10"  8.094 x 10"
MoS, 204 2.754 x 109 2.81 x 10" 1.1 x 10
WSe, 183 2.502 x 10" 2.523 x 10 1.4 x 10"
MoSe, 253 237 x 10% 2.395 x 10" 1.25 x 10"
WS, (mono) 17 3.053 x 10" 3.085 x 10"  3.94 x 10"
MoS,(mono) 21 2.837 x 105 2.878 x 10 1 x 10"
WSe,(mono) 153 2.512 x 10" 2.543 x 10" 7.813 x 10"
MoSe,(mono) 21.3 2.355 x 10" 2.377 x 101 8 x 108

in Eq. (2). The optical properties for SiC were taken from
[11,12,44], while the TMD optical properties were extracted
from [15]. In Table I, we present the parameters €, 4, @0,
wLo, and yq for each of these materials. For TMDs, bulk and
monolayer parameters are displayed separately.

We note that calculations for TMDs were carried out at
different frequency ranges, based on the location of the most
prominent exciton permittivity resonance in each material.
Calculations were centered around wrg, while spanning the
frequency range displayed on the vertical axes in Figs. 5 and 6.
The quality factors for the considered materials are Qgic =
166, Omose, = 19, Owse, = 18, Owmos, = 25, and Qws, =
37, QMoSez,mono =29, QWSez,mono =32, QMOSz,mono = 26,
and QWSz,mono =T7.
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