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Strain engineering of the intrinsic spin Hall conductivity in a SrTiO3 quantum well
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The intrinsic spin Hall conductivity of a two-dimensional gas confined to SrTiO3, such as occurs at an
LaAlO3/SrTiO3 interface, is calculated from the Kubo formula. The effect of strain in the [001] and the [111]
directions is incorporated into a full tight-binding Hamiltonian for a quantum well with a [001] growth direction.
We show that the spin-charge conversion ratio can be significantly altered through the strain and gate voltage by
tuning the chemical potential. The strain direction is also a significant factor in the spin Hall response, as this
direction affects the alignment of the conduction bands.
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I. INTRODUCTION

Two-dimensional electron gases (2DEGs) at oxide inter-
faces have attracted enormous interest due to their high carrier
density and opportunities for control through atomic-scale in-
terface engineering [1]. One of the most prominent examples
is the n-type conducting interface of the perovskite insulators
LaAlO3 and SrTiO3 [2] with high-density and high-mobility
electrons. This system supports a rich spectrum of function-
alities that can be accurately designed, tuned, and used in
applications mainly due to the strongly correlated d-orbital
electrons of titanium. Observed or predicted features include
topological states at the SrTiO3 surfaces [3], large Rashba
coefficients, tunability by field effects and strain [4,5], metal-
insulator transitions and multiferroicity [6,7], substantial spin-
charge conversion [8,9], and adjustment of superconductivity
by an applied gate voltage [10–12]. Furthermore, when the
Rashba effect is suppressed, very long spin lifetimes have
been predicted [13] and inferred from spin transport lengths
of the order of several hundred nanometers [14] at room
temperature.

The spin Hall effect describes the emergence of a perpen-
dicular spin current in response to an external electric field
in robust spin-orbit coupling systems [15–19]. The spin Hall
conductivity (SHC) is the ratio of the spin current to the
external electric field. This type of response may originate
from different factors, including extrinsic effects such as skew
scattering and side jump, but also may stem intrinsically from
the band structure and Berry curvature of the Brillouin zone.
Novel materials with giant SHC [20–22], as a result of the
spin-orbit interaction, may be very useful in generating and
controlling spin currents without external magnetic fields or
ferromagnetic contacts. Additionally, strain may significantly
influence the band structure, affecting the transport proper-
ties of the interfacial electron gas. The electron mobilities
of SrTiO3 can be enhanced up to 300% under compressive
strain [23]. Strain may also alter the critical thickness of the
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LaAlO3 required to form an electron gas [24], at the price
of reducing the electric conductivity [25]. The charge carrier
density and the localized magnetic moment at the interface
[26], as well as the dielectric response [27] and the effective
masses [28], are other strain-dependent properties. Therefore,
realistic theories of such materials should consider epitaxial
strain as a significant feature of the structure. There have been
several attempts to measure spin-charge conversion ratios of
these 2DEGs, with some impressive results, such as spin Hall
angles between 0.15 [8] and 6.3 [29] at room temperature
and high spin Hall angles with tunable Rashba coupling [9],
which exceed the spin Hall angles of materials such as Pt
[30], Ta [31], and III–V semiconductors [32]. A robust spin-
galvanic effect exhibiting a sign change has been predicted
[33] within a minimal three-band model. Giant spin-orbit
torques, spin accumulation [34], and Fermi energy-dependent
spin responses [35] are expected as a result of Rashba spin-
orbit interactions [36]. This large body of work suggests a
significant spin-dependent response to electric fields in these
systems. However, the intrinsic spin Hall conductivity due to
atomic spin-orbit interactions has not been studied in detail,
especially considering the effects of epitaxial and external
strains on the intrinsic SHC.

Here we calculate the intrinsic SHC for a strained two-
dimensional (2D) electron gas at the LaAlO3/SrTiO3 inter-
face from the Kubo formula by a full Slater-Koster tight-
binding Hamiltonian. This atomistic approach enables a full
Brillouin zone calculation of the SHC, thus improving upon
perturbative calculations based on k · p models. Tight-binding
Hamiltonians require a small number of parameters and re-
sult in far shorter computational times than typical for ab
initio computations. The effective strain along the [001] and
[111] directions enters into the Hamiltonian through modified
overlap integrals according to bond angles and bond lengths
following Harrison’s law, which states that overlap integrals
change by the square of the ratio of unstrained to strained
bond length, i.e., Hhop ∝ (dunstr/dstr )2. The intrinsic SHC of
these systems is highly sensitive to the chemical potential
and also to the strength and direction of the strain, offering
opportunities for performance enhancement through strain
engineering.
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II. FORMALISM

A. Intrinsic spin Hall conductivity

The intrinsic SHC is a result of an interplay between the de-
tails of the band structure, the strength of the spin-orbit inter-
action, the chemical potential, and the direction of the current
relative to crystal axes [15,37–39]. For a system with an elec-
tric field oriented along x̂, the spin current is directed along ŷ,
and the spin direction along ẑ. The spin Hall conductivity can
be evaluated from the Kubo formula as a spin current–electric
current response function in the clean static limit [22,40]

σ z
yx = eh̄

V

∑
k

∑
n

fkn�
z
n(k), (1)

where V is the volume of the system, fkn is the Fermi-Dirac
distribution function, and the “Berry curvature” �z

n(k) is

�z
n(k) =

∑
n�=n′

2Im
〈unk|ĵ z

y |un′k〉〈un′k|v̂x |unk〉
(Enk − En′k )2

. (2)

The spin current operator and components of the velocity
operator, ĵ z

y and v̂i , are

ĵ z
y = h̄

4
(v̂yσz + σzv̂y ) and v̂i = 1

h̄
∇ki

Ĥ . (3)

Note that �z
n(k), as defined above, is not a Berry curvature

in the strict sense, since the spin current cannot be rigorously
expressed as the derivative of the Hamiltonian with respect
to a Bloch wave vector. Instead ĵ z

y is the derivative of the
Hamiltonian with respect to a spin-dependent vector potential.
Nevertheless, Eq. (1) is exact, as it follows from the Kubo
formula. In what follows, we continue to refer to �z

n(k)
loosely as a “Berry curvature,” and we describe its structure
as a function of the Bloch wave vector and energy. It is useful
to rewrite Eq. (1) so that the chemical potential dependence is
captured efficiently by introducing the density of curvatures
ρdoc(ε), which is the contribution of the Berry curvature per
unit energy. Introducing the energy-dependent Fermi function
f (ε) yields

σ z
yx = eh̄

A

∫
dερdoc(ε)f (ε), (4)

where A is the area of the 2D system. This quantity, the density
of the Berry curvature, ρdoc(ε), allows one to interpret the
sources of the spin Hall conductivity and its dependence on
the temperature, external effects such as strain, and the chem-
ical potential. Equations (1), (2), and (4) suggest that a Hamil-
tonian which captures wave functions, energies, and curva-
tures of the system is required to compute the intrinsic SHC.

B. Strained tight-binding Hamiltonian

Both LaAlO3 and SrTiO3 have cubic symmetry and belong
to the O1

h space group [41]. A plot of a simple cubic perovskite
crystal and its Brillouin zone is shown in Fig. 1. The exis-
tence of both inversion and time-reversal symmetry results
in doubly degenerate bands, different from III–V semicon-
ductors and their heterostructures. To get an accurate picture
of the wave functions and energies in Eq. (2) we rely on a
low-energy effective Hamiltonian that is constructed using a
Slater-Koster tight-binding model [42] with nearest-neighbor
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FIG. 1. Reciprocal lattice and crystal structure of a typical per-
ovskite oxide with the general formula ABO3. Atom B (titanium in
this case) is connected to six oxygen atoms, forming an octahedron.
Atom A at the corners (strontium) usually contributes its s electrons
that are at high energies. The oxygens’ p orbitals constitute the
valence band. The itinerant d orbitals of atom B form the conduc-
tion band and determine most of the transport properties of n-type
systems.

interactions. Starting with an atomic orbital φn(r − Ri ) at the
atomic position Ri , the Bloch sum of these atomic orbitals is

ψn(r) =
∑
Ri

eik·Ri φn(r − Ri ). (5)

The tight-binding Hamiltonian is then calculated by summing
over the nearest neighbors at Rj :

Ĥmn =
∑
Ri

eik·(Rj −Ri )
∫

ψ∗
n (r − Ri )Hψm(r − Rj )dr. (6)

The first expression above is the phase factor depending
on the relative distances between atoms in the crystals,
whereas the integral (also called the overlap integral) depends
on the bond angles and bond lengths. Strain produces two sig-
nificant changes to the tight-binding Hamiltonian in Eq. (6).
First, it changes atomic distances in the crystal, thus altering
the strength of the overlap integrals and phase factors. Second,
changes in the bond angles may induce further two-center
Slater-Koster integrals that were not present in the original
Hamiltonian due to symmetry. The former is integrated into
the unstrained Hamiltonian via Harrison’s scaling law [43],
which alters the strength of the interaction in proportion
to the bond length and the inverse square rule (d−2 rule).
The latter is incorporated in the Hamiltonian by changing
the directional cosines. For instance, three primitive lattice
vectors of perovskite oxides are ai = a

2 î and six oxygen atoms
around the titanium are located at ±ai , where i stands for x,
y, or z, and a is the lattice constant as shown in Fig. 1. For a
symmetric general strain εij , oxygens in Fig. 1 move to

a′
1 = a

2
(εxx + 1, εxy, εxz),

a′
2 = a

2
(εyx, εyy + 1, εyz), (7)

a′
3 = a

2
(εzx, εzy, εzz + 1),

whereas titanium’s position remains unchanged at the center.
The distance between titanium and oxygen atoms changes
from d = a/2 to

d ′
i = a

2

√
(1 + εii )2 + ε2

ij + ε2
ik. (8)
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In the case of a small strain, this distance changes to a/2(1 +
εii ) and the volume of one unit cell changes from �0 to
�′ = �0(1 + T r (ε)). Without any deformation due to strain,
a typical Hamiltonian matrix element between a dxy orbital of
titanium and a px orbital of the second oxygen is

Hdxy,px
= 2i sin

(
a

2
ky

)
(pdπ ), (9)

where (pdπ ) refers to the overlap matrix element in a π -bond
configuration. This matrix element transforms under a general
strain to

Hdxy,px
=

[ √
3ε2

yx (1 + εyy )(
ε2
yx + (1 + εyy )2 + ε2

yz

)3/2 pdσ ′

+ (1 + εyy ) (1 − 2ε2
yx )(

ε2
yx + (1 + εyy )2 + ε2

yz

)3/2 pdπ ′
]

× 2isin

(
a

2
(kxεxy + ky (εyy + 1) + kzεyz)

)
, (10)

where pdπ ′ = pdπ/(1 + 2εyy ) and pdσ ′ = pdσ/(1 + 2εyy )
are scaled overlap integrals (for small strain). Equation (10)
can be further simplified for small strain, as second-order
terms can be neglected. As expected this expression ap-
proaches Eq. (9) as the strain approaches 0. The other off-
diagonal elements of the Hamiltonian have been constructed
and studied as a function of the strain in a similar fashion.

C. Spin-orbit coupling and interfacial quantum confinement

We have also added the intrinsic spin-orbit Hamiltonian,
obtained by computing atomic spin-orbit couplings from
atomic spectra using the Landé interval rule. The basis of
a tight-binding Hamiltonian needs to be doubled once the
spin-orbit coupling is introduced. The Hamiltonian with spin
takes the form

H =
(

Htb 0
0 Htb

)
+ Hso,

where Hso = λiL · S in the Russell-Saunders coupling
scheme. The form of the spin-orbit Hamiltonian for p, d,
and f orbitals has been published [44]. Here L is the orbital
angular momentum operator, S is the spin operator, and λi is
the strength of the renormalized atomic spin-orbit coupling.
This value is related to the atomic spin-orbit couplings, ξi .
λi differs for p and d orbitals, λp and λd , and vanishes for
s orbitals so λs = 0. The atomic spin-orbit coupling depends
on the particular configuration of the p or d electrons [45].
For a given atomic ground-state configuration a standard term
symbol has the form 2S+1XJ , where S is the total spin, J is
the total angular momentum, and X is a letter depending on
L such that it is S for L = 0, P for L = 1, D for L = 2,
etc. [46]. The value of the atomic spin-orbit coupling can be
calculated from the Landé interval rule, in other words, from
the energy difference for the specific term symbol, which is
tabulated [47] as

ξi = E(J ) − E(J − 1)

J
, (11)

where the index i represents p or d orbitals. When more than
two J exist one will get multiple ξi for each splitting. Since
the resulting energy intervals are very close to each other
we considered the average ξ as the value of the spin-orbit
coupling. The relation between the spin-orbit coupling λ and
the atomic spin-orbit coupling ξ is obtained through the total
spin S, such that λi = 2Sξi . The splitting of the energy levels
in a crystal can be expressed in terms of the splitting of the
spectral lines of atoms as

�0 = E(J ) − E(J − 1)

J
× (2S) × 2L + 1

2
× CN, (12)

where CN is a normalization factor that is 1 for row 2 elements
and 1.56 for row 3 elements, e.g., for oxygen and titanium,
respectively [48]. This factor is required for several reasons.
First, neither valence nor conduction band edges are formed
from pure p or d orbitals and both include higher-order atomic
orbitals. Second, Wannier functions of atomic orbitals tend
to extend more than the typical size of the Wigner-Seitz
cell, which causes a volume effect [48]. For instance, the
ground state of the carbon is 3P0 with S = P = 1 with three
energy levels and term symbols 3P0, 3P1, and 3P2, respec-
tively. The energy difference E(J ) − E(J − 1) is measured
as 16 cm−1 [47], therefore the atomic spin-orbit coupling
from Eq. (11) gives ξp = 2 meV, and λp = 2S × 2 meV = 4
meV. The resulting splitting of valence band energies in the
crystal is then �0 = 4 meV × (2L + 1)/2 = 6 meV, which
agrees excellently with the experimental splitting. Similarly,
we calculate the spin-orbit couplings as λp = 15.2 meV for
oxygen and λd = 20.1 meV for titanium from the atomic
spectra. Consequently, this leads to a splitting of the bands
by about 30 meV, consistent with the experimental values.

Finally, for epitaxially grown strontium titanate films an
interfacial quantum confinement effect (Hi) has a significant
influence on the conduction bands. The total Hamiltonian of
our model becomes

Htot = H str
tb + Hso + Hi, (13)

where H str
tb , Hso, and Hi are the strained tight-binding, the

spin-orbit, and the interfacial quantum confinement terms,
respectively. The atomic spin-orbit interactions and quantum
confinement effects are especially relevant, as they alter the
band structures and band degeneracies substantially. Elec-
tronic states of SrTiO3 in the vicinity of the conduction band
minimum (Brillouin zone center) consist of d orbitals of
titanium.

Here we focus on the six t2g quantum well states (three
orbital and two spin states) of a [001]-oriented quantum
well, with the lowest quantum well wave function quantum
number n = 1. For an infinitely wide quantum well there is
a spin-orbit splitting of about 30 meV between a fourfold
multiplet and a doublet. Additional interfacial or quantum
well confinement breaks the fourfold degeneracy by shift-
ing the energies of the d orbitals along ẑ, so that dyz and
dzx have different energies than dxy . The existence of three
doubly degenerate conduction subbands, well split from a
higher ladder of subband states, has been reported both for
LaAlO3/SrTiO3 interfaces [49] and for bulk SrTiO3 surfaces
[50] for (001)- and (111)-oriented samples, respectively. A
further detailed review [51] also indicates the formation of
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FIG. 2. Electronic structure of the lowest three conduction bands
(a) for a tensile strain of 1.5% along the [001] direction, (b) for
a compressive strain of −1.5% along the [001] direction, (c) for
a tensile strain of 0.4% along the [111] direction, and (d) for a
compressive strain of 1.5% along the [111] direction. The Brillouin
zone points where bands nearly touch are circled.

subbands due to the confinement potential and increase in the
subband separation as the width is decreased. In this work, we
assume that the width of the quantum well, which is always
oriented along [001], is sufficiently thin that the first three
(doubly degenerate) conduction subbands, which dominate
the intrinsic SHC, can be separately examined, since all other
subbands are at higher energies as a result of the confinement
potential and the strain. An energetic separation of 100 meV
from the confinement potential corresponds to a quantum well
width of approximately 3 unit cells, in agreement with our
thin-well picture.

In Fig. 2 we summarize the 2D band structure of our system
for various strains in various directions by plotting the first
three conduction bands. In general, the strain shifts certain
bands with respect to others depending on the strain direction,
which we discuss in Sec. III.

III. RESULTS AND DISCUSSION

A. Stress along [001]—the growth direction

We first need to address the effect of strain on diagonal
matrix elements within the tight-binding Hamiltonian, which
correspond to the on-site energies. In contrast to the off-
diagonal elements of the Hamiltonian, on-site matrix elements
have neither directional factors nor overlap integrals (unless
further nearest neighbors are added). Strain, however, changes

the symmetry of the crystal and, as a result, can either increase
or decrease on-site energies depending on the direction of the
strain. For instance, stress along the [001] growth direction
induces a biaxial strain and lowers the group symmetry from
Oh to its subgroup D4h (nonsymmorphic space group D18

4h).
The same reduction of the point-group symmetry occurs
when the temperature is decreased below 100 K [52] and
the crystal structure makes a transition from the cubic to
the tetragonal phase. Consequently, results at temperatures
higher than 100 K with strain are similar in symmetry to those
at low-temperature without strain. The on-site energy shift
depends on the magnitude of the strain tensor.

The relation between strain and stress is determined by the
components of the compliance tensor,

εij =
∑
k,l

Sijklσkl, (14)

which is a rank 4 tensor but can be greatly simplified for cubic
crystals. For a uniaxial stress along the [001] direction, the
stress and strain tensors are related to each other such that

σ =

⎛
⎜⎝

0 0 0

0 0 0

0 0 1

⎞
⎟⎠, ε =

⎛
⎜⎝

s12 0 0

0 s12 0

0 0 s11

⎞
⎟⎠. (15)

The relevant elastic constants of the compliance tensor for this
study, s11, s12, and s44 (for stress along [111]) are reported in
the literature [53]. Our terminology for 1% strain means that
a stress is applied to generate εzz = 1% along the axis of the
stress, and the other strain elements are determined according
to force-free boundary conditions on the other surfaces, which
follow from the elastic constants, so εxx = εyy = s12/s11 ×
1%. The conduction bands of SrTiO3 at the zone center with
t2g symmetry are analogous to the valence bands of zinc-
blende crystals with a heavy electron, a light electron, and
a split-off bands. Therefore, for a stress along the epitaxial
growth direction [001], strain acts as a tetragonal crystal
distortion and, thus, as a perturbation with �12 symmetry.
The threefold degenerate conduction bands of the strontium
with �25′ symmetry will split into doubly degenerate �+

5 and
singly degenerate �+

4 of the Dh group. Therefore this results
in shifting the energy of Eyz and Ezx with respect to Exy by
3E001, where

E001 = 2b(εzz − εxx ) (16)

and b is the tetragonal deformation potential. The constant
b (d in the case of strain along [111]) is calculated to be
−0.51 eV (−2.15 eV) [54]. Our calculations of the response
of the band edges under tensile and compressive strains are
in excellent agreement with previous ab initio calculations
[54,55].

Once we introduce the strain along [001] into the tight-
binding Hamiltonian by shifting the on-site energies and
modifying the directional cosines and overlap integrals, then
we calculate and plot the intrinsic SHC of the LaAlO3/SrTiO3

2DEG with different configurations in Fig. 3. In this con-
figuration, the potential associated with the confinement of
electrons is taken as 100 meV. This would be a reasonable
estimate since a confinement potential below 30 meV is not
adequate to form a 2D electron gas, as d electrons would be
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FIG. 3. Intrinsic SHC as a function of the Fermi level in
LaAlO3/SrTiO3 2DEGs (a) for increasing strain on the growth
direction [001], from a compressive −2% to a tensile 4%, and (b) for
a much higher tensile strain, from 5% to 10%, both by an increment
of 1%. The zero of the energy corresponds to the conduction band
edge at the � point and the confinement potential is taken to be
100 meV.

lost into the bulk [56]. Comparison with the electronic band
structure, density of curvatures and the SHC calculations leads
us to several observations. First, the contribution from the
lowest conduction band is much smaller than that from higher
bands until the Fermi level starts to introduce carriers in the
second conduction band. The energy difference between the
conduction subbands is large when EF lies at the conduction
band edge, due to the large band gap (3.2 eV) and the splitting
of these conduction subbands due to strain, the confinement
potential, and the spin-orbit coupling. The lowest conduction
subband contribution to the SHC is negative for small Fermi
energies, leading to a slightly negative SHC up to the Fermi
level, whereupon the second band starts to contribute, which
suggests that there is a carrier density threshold beyond which
the SHC changes sign. This sign change originates from the
fact that negative and positive curvature densities exist at en-
ergetically different k points. Although strain does not change
the energy difference between the second and the third bands
substantially at the zone center, a compressive strain shifts the
first subband away from the higher two subbands, and tensile
strain decreases the gap between the two. The positive Berry
curvature of the second subband therefore contributes at lower
Fermi levels for tensile strain, as shown in Fig. 3.

(a) (b)

(c) (d)

Energy (meV) Energy (meV)

Energy (meV)Energy (meV)

FIG. 4. (a) Density of curvatures for a tensile strain of 1.5%,
(b) density of curvatures for a compressive strain of −1.5%, (c)
band-resolved contribution to the Berry curvatures for the case in (a),
and (d) band-resolved curvature contribution for (b). Red, blue, and
black curves represent the first, the second, and the third conduction
bands in Fig. 2, respectively.

The maximum SHC occurs when the Fermi level crosses
the nearly touching first and second bands for strain along
[100], as shown in Figs. 2(a) and 2(b). These close band
crossings, which are depicted by brown circles, act as sources
of very large Berry curvature, and therefore they determine the
carrier density at which the highest SHC would be observed.
Passing through the crossing point, the sign of the Berry cur-
vature is reversed, and as a consequence, the SHC decreases
as the Fermi level is further increased.

This result can be understood better by investigating
the band structure and distribution of the Berry curvature
[Figs. 4(a) and 4(b)] within the Brillouin zone. The
band-resolved density-of-curvature plots provide more
insight into this behavior. As shown in Figs. 4(c) and 4(d),
the first conduction band makes an initially negative but in
general positive contribution to the SHC, whereas the third
band provides negative curvature at all energies. The second
conduction band determines the characteristics of the SHC
curve. Initially, the second band contributes positive curva-
tures at low energies. As the chemical potential increases,
the contribution of the second band decreases and becomes
negative, reaching a magnitude identical to the first band’s
maximum. The offset in the energies where these maximum
and minimum curvatures are located results in the features
seen in the total SHC. Comparing different strains [such as
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ŞAHIN, VIGNALE, AND FLATTÉ PHYSICAL REVIEW MATERIALS 3, 014401 (2019)

1.5% in Figs. 4(a) and 4(c) vs −1/5% in Figs. 4(b) and 4(d)]
leads to the conclusion that shifting the bands with strain shifts
the chemical potential at which the maximal SHC occurs.

We also calculated the SHC for carrier densities that vary
from 1.5 × 1014 to 6 × 1014 cm −2, corresponding to mov-
ing the Fermi level from 90 to 300 meV. These densities,
which are achievable through doping or gate voltage, are in
excellent agreement with previous experiments on strained
LaAlO3/SrTiO3 2DEGs [26]. Our calculations are also in
agreement with the observation that the uniaxial tensile strain
greatly enhances the carrier density [57]. Another effect of
strain in this direction is the tetragonal deformation of the
octahedral structure consisting of six oxygens. This deforma-
tion leads to a rotation angle. The distance between titanium
and the oxygens in the xy plane d‖ = a‖/ cos(π − α), where
π/2 − α is the angle along Ti-O-Ti. This angle is exactly
π/2 without strain, corresponding to a completely straight line
along the Ti-O-Ti direction. However, this angle changes with
tensile strain, whereas the out-of-plane distance between tita-
nium and oxygen (d⊥) increases and the in-plane distance (d‖)
decreases. This results in a rotation which can be expressed
in terms of strain elements as α = cos−1[1/(s11/s12 × εzz +
1)]. For a strain of 1.4% this effect results in a rotation of
4.6◦, which is in excellent agreement with the experimentally
measured value of 4.58◦ in a 2DEG of 300-unit-cell SrTiO3

thickness [25].

B. Strain along [111]

Applying strain along [111] vs [001] differs, as the strain
affects a different diagonal element of the Hamiltonian. A
uniaxial stress along [111], where σij = 1, results in the strain
tensor

ε = 1

3

⎛
⎜⎝

s11 + 2s12 s44/2 s44/2

s44/2 s11 + 2s12 s44/2

s44/2 s44/2 s11 + 2s12

⎞
⎟⎠. (17)

Here 1% strain indicates εxx = εyy = εzz = 1%. Other el-
ements of the tensor are calculated via compliance tensor
elements. This type of strain acts as a perturbation with �15

symmetry which shifts Exy by E111, where

E111 = 2
√

3dεxy, (18)

and d is the trigonal (or rhombehedral) deformation potential.
Our calculations of strained band structures are in excellent
agreement with previous ab initio computations [54].

A negative strain pushes bands away from each other and
the SHC is nearly 0 until the doping is increased to the point
where the chemical potential crosses to the second conduction
band. This high doping would be a difficult doping level
to achieve. At the zone center, however, a positive [111]
strain moves the dxy band closer to the upper energy levels
(differently from [001] quantum wells, where the dxy subband
is separated from the higher bands). This would close the
gap from the interfacial potential between the first subband
and the higher subbands. In the case of positive strain, we
observe two distinct behaviors. For very low strain, from 0
to 0.5%, our results resemble those for strain along the [001]
direction, i.e., increasing strain causes bands to move closer

FIG. 5. Intrinsic SHC as a function of the Fermi level in
LaAlO3/SrTiO3 (001) oriented 2DEGs strained along the [111]
direction. (a) Tensile strain from 0% to 0.5%, increasing by an
increment of 0.1%; (b) tensile strain of 1%, 1.5%, and 2%. The
energy is measured from the conduction band edge at the � point.
The confinement potential is taken as 100 meV.

and the chemical potential of the maximum SHC is also
shifted towards the band edge.

The resulting spin Hall conductivity is shown in Fig. 5.
However, once the lowest conduction band is increased to
the level of the second conduction band and forms a de-
generate state at about 0.5% strain, the overall shape of the
SHC changes. As increasing strain increases the separation
between bands, we observe a behavior similar to that shown
in Fig. 3(b). One significant difference is that increasing strain
increases the spin Hall conductivity. This can be explained
readily by computing the curvature of the third band, which
is negative. Increasing strain results in a larger separation
between the first two bands and the third band; thus, the
negative curvature of that band has less impact on the overall
spin Hall conductivity (Fig. 6). Band-resolved density-of-
curvature plots [Figs. 6(c) and 6(d)] indicate that for values of
the strain up to 0.5% the evolution is similar to what was found
for strain in the [001] direction. The first band has primarily
positive curvature, and the second band has mostly negative
curvature but shifted in energy slightly with respect to the
first band, which results in a threshold chemical potential at
which the density of curvature changes sign, thus creating a
maximum SHC. This threshold Fermi level is about 70 meV
above the band edge and corresponds to a doping level with a
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(a) (b)

(c) (d)

Energy (meV) Energy (meV)

Energy (meV) Energy (meV)

FIG. 6. (a) Density of curvatures for a tensile strain of 0.4%
along the [111] direction, (b) density of curvatures for a compressive
strain of 1.5%, (c) band-resolved contribution to the Berry curvatures
for the case in (a), and (d) band-resolved curvature contribution for
(b). Red, blue, and black curves represent the first, the second, and
the third conduction bands, respectively.

carrier density of 1.7 × 1015 cm−2. In the case of 1.5% strain,
the third band is shifted so far away that it does not contribute
to SHC for achievable chemical potentials. The first band and
second band contributions compete with each other, as the
positive first band has a slightly lower energy than the second
band. In this case, the threshold Fermi level is in between the
first two conduction bands (≈40 meV) and corresponds to a
carrier density of 1.5 × 1014 cm−2. These carrier densities are
in the experimental range.

C. Temperature dependence

We set the temperature to 0 K for the calculations in
the previous sections. The intrinsic nature of the spin-orbit-
dependent phenomena does not depend on the temperature;
however, the Fermi-Dirac distribution in Eq. (1) contains the
effect of the temperature indirectly so that the temperature
dependence can be obtained through the occupation function.
We would like also to note that Boltzmann transport theory
[58] for these materials does not apply to this calculation,
as the intrinsic spin Hall conductivity is a property of the
filled valence states at all energies and does not depend on the
quasiparticle features or scattering at the Fermi energy. The
temperature effectively acts as a broadening in the occupation
function. We plot the temperature dependence of the intrinsic
SHC in Fig. 7 for a tensile strain of 1% along the [001]

FIG. 7. Intrinsic SHC as a function of the Fermi level in
LaAlO3/SrTiO3 2DEGs strained by 1% along the [001] direction at
various temperatures.

direction. The SHC exhibits a similar behavior at different
temperatures, and the maximum of the SHC is located at the
same Fermi energy. The increase in the intrinsic SHC can be
observed up to the maximum SHC, however, the magnitudes
are smaller than the value at zero temperature. The decrease
in the scale is attributed to the broadening of the occupations
such that negative Berry curvatures after 150 meV in Fig. 4(a)
contribute to the total spin Hall conductivity at lower Fermi
levels as the temperature is increased. Although the effect is
decreased, it is still of the same order of magnitude as at zero
temperature and, thus, observable in experiments.

IV. CONCLUSIONS

We have developed a tight-binding Hamiltonian descrip-
tion of LaAlO3/SrTiO3 2DEGs that accounts for strain via
changing bond lengths and angles. Spin-orbit coupling and
interfacial quantum confinement are included in the Hamilto-
nian. We calculated the intrinsic spin Hall conductivities as
a function of the strain and chemical potential. Our results
reveal a strong effect of the strain on the spin Hall conductiv-
ities as the doping level changes. We have also investigated
the source of the large SHC by plotting the band-resolved
densities of the Berry curvatures and identified “hot points”
with exceptionally large Berry curvatures in the Brillouin
zone. Strains along different directions mainly alter the in-
trinsic SHC through changes in the band structure and the
band curvatures. Our calculations also show that the intrinsic
SHC of strained systems is of the order of (e/8π ), so the
effect is comparable to the values that were calculated from
the Rashba spin-orbit interaction [35,36]. Exceptionally large,
tunable spin Hall conductivities in these 2D systems with high
carrier densities and large mobilities suggest that they could
play a substantial role in developing spintronic devices.
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