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Probing chiral electronic excitations in bilayer graphene by Raman scattering
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We report a symmetry-resolved electronic Raman scattering (ERS) study of a back-gated bilayer graphene
device. We show that the ERS continuum is dominated by interband chiral excitations of A2 symmetry and
displays a characteristic Pauli-blocking behavior similar to the monolayer case. Crucially, we show that nonchiral
excitations make a vanishing contribution to the Raman cross-section due to destructive interference effects in
the Raman amplitude matrix elements. This is in marked contrast to the optical absorption measurements and
opens interesting prospects for the use of Raman scattering as a selective probe for the detection of the chiral
degrees of freedom in graphene, topological materials, and other two-dimensional crystals.
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I. INTRODUCTION

Monolayer graphene exhibits a unique low-energy elec-
tronic band structure which mimics the two-dimensional
massless Dirac spectrum. Electrons in graphene, similar to the
relativistic Dirac particles, have a chiral nature, which has pro-
found consequences for the transport properties of Dirac ma-
terials, such as Klein tunneling [1], half-integer quantum Hall
effect [2], weak antilocalization [3], and so on. In monolayer
graphene, the chirality phenomenon is linked to the existence
of two inequivalent sublattices, which act as an isospin degree
of freedom [4,5]. Historically, chirality in graphene refers to
the projection of the isospin on the direction of momentum, a
property, which in the particle physics is called helicity (see
the Appendix for a discussion of the relation between chirality
and helicity in the context of graphene). Interestingly, chirality
can also be defined for bilayer graphene, where low-energy
electronic excitations mimic massive Dirac particles. Here,
in contrast to monolayer graphene, the chiral nature of the
excitations is not related to the sublattice degree of freedom,
but rather to the index of atomic layer, which can also act as an
isospin degree of freedom [6–8]. The chirality phenomenon in
graphene systems is shared by topological insulators, where
strong spin-orbit coupling leads to spin-momentum locking
similar to one in the Dirac Hamiltonian [9]. The chiral spin-
textures at the surface of the topological insulator Bi2Se3

have been successfully probed by spin and angle-resolved
photoemission electron spectroscopy measurements [10–12],
and their associated collective chiral excitations have been
recently revealed by Raman spectroscopy [13].
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Since chirality in graphene is associated with the sub-
lattice index instead of the real spin, accessing the chiral-
ity and isospin of the excitations in graphene-like systems
has been proved somewhat more elusive. Electronic Raman
scattering (ERS) has recently emerged as a tool to study
electronic excitations in graphene. The ERS studies were fo-
cused on the probing of inter-Landau level excitations, which
require strong magnetic fields [14–16]. Recently, polarization-
resolved measurements showed that the ERS spectrum at zero
magnetic field is dominated by the interband chiral excitations
across the Dirac point [17]. Here we use a commonly accepted
terminology, in which the term “chiral Raman excitation”
denotes the Raman-excited electron-hole pair, where electron
and hole have the opposite chiralities. As predicted theoreti-
cally [18], these excitations display Pauli-blocking behavior
upon tuning the Fermi level with a gate voltage. However,
due to its simple band structure, the only available vertical
interband transitions in monolayer graphene are chiral, and the
ERS spectrum of these interband excitations does not differ
significantly from the well-studied infrared absorption spectra
[19]. By contrast, in bilayer graphene the absorption exper-
iments reveal a much richer spectrum where only a subset
of all available excitations are chiral, providing an appeal-
ing platform to demonstrate the selectivity of polarization-
resolved ERS measurements with respect to conventional
infrared transmission measurements.

In this paper we demonstrate this selectivity by studying
ERS in a bilayer graphene device. First we provide a the-
ory showing that the dominant ERS processes correspond
to the excitations belonging the A2 representation of the
lattice symmetry point group of bilayer graphene. All other
processes are strongly suppressed due to destructive interfer-
ence effects in the Raman amplitude matrix elements. The
dominant ERS processes require an isospin flip, i.e., they
result in the creation of chiral Raman-active electron-hole
excitations, and represent only a subset of all interband tran-
sitions in bilayer graphene: namely, the interband transitions
that are mirror-symmetric with respect to the charge neutral
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FIG. 1. (a) Bernal-stacked bilayer graphene. The unit cell con-
tains four nonequivalent sites, A1, B1, A2, and B2. The atoms A2
and B1 (dimer atoms) are sitting directly on top of each other. The
hopping amplitudes γ0, γ1, and γ3 between the atoms are highlighted
with arrows. (b) Bilayer graphene electronic bands and allowed
vertical interband electron-hole transitions. Sketch of the expected
optical conductivity ωσ1 at the charge neutrality point (c) EF = 0
and at (d) 2EF = 1500 cm−1. In both cases a phenomenological
broadening of ∼0.05γ1 is used to account for disorder and/or in-
homogeneous carrier distribution. Here we do not show the 1–4
interband excitations that have onset energy E1−4

On = 2γ1 ∼ 6000
cm−1 and are sensitive to the Pauli blocking for EF > γ1.

point. These predictions are tested experimentally by inves-
tigating the symmetry-resolved ERS spectrum of a bilayer
graphene device under varying gate voltage. The ERS contin-
uum is dominated by interband excitations of A2 symmetry
and display a characteristic Pauli-blocking behavior upon
varying gate voltage, which can be reproduced by taking
into account chiral excitations only. This demonstrates that
nonchiral excitations make a vanishing contribution to the
Raman cross-section, as predicted theoretically. Concluding,
we contrast this unique property of ERS to infrared absorption
measurements, which probe all interband transitions, partially
disguising the contribution arising from the chiral excitations.

II. RAMAN SCATTERING ELECTRONIC EXCITATIONS
IN BILAYER GRAPHENE: THEORY

The unit cell of bilayer graphene contains four nonequiva-
lent atoms A1, B1, A2, and B2, where letters A and B denote
two sublattices in the same layer, while 1 and 2 stand for
the bottom and top layers [see Fig. 1(a)]. The Fermi level in
graphene lies in the vicinity of the corners of the hexagonal
Brillouin zone (also called valleys) known as K+ and K−.
Due to interlayer coupling, the valence and conduction bands
of bilayer graphene split in two subbands [see Fig. 1(b)].

The conventional tight-binding Hamiltonian is based on
π -orbitals of carbon atoms (one per atom, four in the unit
cell). We take into account only the in-plane coupling γ0, the

interlayer coupling γ1 between dimers atoms B1 and A2, and
the interlayer coupling γ3 between nondimer orbitals A1 and
B2. The main term in the Hamiltonian, linear in momentum p
around the valleys reads

Ĥ0 =
(

ξv3(σxpx − σypy ) ξvσ · p

ξvσ · p γ1σx

)
, (1)

where v = √
3aγ0/2h̄ is the band velocity, v3 = √

3aγ3/2h̄,
σ = (σx , σy ), and σx , σy , σz are the Pauli matrices, ξ = ± is
the valley index. The basis is constructed using components
corresponding to atomic sites A1, B2, A2, B1 in the valley
K+ and B2, A1, B1, A2 in K−. The linear Hamiltonian re-
sults in the low-energy electronic bands having the parabolic
behavior, which transforms into linear at high frequency [see
Figs. 1(a) and 1(b)]. The next order, quadratic in the electron
momentum, of the tight-binding Hamiltonian is

δĤ =μ

(
v3
v

(σxQx − σyQy ) σ · Q

σ · Q 0

)
,

where μ2 = − v2

6γ0
, Qx = p2

x − p2
y , Qy = −2pxpy , and Q =

(Qx,Qy ). Note, that, unlike in the monolayer case, the triag-
onal warping is created by H0, and not by δH .

Because of the vanishing momentum transfer in the Ra-
man process with visible photons, the ERS spectrum will
be dominated by vertical interband transitions. These vertical
transitions are shown in Fig. 1(b) in the band structure of bi-
layer graphene. For illustrative purposes, we first describe the
excitation spectrum ignoring Raman matrix element selection
rules (which is crucial as we demonstrate later) and take into
account the energy and momentum conservation rules only.
In such a case, the ERS spectrum does not depend on photon
polarizations and is simply given by the imaginary part of
the dynamical electronic polarizability �, which, in turn, is
closely related to the optical conductivity σ1 as �′′ ∝ ωσ1

[20,21]. Figures 1(c) and 1(d) show the frequency dependence
ωσ1 for bilayer graphene due to the interband transitions at
the charge neutrality point [Fig. 1(c)] and at finite bias (i.e.,
EF �= 0) [Fig. 1(d)] using the theoretical expression of σ1,
which proved itself to be a good description of the infrared
absorption spectrum of bilayer graphene [22–25].

The 2–3 interband transitions have the lowest energy and
their spectrum has an onset 2EF , what makes them similar
to the one observed in monolayer graphene. For γ1 > EF >

0 the 2–4 interband transitions show an onset at γ1, while
1–3 transitions are activated from γ1 + 2EF on, as the Pauli
blocking is lifted off. On the other hand, the 3–4 transitions
do not show an onset, but a peak centered approximately at
γ1, where at finite doping the intensity increases strongly due
to increased phase space [23–26].

A. Raman processes in bilayer graphene and
connection to isospin

To define the Raman selection rules, we need to describe
the interaction of the electrons with electromagnetic field. To
achieve this, the canonical momentum should be introduced,
p − e(AI + AS ), where AI and AS are vector potentials of
the incoming and outgoing light, respectively. We expand the
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FIG. 2. Two-step Raman processes in bilayer graphene. Indices
i, v, and f correspond to initial, intermediate (virtual), and final
electronic states, respectively. �I is the incoming light frequency
and ω is the Raman shift. The absorption (emission) processes are
represented by solid (dashed) lines. They correspond to processes
involving (a) zero and (b) two-photon virtual intermediate states.

resulting Hamiltonian up to the second order in the vector
potential and write down the interaction part:

Ĥint = j · (AI + AS ) + Mw,

M̂w = e2

2

∑
i,j

Ai
IA

j

S∂pi
∂pj

δĤ , (2)

where j = (jx, jy ), ji = −e∂pi
Ĥ0 is the current operator and

M̂w is an amplitude of the one-step Raman process. The
two-step process is realized through the subsequent absorp-
tion/emission processes described by the first term in Eq. (2).
Due to the small parameter v/c the excitation energy in the
intermediate state is of order of its energy in the finite state
and is much smaller then the incoming light frequency �I ,
making the intermediate state of the whole system virtual. The
virtual absorption process may precede the emission process
creating a large excess of energy in the virtual state (≈�I ),
or follow the emission process leading to a large deficit of
energy in the virtual state (≈ − �I ). Thus, they correspond to
zero and two-photon intermediate states, respectively.

The two kinds of two-step Raman scattering processes are
illustrated in Figs. 2(a) and 2(b). In each figure the absorption
(solid lines) and emission (dashed lines) events can take place
in any order. Note, however, that by swapping absorption
and emission processes (within one figure) we also change
the sequence of the creation and annihilation operators in
the initial (i) and finite (f ) electronic states. Therefore, each
of Figs. 2(a) and 2(b) describes two sequences (with direct
and reverse order of absorption and emission events) that
constitute the Raman scattering event. The swapping of the
photon’s creation and annihilation operators does not change
the expression due to their bosonic nature, while the same
swapping for the electron ladder operators results in the minus
sign due to their fermionic statistics. We now calculate explic-
itly the Raman probability of two-step electronic transitions in

bilayer graphene. For the two possible sequences in Fig. 2(a)
we get

∑
v

[
a+

f av a+
v ai

�I − εv + εi

+ a+
v ai a+

f av

−(�I − ω) − εf + εv

]

=
∑

v

[
1 − fv

�I − εv + εi

a+
f ai + fv

−�I + εv − εi

aia
+
f

]

=
∑

v

1

�I − εv + εi

a+
f ai,

where index v denotes all possible momentum-preserving
virtual states, and a, a+ are the fermion destruction and
creation operator, respectively. Here we also used the relation
εf = εi + ω where ω > 0 is the Raman shift, i.e., the energy
of the electronic excitation created in the system. Similarly,
for Fig. 2(b) we get

∑
v′

[
a+

v′ ai a+
f av′

�I − εf + εv′
+ a+

f av′ a+
v′ ai

−(�I − ω) − εv′ + εi

]

=
∑
v′

[
fv′

�I − εf + εv′
aia

+
f + 1 − fv′

−�I + εf − εv′
a+

f ai

]

=
∑
v′

1

−�I − εv′ + εf

a+
f ai .

By means of the expressions for the current operators, the
expression for the Raman amplitude of the two-step process
can be simply written as

M̂D = (j · AS )[�I − H0 + εi]
−1(j · AI )

+ (j · AS )[−�I + ω − H0 + εi]
−1(j · AI ). (3)

The momentum conservation allows the estimation of the
components of the Hamiltonian H0 as ω or γ1, depending on
whether the intermediate state is in the low- or high-energy
band. For the typical frequency of the visible light (∼2 eV)
we have γ1 � �I , so for small Raman shift ω � �I , the
denominators can be approximated by ∼�I and ∼ − �I for
both kinds of Raman processes.

Expanding over the 1/�I , the Raman amplitudes for the
one-step and two-step processes can be estimated as

M̂w ∼ e2

�I

μ ∼ e2v2

6�I γ0
,

M̂D ≈ e2v2

�2
I

{[jx, jy]−(eI × eS )z+O[ω/�I ]+O[γ1/�I ]}.

Here eI and eS are the polarizations of the incoming and
scattered photons. Since γ0 	 �I the one-step term is small
and the ERS signal will be dominated by two-step processes.
Neglecting also the terms proportional to v2

3 in the currents
commutator (v3/v ∼ 0.1) we get

M̂ ≈ e2v2

�2

{(
σ z 0
0 σ z

)
(eI × eS )z + O

[
v2

3/v
2
]

+O[ω/�I ]+O[γ1/�I ]+O[�I /γ0]

}
. (4)
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As we can see from the Eq. (4), the resulting Raman
amplitude is dominated by processes in which incoming and
outgoing photon polarizations are orthogonal. In terms of the
symmetry representation of the point group of graphene, the
scattering processes correspond to the A2 symmetry represen-
tation [27]. As discussed above, this Raman selectivity can be
traced back to the destructive interference effects between the
two kinds of two-step processes shown in Fig. 2.

Interestingly, the dominant A2 symmetric Raman ampli-
tude has a simple connection with the isospin, which in the
4-bands model is defined in the basis of the Hamiltonian (1)
as

S = σ 0 ⊗ σ ≡
(

σ 0
0 σ

)
, σ = (σx, σ y, σ z), (5)

where σ 0 is a unity matrix. This definition is equivalent to the
spin definition in the 2-bands model given in Refs. [28,29].
As one can see, the A2 Raman amplitude is proportional to
the z component of the isospin and can be written as M̂ =
e2v2

�2
I

(eI × eS )zSz.

B. Symmetry of excitations and relation to chirality

We showed that the dominant Raman processes have A2

symmetry and transforms like the z component of the isospin,
and now investigate to which interband transitions they cor-
respond to. For this we analyze the structure of the general
solution of the Hamiltonian (1), and demonstrate that the
dominant Raman processes are excitations between bands
symmetric with respect to the E = 0 line, i.e., from band 3 to
2 and from 4 to 1 only. We further show that they correspond
to a flip of the isospin orientation, and are thus chiral.

Let us consider the structure of the eigenstates of the
Hamiltonian (1) in the new basis A1, A2, B2, B1. The Hamil-
tonian H0 then takes form

H0 =
(

0 h

h∗ 0

)
, h =

(
v3p∗ vp
vp γ1

)
,

where p = px + ipy . The solutions of the Schödinger equa-
tion H0|ψ〉 = E|ψ〉 are represented by eigenvectors

|±, a/b〉 = 1√
2

(
|a/b〉

±λ
−1/2
a/b h∗|a/b〉

)
,

hh∗|a/b〉 = λa/b|a/b〉, (6)

with eigenvalues E = ±√
λa/b such that |a/b〉 and λa/b are

eigenvectors and eigenvalues of the matrix hh∗, correspond-
ingly. Note that λa/b are real and positive. These eigenstates
coincide with the bilayer bands: |−, a〉 ≡ |1〉, |−, b〉 ≡ |2〉,
|+, b〉 ≡ |3〉, and |+, a〉 ≡ |4〉. In this new basis the isospin
and Raman amplitude [in the limit of Eq. (4)] are equal to

S = σ ⊗ σ 0, M̂ ∝ Sz ≡
(

σ 0 0
0 −σ 0

)
. (7)

Since all eigenvectors are orthogonal, the Raman amplitude
M̂ ∝ Sz couples the states with the opposite sign of the energy

Sz|±, a/b〉 = |∓, a/b〉, (8)

which also means that the expectation value of the isospin vec-
tor 〈n|S|n〉 lies in the graphene’s plane since the z-component

of its the expectation value is zero. In terms of the band
transitions shown in Fig. 1(b), the dominant Raman scattering
process invokes the transitions 1 to 4 and 2 to 3 only. All
other transitions have vanishingly small Raman amplitude
as described above. The anticommutation relation MSx/y =
−Sx/yM indicates that the initial and final electronic states
involved in the Raman process (see Fig. 2) have the same
momentum, but possess opposite isospins. They have thus
opposite signs of the spin projection onto momentum, i.e.,
opposite chirality in graphene’s language.

III. ELECTRONIC RAMAN SCATTERING IN BILAYER
GRAPHENE: EXPERIMENTS

In this section we test experimentally the theoretical pre-
dictions made above in a bilayer graphene device. With the
broader aim of establishing Raman scattering as a selective
probe of chiral excitations in graphene systems, we have
two specific objectives: to show that the dominant Raman
processes have A2 symmetry, and test whether they can be
ascribed to 2–3 interband transitions at low energy.

A. Methods

The studied graphene samples were produced by exfolia-
tion of natural graphite and characterized by phononic Raman
spectroscopy. The study of the two-dimensional (2D) band
(∼2600 cm−1) and M band (1700-1800 cm−1) features allow
to identify the sample thickness unambiguously, following
Ref. [30]. The sample shown in Fig. 3(a) consists of regions
with bilayer and quadrilayer Bernal-stacked graphene. Elec-
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FIG. 3. (a) Optical microscope image of bilayer graphene device
and schematic drawing of the setup. eI,S and �I,S are the polariza-
tions and frequencies of incoming and scattered photons. The Raman
shift is defined as ω = �I − �S . (b) and (c) Polarization-resolved
Raman continuum of bilayer graphene recorded at T = 30K at five
different gate voltage values for (a) parallel and (b) cross polariza-
tions of incoming and scattered photons.
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trical contacts were first fabricated using e-beam lithography
and Pd deposition on an oxidized Si wafer with a SiO2

thickness of ∼500 nm).
The graphene flake was then positioned on top of the

Si/SiO2 device with contacts using a dry transfer technique
under an optical microscope. In such a structure the doped
Si substrate acts as a back gate [see Fig. 3(a)]. We use a
back gate to distinguish the ERS contribution from the other
sources of background signal in the measured spectra. The
graphene device was first characterized by studying the gate
voltage evolution of the G band phonon energy and linewidth.
The charge neutrality point (EF = 0) was found at 50 ± 10 V.
The polarization-resolved Raman scattering measurements
were performed using a home-built micro-Raman setup in
a backscattering configuration. The λ = 532 nm (2.33 eV)
excitation line of a diode pumped solid state (DPSS) laser
was focused onto the sample using a long-working-distance
100X objective lens with N.A. = 0.8. The laser spot size was
�1 μm and all measurements were performed with an inci-
dent laser power less than 1 mW and in the vacuum chamber
(P � 10−5 mbar) of a low-temperature optical cryostat. The
lowest cold finger temperature achieved was ∼30 K. The ex-
citation beam and the collected signal were linearly polarized
to identify the symmetry of the Raman active excitations.

B. Gate-dependent electronic Raman spectrum
of bilayer graphene

Figures 3(b) and 3(c) show Raman continuum of bilayer
graphene recorded at T = 30 K as a function of the ap-
plied back gate voltage, in parallel [Fig. 3(b)] and cross
[Fig. 3(c)] polarizations which probe all excitations belong-
ing to A1 + E2 and A2 + E2 symmetry representations of
bilayer graphene, respectively [17]. The spectra exhibit sharp
peaks corresponding to the well-known Raman-active optical
phonons of graphene layers. Here we focus on the underly-
ing broad continuum, which partly originates from the ERS
processes described above. In parallel polarization configu-
ration, the Raman spectrum does not show any sign of gate
dependence, indicating that it likely arises from non-ERS
background, or resonant higher-order ERS processes [31], as
it was found for a monolayer device [17]. On the other hand,
the cross polarizations spectra exhibit a clear gate effect, as ex-
pected for nonresonant ERS signal coming from low-energy
interband excitations, with a gradual and partial suppression
of intensity as the gate voltage increases [31,32]. The fact that
the gate-dependent signal is only seen in cross polarization
indicates a dominant contribution to the ERS continuum from
electronic excitations having A2 symmetry representation as
expected theoretically above. Note that the gate-dependent
signal strength is at least 20% of the measured signal in
cross-polarization configuration and has A2 symmetry. As
we will show below, the partial suppression of the A2 ERS
continuum upon increasing gate voltage is well reproduced
by considering the Pauli blocking effects on the chiral 2–3
interband transitions.

To isolate the gate-dependent ERS signal, we subtracted
the phonon peaks and normalized the resulting spectra with
the one recorded at the estimated charge neutrality voltage
(EF = 0). The gate-dependent signal can then be discussed
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FIG. 4. (a) Experimental and theoretical R(ω, VG) at 30 K for
the cross polarizations spectra. The theoretical plots are obtained by
only considering vertical 2–3 interband transitions, with a Gaussian
distribution of Fermi energy with δEF ∼ 35 meV. (b) Adjusted
values of EF in a function of the gate voltage, superposed to the
theoretical curve 11.

in terms of the ratio R(ω, VG) :

R(ω, VG) = I (ω, VG)

I (ω, VCN)
= I0 + IERS(ω, VG)

I0 + IERS(ω, VCN)
. (9)

Here IERS(ω, VG) is the gate-dependent ERS bilayer contin-
uum intensity and I0 the gate-independent background signal,
which we assumed to be weakly frequency dependent. In
Fig. 4(a) we show R for several gate voltages. When the Fermi
energy is moved away from charge neutrality point, the ratio
R decreases and the onset energy of this suppression gradually
shifts at higher frequencies, as expected for Pauli blocking
effects on interband transitions [see inset of Fig. 4(a)].

C. Theoretical modeling of the spectra

To analyze the gate-dependent ERS signal we compute the
expected theoretical R profiles. We only take into account
the Raman signal coming from the 2–3 transitions since, as
shown theoretically above, they are expected to dominate the
ERS spectrum at low Raman shift, ω < 2γ1. In this case,
the ERS intensity can be analytically computed by using the
expression of the Raman amplitude M̂ and the Fermi golden
rule. Extending the results of Ref. [32] to finite temperature
and using the corresponding dispersion relation, we obtain the
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following frequency dependence:

I 2−3
ERS ∝ ω + γ1

π (h̄vF )2

[
f

(
− h̄ω

2

)
− f

(
h̄ω

2

)]
, (10)

where f (ε) = [1 + e
ε−EF
kB T ]

−1
is the Fermi-Dirac distribution.

Note that in the low-energy or parabolic limit ω � γ1 we
recover the constant ERS continuum found in Ref. [32]. The
adjustable parameters in this simple model are EF , δEF ,
a distribution of Fermi energy due to the inhomogeneous
charge doping. Here I0 is an additional constant describing
an energy-independent background. Figure 4(a) demonstrates
a good agreement of experimental and theoretical results for
ratio R. In particular, as shown in Fig. 4(b), the EF values used
for the fits (black dots) are very close to the ones expected
by using the relationship between the Fermi energy EF and
the charge density N deduced from the gate voltage and the
estimated device capacitance C ∼ 60 aF/μm2:

EF =
−γ1 +

√
γ 2

1 + 4πN (h̄vF )2

2
. (11)

The variation of Fermi energy assumed for the theoretical
curves is δE = 35 meV, is consistent with previous estima-
tions for a similar bilayer graphene device [33]. Moreover, it
is consistent with the energy distribution coming from the fits
performed on the gate evolution of the G band in the same
device (see below).

D. Link with G band renormalization

The fitting parameters used for the ERS spectrum can be
independently cross-checked by looking at the G band renor-
malization under gate voltage. The coupling between phonons
and low-energy electrons-hole pairs in graphene devices has
been studied both theoretically [34–36] and experimentally
[33,37,38]. Figure 5(a) shows the G band energy and width
as a function of the Fermi energy in our device. When the
Fermi energy crosses half of the phonon frequency (EF =
±h̄ωG/2), the G band displays an anomalous softening and its
linewidth drops sharply [33]. In experimental measurements,
the profile of this anomaly strongly depends on the inhomo-
geneity of the charge distribution providing an independent
estimate of its value. As shown in Fig. 5(a) the value of the
variation of Fermi energy δEF assumed in the fit of R is
perfectly consistent with the one coming from the G band
energy and linewidth renormalizations.

In addition, we also note that the linewidth renormalization
of the G band is directly connected to the vertical electron-
hole pairs excitations with energy ωG [34,35]. At this energy
only 2–3 transitions are allowed and they have mainly chiral
A2 character, as already discussed for the ERS spectra. As
such they should not couple to the G band phonon, which has
E2 symmetry. However, taking into account trigonal warping,
the 2–3 vertical interband transitions acquire a small but finite
E2 component, which allows their coupling to the G band,
as discussed by Basko [39]. The superposition of the ERS
intensity taken at ω ∼ 1580 cm−1, and the G band linewidth
at several values of the Fermi energy, is shown in Fig. 5(b).
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FIG. 5. (a) Evolution of G band linewidth (blue dots) and energy
(red dots) of the bilayer graphene sample as a function of Fermi
energy. The Fermi energy was deduced from the gate voltage using
the same device capacitance as in the case of the ERS spectra. Theo-
retical plots are obtained with the same variation of the Fermi energy,
δEF ∼ 35 meV, as the R(ω, VG) theoretical fits [see Fig. 4(c)]. One
of the two anomalies is clearly identified at EF = −h̄ωG/2. (b)
Evolution of the ERS intensity at 1580 cm−1 (red dots) and of the
G band linewidth (black dots) as a function of the Fermi energy and
theoretical expectation (dashed line).

The similar evolutions of the two quantities indicate that they
are indeed both connected to 2–3 interband transitions.

E. Contrast between optical conductivity and ERS
in bilayer graphene

Unlike in the monolayer case, the difference between opti-
cal conductivity and the Raman response of bilayer graphene
is substantial. In monolayer graphene a single set of vertical
interband transition is possible and selection rules play a
marginal role. In such a case ERS and optical conductivity
provide essentially the same information and are related via
a simple relation, IERS = ωσ1. As shown above, the ERS
spectrum of bilayer graphene is well reproduced by taking
into account the A2 chiral transitions between the bands 2 and
3 only, neglecting all other interband transitions. By contrast,
all interband transitions contribute to optical conductivity.
Figure 6 illustrates the striking difference of ERS and infrared
transmission measurements for the case of bilayer graphene. It
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FIG. 6. Comparison of R(ω, VG) with normalized infrared trans-
mission measurements (1 − T/TCN ), where TCN is the transmission
for a Fermi energy at the charge neutrality point. Both were per-
formed on bilayer graphene devices [25] with approximately the
same Fermi level shift. The 1 − (T (V )/TCN ) spectrum is dominated
by a peak at around 3000 cm−1, with a magnitude that increases
together with the gate voltage. By contrast, the ERS intensity at this
frequency is essentially independent of gate voltage.

shows a superposition of R(ω, VG) at −40 V and a normalized
infrared transmission data taken from Ref. [25], which closely
mirrors the gate-induced changes in the optical conductiv-
ity of bilayer graphene. Both sets of data were taken on a
bilayer graphene device with a comparable Fermi energies,
EF ∼ 95 meV. The infrared spectrum is dominated by a peak
at ∼3000 cm−1 arising from nonchiral 3–4 transitions at γ1

as expected from the theoretical prediction of the optical
conductivity. This prominent peak masks the broader contri-
bution from 2–3 chiral transitions in the infrared spectrum.
By contrast, the peak at γ1 is absent in the ERS spectrum,
confirming that nonchiral excitations are filtered out in the
ERS process.

Before concluding, we briefly comment on the effects of
electric-field-induced layer asymmetry, which has been ne-
glected in our analysis of the ERS spectrum. The layer asym-
metry has indeed been shown to impact the phonon Raman
spectrum by mixing in-plane phonon modes with different
parity and lifting their degeneracy [40,41]. The resulting G

band splitting, however, was reported for an electric field
larger than one we have in our experiment, and we did not
observed any change of the Raman spectrum of our device.
In the case of ERS, the inclusion of layer asymmetry can
be done by introducing different on-site energies for each
layers, i.e., by adding to the Hamiltonian (1) a momentum-
independent term ∝ σ z ⊗ σ z [8]. This correction will not
affect the current operators, leaving Eq. (4) unaffected, and
therefore we expect that the main contribution to ERS will
still arise from A2 symmetry processes: 2–3 and 1–4 chiral
transitions. In principle, the small gap opening due to the
layer asymmetry could be observed in the ERS signal arising
from 2–3 transitions at weak gating and small Raman shifts.
However, since we are not controlling the electric field and the
chemical potential independently in our device the transitions

across the gap, expected below 300 cm−1 for the range of gate
voltages used here, are likely strongly smeared-out by Pauli-
blocking [24,42]. Further ERS measurements in a device
with both top and bottom gate electrodes could, in principle,
resolve this gap, providing it is not hindered by the strong
signal coming from the Si substrate below 1000 cm−1.

IV. CONCLUSION

In this paper we present an electronic Raman scattering
study of a bilayer graphene device at varying gate voltage.
The spectra show a remarkable selectivity of the Raman probe
on the interband excitations that require the inversion of the
electron chirality. Theoretically, this selectivity is ascribed
to the fact that the dominant electronic Raman processes of
bilayer graphene belong to the A2 symmetry, which includes
the chiral electronic transitions only. We demonstrated that
the processes in other symmetries are suppressed due to the
strong destructive interferences effects in the Raman ampli-
tudes. This selectivity contrasts with infrared transmission
measurements and opens interesting venues for the use of
Raman scattering as a selective probe of isospin and chiral
degrees of freedom in graphene, topological materials, and
other 2D crystals.
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APPENDIX: CHIRALITY, HELICITY, AND
SPIN-MOMENTUM LOCKING

In our work we use the terminology accepted by the
graphene community referring to the spin-momentum lock-
ing phenomenon as chirality [6,7,28,29]. Nevertheless, it is
important to introduce clearer definitions to clarify which
properties we probe in the experiment. The chiral excitations,
by definition, are the solutions of the Hamiltonian, for which
the parity transformation (a flip in the sign of one spatial
coordinate, which is equivalent to a reflection through a line
in two dimensions, and through a plane in three dimensions)
cannot be compensated by a rotation [43]. The valleys in
monolayer graphene play a crucial role in making the exci-
tations chiral, since the reflexion exchanges the K and K ′
points. To compare with the high-energy physics models, the
solutions of the 2D Dirac Hamiltonian σ · p constructed by
means of 2 × 2 Pauli matrices σx/y are nonchiral. Meanwhile,
the same Hamiltonian in three dimensions (with extra term
σ zpz), contains only chiral solutions since it itself is not sym-
metric with respect to the parity (which in three dimensions is
equivalent to inversion—the flipping in the sign of all three
spatial coordinates). The chirality of monolayer graphene
excitations is preserved also at higher energies, where the
trigonal warping is relevant and the rotations degrade from
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SO(2) to C6. These statements about chirality are also correct
for bilayer graphene.

If one follows the particle physics terminology, the spin-
momentum locking property of monolayer graphene referred
to in graphene community as chirality is actually called
helicity [43], which is defined as the projection of the an-
gular momentum or spin onto the direction of momentum.
Indeed, the helicity of the state in the monolayer graphene
takes the discreet values of +1 and −1 denoting also the
band which this state belongs to. In the case of the bilayer
graphene this simple definition fails. For the particular case
of low-energy excitations in bilayer graphene, the authors
of Ref. [29] defined helicity as σ · (p2

x − p2
y, 2pxpy )/p2.

In the case of the 4-bands model of bilayer graphene this
definition can be generalized, defining helicity as a con-
tinuous map of the momentum direction onto the isospin
direction.

As we state above, in the Raman scattering process the mo-
mentum of the excitation is kept fixed, but its isospin direction
is changed to the opposite one. The excitation changes the
band crossing to the state which is mirror-symmetric with the
respect to the E = 0 line. Thus, the electron and hole states
of the Raman-induced pair have the opposite projections of
the isospin onto momentum. This meets the definition of the
term “Raman chiral excitations” if we use the terminology
established by the graphene community.
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